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Abstract

Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by a breakdown of immune tolerance and the
development of autoantibodies against nucleic self-antigens. Immunometabolism is a rapidly expanding scientific field investigating
the metabolic programming of cells of the immune system. During the normal immune response, extensive reprogramming of cellu-
lar metabolism occurs, both to generate adenosine triphosphate and facilitate protein synthesis, and also to manage cellular stress.
Major pathways upregulated include glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle and the pentose phosphate
pathway, among others. Metabolic reprogramming also occurs to aid resolution of inflammation. Immune cells of both patients with
SLE and lupus-prone mice are characterized by metabolic abnormalities resulting in an altered functional and inflammatory state.
Recent studies have described how metabolic reprogramming occurs in many cell populations in SLE, particularly CD4þ T cells, e.g.
favouring a glycolytic profile by overactivation of the mechanistic target of rapamycin pathway. These advances have led to an in-
creased understanding of the metabolic changes affecting the inflammatory profile of T and B cells, monocytes, dendritic cells and
neutrophils, and how they contribute to autoimmunity and SLE pathogenesis. In the current review, we aim to summarize recent
advances in the field of immunometabolism involved in SLE and how these could potentially lead to new therapeutic strategies in
the future.
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Introduction
Systemic lupus erythematosus (SLE) is a complex autoimmune
disease, characterized by a breakdown of immune tolerance and
the development of autoantibodies against nucleic self-antigens.
SLE usually develops in a stepwise fashion over many years.
Autoantibodies appear at an early stage, when patients are still
asymptomatic, many years before clinically overt disease [1].
Both innate and adaptive immune mechanisms are involved in
the development of SLE, which leads to the activation of multiple
cell types, inflammatory cascades, complex immunological net-
works and eventually end-organ tissue damage. Despite advan-
ces in determining the key immunological pathways involved in
the pathogenesis of SLE, the disease remains incompletely under-
stood.

The metabolic state of immune cells is emerging as a critical
checkpoint of their effector and regulatory functions, including
proliferation and activation, secretion of molecules (e.g. cyto-
kines and chemokines), migration to tissues and escalation or
control of inflammation. All these processes are highly metaboli-
cally demanding, necessitating high uptake of valuable nutrients
such as glucose, amino acids and fatty acids in order to generate
adenosine triphosphate (ATP). The metabolic state is dependent
on two key pathways: glycolysis and oxidative phosphorylation
(OXPHOS). Glycolysis involves the conversion of glucose into py-
ruvate, which may then enter the tricarboxylic acid (TCA) cycle
and be oxidized, or be converted to lactate, which usually occurs

under anaerobic conditions. Although oxidation of pyruvate in
the TCA cycle yields many more ATP molecules per glucose mol-
ecule than conversion to lactate (�36 vs 2), activated immune
cells typically prefer aerobic glycolysis (i.e. production of lactate
despite normoxia), which allows high flux of glycolytic intermedi-
ates which can be used for biosynthesis or redox balance [2].
OXPHOS is the metabolic pathway in which ATP is generated via
oxidation of pyruvate in the mitochondria. Electrons supplied by
NADH are transferred through an electron transport chain across
the inner mitochondrial membrane, generating an electrochemi-
cal gradient which powers ATP synthesis. Changes in the amount
and type of nutrients used following activation of the immune
response, as well as the metabolic processes by which they are
utilized by the cells, have been referred to as metabolic reprog-
ramming. Immunometabolism is a rapidly expanding scientific
field investigating the metabolism of immune cells. In patients
with SLE as well as lupus-prone mice, metabolic abnormalities in
T cells were first reported over 15 years ago [3, 4].

Genetic and epigenetic factors
Metabolic reprogramming of immune cells has been studied in
patients with SLE and lupus-prone mice, with most focus on T
cells [5]. These processes are complex and are likely to be influ-
enced by genetic and epigenetic factors. Genetic factors have
been associated with mitochondrial dysfunction in autoimmu-
nity. Sle1c2, a lupus susceptibility locus in mice, is associated
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with a decreased level of estrogen-related receptor gamma, a mi-
tochondrial metabolism regulator and mitochondrial dysfunction
[6]. The UCP2 (uncoupling protein 2) –866 G/A polymorphism, a
gene involved in both mitochondrial ATP production and reactive
oxygen species (ROS) generation, has been associated with SLE
and rheumatoid arthritis [7]. In contrast, the AG and AA geno-
types were associated with decreased risks of both diseases when
compared with GG genotype [8, 9].

Mechanistic target of rapamycin (mTOR) is a sensor system
which can form two complexes, mTOR complex 1 (mTORC1) and
complex 2 (mTORC2). mTOR is crucial for the integration of met-
abolic signals regulating cellular growth, homeostasis and energy
use. mTOR functions as a serine/threonine protein kinase and its
signalling pathway is regulated by metabolic cues (e.g. glucose
and amino acids) as well as by growth factors, hormones and
cytokines. mTOR appears to be involved as a major regulator in
various rheumatic diseases [10]. Signal transduction via the Rag
family of small GTPases mediates the translocation of mTORC1
from the cytoplasm to the surface of the lysosome, where
mTORC1 is activated by GTP-binding protein Rheb, in response to
amino acid availability [11]. Genetic activation of the mTORC1
pathway was also reported to be associated with SLE, as lupus-
like pathology was observed in patients suffering from tuberous
sclerosis, in which mutations in the genes encoding hamartin
(TSC1) or tuberin (TSC2) form the TSC complex which functions
as inhibitor of mTORC1 activation [12–14]. This leads to unre-
strained activation of mTORC1 signalling.

Epigenetic processes are crucial in SLE and can regulate gene
expression via DNA methylation, post-translational histone mod-
ifications and microRNAs [15]. DNA methyltransferases are im-
paired in SLE T cells as a result of mitochondrial dysfunction [16].
Profiling of the levels of metabolites in sera from SLE patients
revealed profound lipid peroxidation, reflective of oxidative dam-
age, suggesting that additional defects in the S-adenosyl-L-methi-
onine cycle might contribute to DNA hypomethylation. Apart
from DNA methylation, acetylation of histone and non-histone
proteins is key mediators in SLE. Histone deacetylases are overex-
pressed in T cells from MRL/lpr lupus-prone mice, which could be
secondary to protein nitration and oxidative stress given that his-
tone deacetylation is NADþ-dependent [17].

Metabolism of T cells
T cells are key players in initiation and perpetuation of autoim-
munity in SLE, characterized by well-established alterations in
signalling, cytokine production, proliferation and other regula-
tory functions [18]. CD4þ T cells in SLE display an altered signal-
ling phenotype, with rewiring of their T-cell receptor (TCR)
signalling. Decreased expression of the CD3f chain and replace-
ment by the homologous Fcc receptor chain result in down-
stream signalling through Syk kinase instead of the normal CD3f

partner Zap70 [19]. The lysosomal degradation of the CD3f chain
is a consequence of increased oxidative stress in lupus T cells [1].

Signalling via mTORC1 is essential for the polarization of
naı̈ve T cells to type 1 T helper (TH1) and type 17 T helper (TH17)
cells in both healthy donors and patients with autoimmune rheu-
matic diseases [10, 20]. In regulatory T cells (Treg), inhibition of
mTORC1 was reported to promote their expansion, but other
data suggested that mTORC1 is an essential requirement for Treg

suppressive function [10, 21]. Although CD4þ follicular helper T
(TFH) cells do not activate the mTORC1 pathway upon viral infec-
tion, inhibition of AMP-activated protein kinase (AMPK) and
subsequent activation of mTORC1 induce TFH cell differentiation

and lupus-like disease in mouse models [22–24]. A
CXCR5�CXCR3þPD1hiCD4þ helper T-cell population distinct from
TFH cells was also reported to expand in peripheral blood and the
renal tubulointerstitial areas of patients with proliferative lupus
nephritis [25]. These cells were found to accumulate mitochon-
drial ROS because of reverse electron transport fuelled by succi-
nate, actively promoting B-cell activation through supply of IL-10
and succinate.

Many mechanisms have been reported to result in mTORC1
activation in SLE T cells, such as mitochondrial dysfunction, pen-
tose phosphate pathway (PPP) activation, high activity of transal-
dolase and accumulation of kynurenine, a tryptophan metabolite
with immune modulatory functions [26, 27]. Iron metabolism
was also shown to play an active role in T-cell function.
Activated T cells upregulated both transferrin receptor (CD71)
and iron uptake via increased endosomal recycling, features
which were exaggerated in lupus T cells [28]. Blockage of trans-
ferrin receptor led to reduction of intracellular iron and mTORC1
signalling, which in turn inhibited TH1 and TH17 cells but en-
hanced Treg differentiation and was associated with amelioration
of disease severity in lupus-prone mice.

Glycolysis has an important role in the effector functions and
cytokine production of T cells. CD4þ T cells from patients with
SLE and lupus-prone mice are characterized by enhanced glycol-
ysis [29, 30]. T-cell activation via TCR and CD28 stimulation indu-
ces GLUT1 expression, which correlates with increased glucose
uptake and glycolysis [31]. Although overexpression of GLUT1 in
mice was associated with cell activation and production of auto-
antibodies, this was not a universal feature of T cells in SLE
patients [32–34]. A study investigating the correlation between
GLUT1 expression and SLE disease activity found no significant
difference in gene expression of GLUT1 among healthy controls,
SLE with low and high disease activity. However, surface expres-
sion of GLUT1 on effector memory CD4þ T cells measured by
flow cytometry was higher in SLE patients with high disease ac-
tivity (SLEDAI �8) than in healthy controls or SLE patients with
low disease activity (SLEDAI <8) [35].

Glucose deprivation leads to decreased intracellular ATP levels
and activation of the serine/threonine kinase AMPK, which has a
positive regulatory effect on signalling pathways compensating
for the lack of cellular ATP [36]. The phosphatidylinositol 3-ki-
nase (PI3K)-AKT signalling pathway is a crucial signal transduc-
tion pathway regulating cellular survival, growth, proliferation
and migration, in which PI3K and AKT (protein kinase B) have im-
portant roles [37]. PI3K activation phosphorylates and activates
AKT, which is in turn translocated to the plasma membrane; this
pathway eventually leads to activation of mTORC1. T-cell activa-
tion through AKT signalling following stimulation supports both
increased glycolysis and OXPHOS [38, 39]. The enhanced glycoly-
sis and OXPHOS found in naive CD4þ T cells from lupus-prone
mice correlated with cellular activation status, especially exces-
sive interferon gamma (IFNc) production [29]. Normalization of
T-cell metabolism in vitro through dual inhibition of glycolysis
and mitochondrial metabolism could be a therapeutic avenue for
SLE. Interestingly, this high glycolytic function and mitochondrial
respiration observed in SLE T cells was also observed in effector
memory CD4þ T cells from healthy controls, and their population
is expanded in patients with SLE [40, 41]. Reduction in glycolysis
via inhibition of glutaminase 1 was reported to ameliorate dis-
ease in MRL/lpr lupus-prone mice in a TH17-dependent manner
[42]. In lupus-prone mice, the hypoxic environment associated
with renal tissue injury was shown to upregulate hypoxia-
inducible factor-1 (HIF-1) in CD4þ and CD8þ T cells, resulting in
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metabolic reprogramming and subsequently in increased effector
function and resistance to apoptosis [43]. An overview of CD4þ T-
cell metabolism and how this is affected in SLE can be seen in Fig. 1.

Early and significant dysfunction of the glycosphingolipid
metabolic pathway in the kidneys of lupus-prone mice and
patients with lupus nephritis has been reported, indicating the
importance of lipid metabolism in the pathogenesis of the dis-
ease [44]. Cholesterol and glycosphingolipids are important com-
ponents of lipid rafts of the cell plasma membrane and are
aggregated in T cell from SLE patients [45]. Inhibition of glyco-
sphingolipid biosynthesis in vitro was shown to normalize glyco-
sphingolipid metabolism, to correct CD4þ T-cell signalling and
functional abnormalities and to decrease anti-dsDNA antibody
production by autologous B cells in SLE patients [46]. Friend leu-
kaemia integration 1 (FLI1) is a transcription factor targeting
neuraminidase 1, which is involved in glycosphingolipid synthe-
sis. FLI1 haplodeficiency in MRL/lpr lupus-prone mice was shown
to decrease the pathogenicity of T cells by reducing TCR-specific
activation and IL-4 production in part through the modulation of
glycosphingolipid metabolism [47]. Interestingly, a variant in the
FLI1 promoter region resulting in increased FLI1 expression was
associated with susceptibility to SLE [48].

Cholesterol is a central regulator of TCR signalling and effector
functions in CD8þ T cells [49]. Inhibiting cholesterol esterification
in T cells by genetic ablation or pharmacological inhibition of
acetyl-CoA acetyltransferase 1, a key cholesterol esterification
enzyme, resulted in enhanced proliferation and activation of
CD8þ but not CD4þ T cells, via enhanced T-cell receptor

clustering and signalling in the immunological synapse. How
lipid metabolism is affected in CD8þ T cells of SLE patients is not
yet established.

The IFN system is activated in the majority of SLE patients and
is associated with profound immunological abnormalities [50, 51].
A study investigating how type I IFNs affect the metabolic state of
CD8þ T cells in SLE patients reported that the downregulation of
mitochondria-derived genes and mitochondria-associated meta-
bolic pathways was associated with a high type I IFN signature in
lupus patients [52]. Additionally, CD8þ T cells from these patients
had enlarged mitochondria and lower spare respiratory capacity
associated with increased cell death upon rechallenge with TCR
stimulation. Upon stimulation with type I IFNs and TCR ligation
of CD8þ T cells isolated from healthy controls, mitochondrial ab-
normalities could be reproduced in a similar manner seen in SLE
patients. These data signify that type I IFNs can induce metabolic
rewiring of CD8þ T cells by increasing NADþ consumption, which
in turn promotes impaired mitochondrial respiration and cell
death. Interestingly, mutations in ATAD3A, which encodes
ATPase family AAA domain-containing protein 3A, were reported
to upregulate interferon-stimulated genes in patients with mito-
chondrial disease, a process mediated by enhanced activation of
cyclic GMP-AMP synthase (cGAS) and stimulator of interferon
genes (STING) [53].

A large-scale bulk RNA-sequencing study of 27 immune
cell types in 136 SLE patients identified distinct transcriptomic
signatures associated with clinical features such as organ in-
volvement and response to therapy [54]. Interestingly, different

Figure 1. Metabolic reprogramming of CD4þ T cells in SLE. CD4þ T cells from patients with SLE and lupus-prone mice are characterized by enhanced
glycolysis, in which glucose is converted into pyruvate. Pyruvate enters the TCA cycle to generate NADH and FADH2 or it is further metabolized into
lactate, which is secreted by the cell. NADH and FADH2 will in turn enter the electron transport chain (ETC) to generate ATP via OXPHOS. Glucose can
also be metabolized via the PPP, which leads to accumulation of kynurenine and activation of mechanistic target of rapamycin complex 1 (mTORC1).
TCR stimulation can also activate mTORC1 through the PI3K–AKT pathway. mTORC1 activation via TCR activation can induce glucose metabolism
through HIF-1a and Myc proto-oncogene protein, which itself contributes to mitochondrial dysfunction. CD4þ T cells can utilize fatty acids as a source
of energy by degrading fatty acids through fatty acid oxidation. Activated T cells also upregulate transferrin receptor (CD71) and iron uptake via
increased endosomal recycling, which in turn promotes differentiation and cell activation.
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enrichment patterns were reported between the signatures of
metabolism-related and cellular-related pathways. For instance,
TCA cycle genes showed enrichment in activity signatures in
memory CD8-lineage cells. On the other hand, ribosome and cell
cycle pathways were enriched predominantly in disease-activity
signatures of TH1 cells and memory CD8-lineage cells but also in
non-T-cell subsets such as NK cells. The cell-type-specific analy-
sis successfully clarified the cell-type origin of these pathways
and highlighted the importance of immunometabolism in dis-
ease establishment and exacerbation phases.

Metabolism of B cells
B cells contribute to lupus pathogenesis via antigen presentation,
autoantibody production, cytokine production and interaction
with other immune cells. Autophagy is a critical homeostatic
mechanism for plasmablast development, which was previously
shown to play a central role in early developmental and transi-
tional stages of autoreactive B cells in a lupus model via the in-
duction of significant cellular stress [55].

Similarly to T cells, activated B cells predominantly acquire a
glycolytic profile [56]. In lupus-prone mice, mTORC1 is overex-
pressed in B cells, enhancing plasma cell differentiation and au-
toantibody production, while mTOR pathway inhibition by
rapamycin decreased B-cell proliferation and survival [57, 58].
Interestingly, high levels of B-cell-activating factor (BAFF), an im-
portant mediator of B-cell survival and therapeutic target in SLE
patients, were found to increase glucose metabolism and glycoly-
sis via mTORC1 activation and promotion of protein synthesis
[59, 60]. Induction of glycolysis was shown to be critical for anti-
body production by plasma cells in BAFF transgenic mice, while
inhibition of glycolysis with the pyruvate dehydrogenase kinase
inhibitor dichloroacetate significantly suppressed B-cell prolifera-
tion and antibody secretion both in vitro and in vivo [59].
Long-lived plasma cells are central in the pathogenesis of SLE,
producing autoantibodies (e.g. anti-dsDNA, anti-Ro, anti-La, anti-
Sm, anti-RNP and anti-cardiolipin) [61]. In NZB/W F1 lupus-prone
mice, autoreactive long-lived plasma cells were shown to be
regenerated within 2 weeks after depletion by using the protea-
some inhibitor bortezomib [62]. The differentiation of B cell into a
long-lived plasma cell is largely dependent on both intrinsic (e.g.
BTB transcription factor ZBTB20) and extrinsic factors (e.g. APRIL,
BAFF, IL-6) [63–65]. Interestingly, survival of long-lived plasma
cells was also shown to require mitochondrial pyruvate import
via the mitochondrial pyruvate carrier (MCP) complex [66].
Long-lived plasma cells demonstrated higher glucose uptake in
comparison with short-lived plasma cells and this glucose was
essential for the generation of pyruvate. Glucose was primarily
used to glycosylate antibodies, but deletion of Mpc2, an essential
component of the MCP, led to a progressive loss of long-lived
plasma cells and of vaccine-specific antibodies in vivo. The above
results may indicate that inhibition of glucose utilization could
target long-lived plasma cells by preventing antibody glycosyla-
tion as well as by impairing cell survival through lack of pyruvate.

Fatty acid amide hydrolase (FAAH) can degrade ligands for
cannabinoid receptors and members of the peroxisome
proliferator-activated receptor (PPAR) family and is encoded by
the metabolic gene Faah. Faah has been proposed as a susceptibil-
ity gene in the murine NZM2410-derived Sle2 locus [67]. Although
increased Faah expression associated with the Sle2 locus did not
breach central immune tolerance in a transgenic B-cell receptor
model, it promoted B-cell receptor revision in mature B cells via
high expression of endogenous Ig H and L chains in splenic B cells

and upregulation of recombination activating genes (RAG),
resulting in enhanced autoantibody production. Increased levels
of FAAH were also reported in plasma cells from patients with
SLE [68]. Although the underlying mechanism connecting metab-
olism of fatty acid amides and esters to B-cell function remains
unclear, PPARc agonists in lupus-prone mice showed a beneficial
effect ameliorating disease activity, atherosclerosis, hypertension
and overall organ damage [69–72].

OXPHOS genes were found to be enriched in disease-state
signatures in B-lineage cells from SLE patients in a recent large-
scale transcriptomic study [54]. Another study investigating met-
abolic changes in B cells from SLE patients demonstrated that
staining with DiOc6 (indicating mitochondrial membrane polari-
zation) was higher in B cells from SLE patients than in healthy
controls, and was positively correlated to the percentage of plas-
mablasts in the peripheral blood as well as disease-activity scores
[73]. TLR9 and IFNa stimulation enhanced glycolysis, OXPHOS
and DiOc6 staining in B cells, further promoting plasmablast dif-
ferentiation in vitro. Importantly, in the absence of glutamine,
both glycolysis and OXPHOS were reduced, suppressing plasma-
blast differentiation.

Metabolism of monocytes and macrophages
Metabolic reprogramming of monocytes and macrophages during
inflammatory responses is less studied in SLE compared with T-
cell subsets. Monocytes exhibit polyfunctional cytokine expres-
sion patterns, while newly diagnosed untreated SLE patients
share a distinct monocytic chemokine signature despite their
clinical heterogeneity [74]. Reduced numbers of tingible body
macrophages, along with impaired ability to efficiently clear apo-
ptotic cellular debris have been described in the germinal centres
of SLE patients [75]. A link between the aberrant type I IFN pro-
duction seen in SLE and monocytic function was established, as
IFNa can directly impair the autophagy-mediated degradation of
mitochondrial DNA (mtDNA). This defect results in promotion of
autoreactivity of SLE monocytes in a STING-dependent fashion
[76]. Intracellular sensing of mtDNA via the cGAS-STING path-
way can induce a type I IFN response, a process that typically
characterized by impaired OXPHOS and ATP production, loss of
mitochondrial potential and mROS induction, leading to a loss of
mitochondrial integrity and release of mitochondrial components
[77]. Of note, inhibition of mTOR signalling pathway in vitro with
rapamycin was shown to reduce type I IFN production by SLE
monocytes [78]. Inhibition of fumarate hydratase was shown to
increase IFNb production in macrophages through mechanisms
driven by mtRNA release and activation of the RNA sensors TLR7,
RIG-I and MDA5 [79]. Macrophages from SLE patients were dem-
onstrated to exhibit suppressed levels of fumarate hydratase,
suggesting a pathogenic mechanism in sustaining type I IFN
responses.

Macrophages utilize arginine as an important energy source in
two main metabolic pathways: the nitric oxide synthesis path-
way through classical activation and the arginase pathway
through alternative activation [80]. The nitric oxide synthesis
pathway was linked to an inflammatory M1 phenotype with ni-
tric oxide synthase being the main mediator [81]. M1 macro-
phages typically exhibit a glycolytic phenotype. On the other
hand, for M2 macrophages, the production of a-ketoglutarate via
glutaminolysis is essential for their polarization, while fatty acid
oxidation and mitochondrial respiration are the primary path-
ways for their functional requirements [82]. Glutamine catabo-
lism is an important regulator, as it is essential for IL-1 induction
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by macrophages upon lipopolysaccharide (LPS) stimulation [83,
84]. Glutamine can also be incorporated in the TCA cycle and the
hexosamine pathway; this can induce M2 macrophage polariza-
tion upon IL-4 stimulation. However, glutamine is not a requisite
for the development of LPS-stimulated M1 macrophages [85].
Overall, M2 macrophages are characterized by higher basal mito-
chondrial oxygen consumption rates [86, 87]. Despite the better
understanding of the above pathways and their role in macro-
phage biology, the precise metabolic rewiring in different macro-
phage subsets in SLE remains unclear.

Macrophages are also capable of taking up various types of lip-
ids such as low-density lipoprotein, very-low-density lipoprotein
and oxidized lipoproteins through processes including phagocy-
tosis, macropinocytosis and scavenger receptor-mediated path-
ways [88]. Macrophages from SLE patients are known to have
impaired phagocytic capacity. Fatty acid oxidation was shown to
regulate multiple inflammatory functions of macrophages as
well as macrophage differentiation [89]. Abnormal deposition of
fatty acids and lipoproteins in macrophages can contribute to
foam cell formation and induction of inflammation, with particu-
lar emphasis on unsaturated fatty acids (e.g. oleic acid, linoleic
acid and arachidonic acid), which were shown to induce IL-1a se-
cretion by foam cells in vivo [90, 91].

Splenic marginal zone macrophages are an important popula-
tion actively contributing to the tolerogenic clearance of apopto-
tic cells and debris via indoleamine-2,3-dioxygenase (IDO) [92].
Intracellular signalling via IDO can induce the metabolic-stress
sensing kinase general control non-derepressible 2 (GCN2), which
phosphorylates eIF-2a, the activity of which can prevent autoim-
mune phenomena mediated by an excessive amount of apoptotic
material [93]. In response to tryptophan catabolism mediated by
IDO, GCN2 can induce a stress response that regulates innate im-
munity [94].

Metabolism of neutrophils
Neutrophils are dysfunctional in SLE patients, with impaired
phagocytosis and reduced production of ROS, features associated
with disease severity and end-organ damage [95, 96]. Neutrophils
(particularly the subset of low-density granulocytes) also undergo
a particular form of cell death named ‘NETosis’ by releasing neu-
trophil extracellular traps (NETs) and DNA which are immuno-
genic. Apart from the enhanced NETosis, SLE patients also have
impaired removal of those NETs [97, 98].

Ribonucleoprotein-containing immune complexes can induce
mitochondrial membrane hyperpolarization and ROS generation
by blocking transcription factor A, mitochondrial (TFAM) phos-
phorylation, resulting in NET formation as well as oxidation of
mtDNA [99]. The accumulation of oxidized mtDNA within the mi-
tochondria of neutrophils in SLE is highly proinflammatory when
extruded in NETs, inducing a strong type I IFN response. Of note,
mitochondrial ROS inhibition in vivo reduced disease severity and
attenuated type I IFN responses in a lupus mouse model, while
decreased spontaneous NETosis and reduced disease activity
were reported in MRL/lpr mice treated with a mitochondrial-ROS
scavenger [100]. Interestingly, there is a feed-forward loop be-
tween NETs and macrophages in SLE patients, in which both
NETs and LL-37 induce IL-18 and IL-1b secretion via activation of
the inflammasome [101]. These cytokines can in turn stimulate
neutrophils to undergo further NETosis, leading to an amplifica-
tion of this inflammatory loop.

NADPH oxidation was also reported to have a great impact on
neutrophil function by regulating NETosis [102]. NADPH oxidase

2 (Nox2) is a vital subunit of the NADPH oxidase enzymatic com-
plex, which plays an essential role in ROS generation by phago-
cytes. Nox2-deficient male mice were unable to undergo NETosis,
but in contrast to the hypothesis that disease will be ameliorated,
the mice developed markedly exacerbated lupus with increased
spleen weight, increased renal disease and elevated and altered
autoantibody profiles. Intriguingly, heterozygous female mice,
which have Nox2-deficiency in 50% of neutrophils on average
due to X-chromosome inactivation, also developed exacerbated
lupus and altered autoantibody patterns, suggesting that failure
to undergo normal Nox2-dependent cell death may result in re-
lease of immunogenic self-constituents that stimulate lupus
[102]. Additionally, ATP production and autocrine purinergic sig-
nalling via P2Y2 receptors might be essential for neutrophil che-
motaxis via promotion of mTOR signaling [103]. Blocking mTOR
signalling with rapamycin reduced mitochondrial Ca2þ uptake
and membrane potential, and further impaired cellular ATP re-
lease and neutrophil chemotaxis. Overall, the precise metabolic
rewiring necessary for the recruitment and function of neutro-
phils in the inflammatory response in SLE remains unclear, and
it can vary among patients and across different target organs.

Metabolism of myeloid dendritic cells
Activation of professional antigen-presenting cells such as mye-
loid dendritic cells (mDCs) is a crucial link between innate and
adaptive immune responses. mDCs perform prolonged self-
antigen presentation and pro-inflammatory cytokine production
in autoimmunity, and have defective tolerogenic functions [104].
Resting mDCs are characterized by a catabolic metabolic state,
continuously breaking down fatty acids and glutamine. This is
mediated by OXPHOS and the TCA cycle, largely regulated by
AMPK [105, 106].

mDCs also utilize intracellular glycogen to support basal gly-
colytic needs, which provides metabolic substrates for mitochon-
drial respiration [107]. Upon immunogenic activation, DCs
acquire an anabolic metabolic state. Activated DCs switch to
aerobic glycolysis, which increases availability of glycolytic inter-
mediates to enter the PPP [108]. Antigen processing and presenta-
tion by mDCs requires glycolysis and glycogen metabolism along
with fatty-acid synthesis to further stimulate T cell for activation
and differentiation [109]. Stimulation with toll-like receptor (TLR)
agonists leads to a rapid increase in glycolysis, leading to the de
novo synthesis of fatty acids for the expansion of the endoplasmic
reticulum and Golgi required for the production and secretion of
proteins crucial to mDC activation. Of note, this TLR-mediated
glycolytic flux is signalled via the kinases TBK1, IKKe and Akt by
promoting the association of the glycolytic enzyme HK-II with
mitochondria.

The mTOR signalling pathway has a crucial role in integrating
signalling from TLRs and growth factors with intracellular nutri-
ent levels [110]. Constitutive mTORC1 activation was shown to
impair mDC survival and proliferation but accelerated their mat-
uration through Myc-dependent metabolic reprogramming. This
metabolic switch is characterized by high levels of ROS produc-
tion [111]. Tolerogenic dendritic cells were also reported to re-
quire fatty-acid oxidation to perform their suppressive role and
control inflammatory responses [112].

Metabolism of plasmacytoid dendritic cells
Plasmacytoid dendritic cells (pDCs) are considered the profes-
sional type I IFN-producing cells during acute viral infection and
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they have pleiotropic effects on the immune system including
both cytokine secretion and antigen presentation [51, 113]. Type I
IFN production by TLR9-activated pDCs leads to significant meta-
bolic reprogramming by promoting fatty acid oxidation and
OXPHOS via an autocrine type I IFN receptor-dependent pathway
[114]. These metabolic changes are necessary for pDC activation,
while glucose flux and mitochondrial pyruvate uptake to the TCA
cycle are required to generate citrate for de novo fatty acid synthe-
sis. However, pDC function was demonstrated to be severely im-
paired in patients with SLE and other autoimmune conditions
such as primary Sjögren’s syndrome, including TLR-dependent
type I IFN production, antigen presentation and T-cell activation
[115]. This impaired functional state of pDCs in SLE patients was
associated with activation of intracellular pathways involved in
cellular senescence and stress (ATG14, ATP7A, DNAJB1), protein
degradation in lysosomes (CTSL) and negative regulation of TLR
signalling (IRAK3). It is still unclear whether altered metabolic
pathways contribute to this defective phenotype. The aberrant
type I IFN activation originated from non-haematopoietic tissue
cells, while this defective phenotype also extended to preclinical
phases of SLE [50, 115].

Treatment approaches
Metabolic reprogramming can affect T-cell fate and many cur-
rent therapeutic agents can directly influence the immune phe-
notype of lymphocytes by altering the cellular metabolic state.
Methotrexate is the commonest disease-modifying antirheu-
matic drug (DMARD) used in most inflammatory arthritides, as
well as in connective tissue diseases such as SLE. Methotrexate is
known to inhibit purine and pyrimidine (DNA) synthesis by acti-
vating the AMPK pathway, which in turn inhibits mTOR activa-
tion and glycolysis [116–118]. Mycophenolate mofetil (MMF),
which is widely used in the treatment of lupus, inhibits inosine
monophosphate dehydrogenase type II, directly impacting gua-
nosine (DNA) synthesis.

MMF has a major effect on B-cell function, as it can inhibit
both proliferation and differentiation of primary human B cells,
particularly during early activation events and arrested cells in
the G0/G1 phase of the cell cycle [119]. MMF may also lead to in-
hibition of CD4þ T-cell proliferation and promotion of apoptosis
via reduction of AKT–mTOR pathway activation, glycolysis and
oxygen consumption [120]. Many immunosuppressive drugs in-
cluding mTOR inhibitors (rapamycin), calcineurin inhibitors
(tacrolimus, cyclosporine A) and inhibitors of de novo purine syn-
thesis (6-mercaptopurine, mycophenolic acid and methotrexate)
provide examples into how modulating these metabolic check-
points can regulate T-cell activation, differentiation and immu-
nogenic function [116]. Pioglitazone, a selective PPARc agonist,
can inhibit the mTOR pathway and ameliorate disease activity in
lupus-prone mice, and affect T-cell function in patients with SLE
[72, 121].

Targeting the mTORC1 pathway with rapamycin and its ana-
logues might provide a window to explore new therapeutic
approaches targeting the metabolic status of the immune system
[122]. N-acetylcysteine can inhibit mTORC1. A randomized,
double-blind, placebo-controlled study of 36 patients with SLE
demonstrated that N-acetylcysteine improved disease activity
and was associated with increased intrinsic mitochondrial mem-
brane potential and reduced mTOR activity in T cells [123]. In
paediatric SLE with nephritis, mTOR inhibition by rapamycin re-
duced STAT3 activation in effector T cells and the migration of
IL-17-producing T cells in inflamed kidneys [124]. Calcium/

calmodulin-dependent protein kinase IV (CaMK4), which is re-
quired during TH17 cell differentiation, is increased in SLE.
Silencing CaMK4 in T cells from patients with SLE and healthy
individuals was shown to inhibit TH17 differentiation through re-
duction of IL-17A and IL-17F mRNA [125]. Treatment of MRL/lpr
lupus-prone mice with a CaMK4 inhibitor resulted in decreased
end-organ tissue damage by reduction of inflammatory cell infil-
trates and a reciprocal increase in Treg activity [126]. In a single-
arm, open label, phase 1/2 trial of sirolimus (rapamycin) in SLE
patients, there was a reduction in both SLEDAI and BILAG
disease-activity scores after 12 months in 55% of patients who
completed treatment [127]. Additionally, sirolimus expanded Treg

and CD8þ memory T cells and inhibited IL-4 and IL-17 production
by CD4þ and CD4�CD8� double-negative T cells after 12 months.
Altogether, mTOR overactivation is a crucial pathway in SLE
pathogenesis and its inhibition might lead to new strategies to
treat this complex autoimmune condition.

Conclusions
Recent studies have demonstrated the importance of immune
metabolic reprogramming in both preclinical autoimmunity and
in patients with SLE. The focus of most studies was the metabolic
alterations in various T-cell subsets, which emphasized that en-
hanced glycolysis and overactivation of the mTOR pathway were
linked to an inflammatory profile and enhanced autoreactivity. It
is important to make clear that each immune cell subset exhibits
unique metabolic pathways, essential for activation, proliferation
and functional performance during the immune response. As
type I IFNs are major drivers of SLE pathogenesis, it would be in-
triguing to understand if targeting that pathway by IFNAR block-
ade or JAK inhibition could potentially influence the metabolic
reprogramming of haematopoietic and other immune cells.
Future research is required to decipher the metabolic rewiring of
the cells during different phases of autoimmunity, different
stages of disease activity and importantly, how this is linked to
response or failure of treatment. This can potentiate the develop-
ment of novel therapeutic approaches in SLE, which can be cell
specific, sparing the side effects of the widely used corticosteroids
and other immunosuppressants.
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