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Abstract

Analysis of transit times in exoplanetary systems accurately provides an instantaneous
orbital period, P(t), of their member planets. A long-term monitoring of those transiting
planetary systems puts limits on the variability of P(t), which are translated into the
constraints on the time variation of the gravitational constant G. We apply this analysis
to 10 transiting systems observed by the Kepler spacecraft, and find that �G/G � 5 × 10−6

for 2009–2013, or Ġ/G � 10−6 yr−1 if Ġ is constant. While the derived limit is weaker than
those from other analyses, it is complementary to them and can be improved by analyzing
numerous transiting systems that are continuously monitored.
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1 Introduction

Are the fundamental constants in nature really constant
over the cosmological time scale? This question has a long
history in physics and cosmology, and has been discussed
intensively in different contexts. One of the most famous
examples includes the Large Number Hypothesis by Dirac
(1937), who raises a possibility of the gravitational constant
G being proportional to t−1.

Recently, Anderson et al. (2015) reported a curious
oscillatory trend in the values of G measured over the
last three decades, �G/G ≈ 2.4 × 10−4sin [2πt/(5.9 yr)
+ const.]. More intriguingly, they claimed that the period
and phase of the modulation are in agreement with the
variation of the length of a day of the Earth (Holme &
de Viron 2013; Speake & Quinn 2014). The proposed

modulation, however, is unlikely to reflect the real-time
variation of G (Anderson et al. 2015). Indeed, the ampli-
tude of �G is shown to be inconsistent with the dynamics of
the solar system (Iorio 2016). In addition, the subsequent
studies (Schlamminger et al. 2015; Pitkin 2015; Scholk-
mann & Sieber 2016, and added appendix of Anderson
et al. 2015) have shown that the trend reported by Anderson
et al. (2015) is more likely to be an artifact. Nevertheless,
it is important and interesting to discuss and compare with
other independent constraints on �G on such short time
scales since most of the previous literature has focused on
�G averaged over the cosmological time scale.

For that purpose, we consider the orbital periods of
transiting exoplanetary systems in the present paper. So
far, more than 4000 candidate systems have been reported
by the Kepler mission (Mullally et al. 2015), which have
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been monitored over several years, and approximately 1000
of them have been confirmed to host planets. The orbital
period P of such planets can be accurately determined by
their central transit times. Furthermore, a systematic search
for any time variability of the period has been performed
primarily in order to probe the gravitational interaction
between multiple planets, which is referred to as the transit
timing variation (TTV: Agol et al. 2005; Holman & Murray
2005).

The TTV analysis is conventionally used to determine the
mass of planets without radial velocity follow-up observa-
tions and/or to infer the presence of undetected perturbers.
Instead, we attempt to put a constraint on the time vari-
ation of G from the same analysis, but focusing on those
systems that exhibit no clear TTV signature. In particular,
hot Jupiters, planets orbiting around host stars within a
week or so, are particularly suited for constraining the vari-
ation of G on time scales of months to years.

As will be shown below, our sample yields the constraint
Ġ/G � 10−6 yr−1 if Ġ is constant, which is weaker by
six orders of magnitude than those based on the pulsar
timing (e.g., Williams et al. 1976; Kaspi et al. 1994; Zhu
et al. 2015) and the lunar ranging (e.g., Hofmann et al.
2010). We would like to emphasize, however, that the con-
ventional assumption of the constant Ġ is not general, but
has been introduced just for simplicity. If G did vary period-
ically as was claimed by Anderson et al. (2015), planetary
systems with different orbital periods would be ideal to
search for the possible resonant effect close to the variation
period of days to years, and thus the resulting constraint
on the amplitude of Ġ could be stronger depending on the
expected period of the oscillation. Therefore it would be
interesting to know the current limit from the existing sys-
tems at this point in any case.

The precise data of our solar system also put more strin-
gent constraints on the variation of G, but they are mostly
sensitive to the variability on time scales of years, and the
perturbative effect of eight planets and other bodies need
to be carefully separated, as has been performed by Iorio
(2016), for instance. On the contrary, the result from dif-
ferent transiting systems can be simply added for tighter
constraints because the effect of �G should change the
period of any system in a coherent fashion. For these rea-
sons, TTVs of transiting planetary systems offer a comple-
mentary and straightforward method to explore the varia-
tion of G on shorter time scales.

2 Transit timing variation analysis of

planetary systems

In the two-body problem, motion of a planet around its host
star is exactly periodic, and so are its transits. The transit

Fig. 1. TTVs in the Kepler-9 system, where two planets near a 2 : 1 mean
motion resonance (Kepler-9b with P = 19.3 d, top; Kepler-9c with P =
38.9 d, bottom) transit the same host star. The residuals of the transit
times from the linear fit are plotted against the Kepler observational
time spanning about four years. The error of each transit time is smaller
than the point size. (Color online)

times of a planet in a multiple planetary system; however,
sometimes deviate from the exact periodicity due to the
gravitational perturbation from other planets in the system.
This phenomenon, known as the “transit timing variation”
(TTV: Agol et al. 2005; Holman & Murray 2005), has been
successfully modeled in tens of multi-transiting planetary
systems discovered by Kepler to determine the mass ratios
of their member planets (e.g., Holman et al. 2010; Lissauer
et al. 2011; Masuda 2014) as well as to infer the existence of
non-transiting planets (e.g., Nesvorný et al. 2012; Masuda
et al. 2013).

Figure 1 displays an example of the TTV signals for the
Kepler-9 system, which is the first multiple planetary system
detected through the transit method. It hosts two transiting
planets, Kepler-9b (0.137 MJup) and Kepler-9c (0.094 MJup)
with orbital periods of 19.3 d and 38.9 d, respectively
(Borsato et al. 2014). In this system, the orbital periods
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Fig. 2. �P/P against BJD for Kepler-1b (left) and Kepler-2b (right). (Color online)

of the two planets are not exactly constant because of
the strong mutual gravitational interaction between the
two, in addition to the dominant gravity due to the host
star (1.07 M�). This results in systematic deviations of the
central transit times with respect to the mean period, as
exhibited by filled circles in the figure.

Such TTV signals have often been used to constrain the
system parameters, in particular to estimate the mass of
planets without radial velocity measurement. In the fol-
lowing, however, we use the absence of the TTV signal
to put an upper limit on the period variation �P, which
translates into �G through Kepler’s third law:

P = 2π

√
a3

GM
, (1)

where a is the semi-major axis and M is the total mass of
the two-body system.

Although equation (1) is exactly correct only when G
is constant, we assume that it still holds when G varies
adiabatically, as we consider here. Then it leads to

Ṗ
P

= 3
2

ȧ
a

− 1
2

Ġ
G

− 1
2

Ṁ
M

. (2)

Note that the variation of G, in principle, simultaneously
induces non-vanishing ȧ and Ṁ. Thus, it may be more
useful to rewrite equation (1) in terms of the specific angular
momentum j and the eccentricity e:

P = 2π j3

G2 M2(1 − e2)3/2
. (3)

Then we have

Ṗ
P

= 3
j̇
j

− 2
Ġ
G

− 2
Ṁ
M

. (4)

Equation (4) simply reduces to

Ṗ
P

= −2
Ġ
G

, (5)

if the orbit is circular and both the specific angular
momentum and mass are conserved under the variation
of G (e.g., Uzan 2003). While the assumption of Ṁ = 0 is
perfectly justified for non-relativistic stars and planets con-
sidered here, it is not the case for compact objects including
neutron stars.

2.1 Constraints from individual systems: Kepler-1
and Kepler-2

Among the confirmed transiting planets observed with
Kepler, we select Kepler-1b (or TrES-2) with 1.20 MJup

and a 2.47-d period, and Kepler-2b (or HAT-P-7b) with
1.78 MJup and 2.20-d period. The two planets have the
highest transit signal-to-noise ratio, while exhibiting no
identifiable feature of TTVs. In figure 2, we show the frac-
tional variations in the orbital periods of these planets
against the observed date. For each planet, we follow the
procedure of Masuda (2015) to determine the central times
of individual transits ti, where i stands for the number of
transits counted from a fixed epoch. Here we use only the
data sampled at a short cadence (one minute), which yield
the transit times with higher precision than the long cadence
data sampled at the 30-minute interval. We compute the
orbital period Pi between ti and ti+1 for each i and plot
(�P/P)i ≡ (Pi − P)/P against (ti+1 + ti)/2, where P is
an average of all Pi. The corresponding root-mean-square
�P/P are 3 × 10−5 and 8 × 10−5 for Kepler-1b and Kepler-
2b, respectively. These values translate into �G/G = 1.5 ×
10−5 and 4 × 10−5 over four years, which are smaller than
the amplitude of the proposed variation of G (Anderson
et al. 2015) by an order of magnitude.
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Fig. 3. �P/P against BJD for the 10 transiting systems analyzed in section
2.2. The gray dots are all the data points, while the black circles with
error bars are those averaged into 10-day bins. (Color online)

2.2 Constraint from a statistical sample

The constraints from the above two systems almost reach
the limit of the Kepler photometry for the existing sys-
tems. However, the further improvement can be achieved by
combining many systems in a statistical fashion. We select
10 confirmed transiting planetary systems with the highest
transit signal-to-noise ratios: Kepler-1, Kepler-2, Kepler-
13, Kepler-12, Kepler-6, Kepler-7, Kepler-423, Kepler-17,
Kepler-5, and Kepler-3. None of these systems exhibit any
clear TTVs. Although the transit times in some of these sys-
tems (e.g., Kepler-3 or alias HAT-P-11) are affected by the
strong star-spot activities that deform the transit signals, we
do not exclude them because our purpose here is simply to
illustrate the advantage of combining the constraints from
many independent systems.

We apply the same analysis as in the previous subsection
to the above 10 systems. We plot the resulting �P/P as
gray dots in figure 3, and their averages in 10-day bins as
black circles with error bars. Now the standard deviation of
the binned �P/P is 1 × 10−5, which is a few times smaller
than the constraints from the individual systems. Note that
the choice of the smoothing bin size is completely arbitrary
at this point. The binning would smooth out a possible
variation of G less than the bin size and the resulting �P/P
would depend on the bin size. Here we choose the 10-day
bin just for definiteness, and could use a different value if a
specific model of the variation of G is given.

The periodogram of the binned �P/P in figure 4 delivers
a rough idea of the expected constraints for the different
choice of the smoothing bin size.1 All of the peaks in
the periodogram have amplitudes less than the significance

1 We made use of the pyTiming module of PyAstronomy 〈https://github.com/
sczesla/PyAstronomy〉 to compute the periodogram.

Fig. 4. Lomb–Scargle periodogram (Scargle 1982) of the binned data in
figure 3. The vertical axis is normalized to the variance of the data. The
horizontal dashed line indicates the power level corresponding to the
false-alarm probability (significance level) of 50%; this is the probability
that any of the peaks exceeds a given power level when the data points
are independent Gaussians.

level of 50% (horizontal dashed line) and are consistent
with the Gaussian noise, i.e., the data exhibit no signifi-
cant modulation over the period range down to ∼10 d. A
larger bin size therefore should put a somewhat stronger
constraint on �P/P, and hence on �G/G. The proper
interpretation of the constraint, however, depends on the
model of G(t).

3 Conclusion and discussion

We have shown that the methodology of using exo-
planets as a precision clock provides reasonably inter-
esting limits on the time variation of G. Our current anal-
ysis finds �G/G � 5 × 10−6 for 2009–2013, which corre-
sponds to Ġ/G � 10−6 yr−1 if Ġ is constant. In contrast,
constraints from Lunar Laser Ranging experiments and
the binary pulsar system PSR B1913+16 correspond to
Ġ/G < 8 × 10−12 yr−1 (Williams et al. 1996) and Ġ/G =
(4 ± 5) × 10−12 yr−1 (Kaspi et al. 1994), respectively.

Although our current constraint is significantly less strin-
gent than the binary pulsar timing result that is based on the
similar principle, it is complementary in many aspects. First,
we can safely neglect Ṁ for exoplanetary systems unlike
binary pulsar systems where the self-gravitational energy
significantly contributes to the total mass. Secondly, we may
constrain the ȧ-term independently of Ṗ by combining the
precise measurement of the radial velocity (proportional
to a/P) with the photometric transit timing data. Thirdly,
the timing analysis of the secondary eclipse (opposite phase
of the planetary transit in front of the host star, i.e., the
occultation of the planet by the stellar disk) of transiting
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planets may also constrain the ȧ-term through the varia-
tion of the expected arrival time difference ≈a/c from the
photometric data alone. Fourthly, the growing number
of continuously monitored transiting planets promises to
improve statistically the constraint beyond the value that we
discuss in this paper. Incidentally, if G varies periodically
with an oscillation period of days to years, the dynamics of
the planetary system with a similar orbital period would be
perturbed in a resonant fashion. While we have not studied
such a possible resonant effect in this paper, constraints
from systems with different periods are important once the
simple assumption of a constant Ġ is abandoned.

Finally, we would like to emphasize that the current
data for numerous exoplanetary systems are already pre-
cise enough to put complementary and meaningful con-
straints on the variation of the fundamental constants, as
has been feasible only through the solar system data and/or
a few binary pulsars. Thus future data of the exoplanetary
systems should definitely improve the situation and might
even bring an unexpected surprise.
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