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The production of both ABA and H2O2 is induced by
drought and can act as signals under stress conditions. We
investigated the relationships between ABA, H2O2 and cata-
lase (CAT) in rice leaves when rice seedlings were treated
with polyethylene glycol as water stress treatment. As a key
gene in ABA biosynthesis, OsNCED3 was significantly in-
duced in rice by water stress treatment and such induction
preceded the rapid increase in ABA. Water stress inhibited
the expression of CATA and CATC but substantially en-
hanced the expression of CATB. Exogenously applied ABA
promoted the expression of CATB also and inhibited the
expression of CATC in a concentration-dependent manner.
When ABA production was inhibited by using ABA biosyn-
thesis inhibitors nordihydroguaiaretic acid and tungstate,
expression of CATB was also subdued while CATC was
enhanced under the water stress. Accumulation of H2O2

was also reduced when endogenous ABA production was
inhibited and showed a correlation with the total activity
of catalases. Our results suggest that water stress-induced
ABA prevents the excessive accumulation of H2O2, through
the induction of the expression of CATB gene during water
stress.

Keywords: ABA � Catalases � Hydrogen peroxide � Reactive
oxygen species � Rice (Oryza sativa) � Water stress.

Abbreviations: ABA, abscisic acid; ABRE, ABA responsive
element; ARE, antioxidant responsive element; CAT, catalase;
NCED, 9-cis-epoxycarotenoid dioxygenase; NDGA, nordihydro-
guaiaretic acid; PEG, polyethylene glycol; RIA, radioimmuno-
assay; ROS, reactive oxygen species; SOD, superoxide dismutase.

Introduction

Reactive oxygen species (ROS) are produced in plant cells pri-
marily as a by-product of aerobic metabolism (Slesak et al.
2007). The production of ROS is increased by exposing plants
to biotic and abiotic stress conditions, such as drought, salinity,

chilling, pathogen invasion, etc., which result in lipid peroxida-
tion, protein oxidation, enzyme inhibition and DNA and RNA
damage (Miller et al. 2008). Among the ROS, hydrogen perox-
ide (H2O2), produced in both enzymatic and non-enzymatic
reactions, is the most important. Many investigations have
proved that H2O2, as a signaling molecule, is involved in various
processes including pathogen defense, programmed cell death,
stress defense, hormonal responses, photosynthesis regulation,
and growth and development in plants (Neill et al. 2002, Apel
and Hirt 2004, Laloi et al. 2004, Mittler et al. 2004, Foyer and
Noctor 2005, Torres and Dangl 2005). It should be noted that
excessive production of H2O2 has been shown to be cytotoxic
and the generation of H2O2 should be under strict control by
plants (Ushio-Fukai 2006). Indeed, the regulation of antioxidant
activity is not only a strategy in plant adaptation to environ-
mental stresses but also a mechanism in modulating cellular
signal transduction (Veal et al. 2007).

Catalase (CAT) (EC. 1.11.1.6) is a major and essential anti-
oxidant enzyme that catalyses the decomposition of H2O2 into
oxygen and water. Plant CATs are encoded by a small gene
family usually composed of three isozyme genes that exhibit
fairly complex spatial and temporal patterns of expression
throughout the plant life cycle (Scandalios et al. 1997,
Willekens et al. 1997). The presence of a G-box or ABA respon-
sive element (ABRE) and antioxidant responsive element (ARE)
in the maize CAT1 promoter and an ARE in the CAT3 promoter
underlines the important protective role of CAT in response to
osmotic and oxidative stresses (Polidoros and Scandalios 1999,
Guan and Scandalios, 2000). In rice, there are three isoenzyme
genes OsCATA, OsCATB and OsCATC (Morita et al. 1994, Higo
and Higo 1996, Agrawal et al. 2001). In seedlings, the CATA,
CATB and CATC genes are highly expressed in leaf sheath,
root and leaf blade, respectively. The expression of CATA is
regulated by a circadian rhythm in leaf sheath, and diurnal
oscillations of CATC expression are detected in leaf blade
(Iwamoto et al. 2000). Interestingly, the expression of CATC is
suppressed by ABA whereas in maize, CAT1, an ortholog of
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OsCATB, is significantly induced by ABA (Guan et al. 2000,
Agrawal et al. 2001).

ABA plays critical roles in various physiological processes
during the plant life cycle, including seed dormancy, germin-
ation and adaptive responses to environmental stress
(Shinozaki and Yamaguchi-Shinozaki 2000, Schroeder et al.
2001, Zhu 2002, Himmelbach et al. 2003, Zhu et al. 2009).
Water stress can trigger the accumulation of both ABA and
ROS, and the action of ABA is associated with the production
of ROS in plant cells (Zhu 2002). Exogenously applied ABA can
also cause the generation of H2O2 in plant cells or tissues (Pei
et al. 2000, Jiang and Zhang 2001, Zhang et al. 2001, Kwak et al.
2003, Hu et al. 2005). Using histochemical and cytochemical
localization techniques, Hu et al. (2006) have proved that
ABA is a key inducer of H2O2 production in maize leaves
under water stress.

H2O2 as a signaling molecule is involved in the ABA signaling
pathway while as a cytotoxic molecule on the other hand H2O2

content is under strict control by the plant itself (Ushio-Fukai
2006). Does ABA perform a dual function in inducing and
controlling H2O2 content under drought conditions? What is
the role of CAT in this process? The interrelationships between
ABA production, H2O2 accumulation and CAT activities are still
obscure. In this study, the expression profiles and patterns of
OsCAT genes in rice leaves under water stress were examined.
The effects of exogenous and endogenous ABA on the expres-
sion of OsCAT genes were also determined. The results indicate
that OsCATB is significantly induced by ABA and plays a key
role in controlling H2O2 accumulation under water stress.

Results

Water stress induced rapid accumulation of ABA
in rice leaves

It is well recognized that ABA is induced by water stress. In
order to further illustrate the dynamic accumulation of ABA
during water stress, ABA content was determined using the
radioimmunoassay (RIA) method during a cycle of water
stress and rehydration. ABA content increased within 1 h and
reached a peak after 4 h when the seedlings were in severe water
stress (Fig. 1A). The ABA level decreased quickly to the basal
line within 1 h during rehydration. Gene expression analysis
shows that OsNCED3, a key gene for ABA biosynthesis and
OsABAox2, a key gene for ABA catabolism, were responsible
for the accumulation and decline of ABA during the water
stress and rehydration cycle (Fig. 1B, C).

Water stress induced accumulation of H2O2

mediated by ABA as a key regulator in rice leaves

How is water stress-induced ABA related to H2O2 production
under stress? Here we used two ABA biosynthesis inhibitors,
nordihydroguaiaretic acid (NDGA) and tungstate, to estimate
the effect of ABA on H2O2 accumulation. As shown in Fig. 2A,

ABA content increased significantly in rice seedlings treated
with exogenous ABA and polyethylene glycol (PEG) for 4 h,
and PEG-induced accumulation was effectively suppressed by
these two inhibitors (Fig. 8A). H2O2 content of rice leaves was
also enhanced by ABA, H2O2 and PEG. However, NDGA and
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Fig. 1 ABA accumulation and expression changes of OsNCED and
OsABAOX genes in rice leaf during water stress treatment and rehy-
dration (indicated by the arrows). Seedlings were grown in nutrient
solution. Two-week-old seedlings were treated with 15% PEG for 4 h,
and then transferred to nutrient solution for rehydration. ABA con-
tent and gene transcript levels were quantified by RIA and qRT-PCR,
respectively, as described in Materials and Methods. Values are
means ± SD (n = 3). Means denoted by the same letter did not signifi-
cantly differ at P< 0.05 according to Duncan’s multiple range test.
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tungstate only inhibited the increase in H2O2 in PEG treatment,
but did not affect exogenous ABA and H2O2 treatments
(Fig. 2B). The effect on CAT and superoxide dismutase
(SOD) activity of these two inhibitors was consistent with
that on H2O2 accumulation (Fig. 2C, D). The results indicate
that inhibition of ABA synthesis may subsequently reduce H2O2

occurrence and ABA is indispensible in mediating the accumu-
lation of H2O2 under water stress.

Polygenetic analysis of the rice CAT gene family
relative to other plant species

Fig. 2 seems to suggest that stress-induced ABA increase leads
to H2O2 production, which in turn enhances the activity of
CAT. However, the detailed interrelations between ABA,
H2O2 and CAT could be more complicated (Veal et al. 2007).
It is crucial to investigate the function of rice CAT genes under
water stress. Fig. 3 shows the polygenetic analysis of OsCAT
genes in comparison with CAT gene families of other plant
species. Except for the dicot Arabidopsis CAT genes, the
other monocot CAT genes are classified into three groups.
Interestingly, despite the high identity of protein sequence,

the expression patterns of CAT genes are different (Frugoli
et al. 1996, Iwamoto et al. 2000, Du et al. 2008). By analyzing
their protein sequences, we found a peroxisomal targeting
signal, Ser-Arg-Leu, at the C terminus of groups B and C
(Gould et al. 1989), which indicates that both CATB and
CATC are located in the peroxisome and the other isoenzyme,
CATA, is in the cytoplasm. Such difference in location may
imply different functions.

Water stress changes the expression pattern of
rice CAT genes

Although both CATB and CATC are predicted to be located in
the peroxisome, it is still not certain which protein functions in
the photorespiration pathway like AtCAT2 does in Arabidopsis
(Hu et al. 2010). Here we analyzed the transcription profiles of
CAT genes in different tissues of rice. The results show that
CATA is abundant in leaf sheath and moderately expressed in
leaf blade and root but not in seed. Interestingly, the CATB gene
is mainly expressed in seed and root with rather a low level of
expression in rice leaves. On the other hand, CATC gene was
found with extremely high transcription level in leaf blade and
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Fig. 2 ABA content (A), H2O2 content (B), CAT activity (C) and SOD activity (D) in rice leaves. Sample were pretreated with water, 100 mM
NDGA or 2 mM tungstate for 6 h and then exposed to water, 50 mmol ABA, 20 mM H2O2 or 15% PEG for 4 h. H2O2 detection was performed
immediately after sampling as described in Materials and Methods. Error bars show ± SD (n = 3). Means denoted by the same letter did not
significantly differ at P< 0.05 according to Duncan’s multiple range test.
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barely expressed in other organs (Fig. 4A). Together with the
previous results, we speculate that OsCATC is the photorespir-
ation CAT located in the peroxisome while OsCATB, which
also bears a peroxisomal targeting signal near the C terminus,
tends to be expressed in root and seed; the decomposition
of photorespiration-associated H2O2 seems unlikely to be the
result of OsCATB gene expression.

Previous work has revealed that the expression pattern of
wheat CAT genes is regulated by drought stress (Luna et al.
2004). Our results indicate that water stress treatment also
changed the expression patterns of CAT genes in rice leaves
(Fig. 4B, C). Fig. 4B demonstrates the diurnal cycle of rice CAT
gene expression. The abundance of CATA transcript in rice leaf
sheath changed during the day/night cycle and peaked late in
the light period under normal environmental conditions. CATB
showed little response to the day/night cycle due to its low
abundance in rice leaves. As the most abundant CAT in leaf
blade, CATC displayed an oscillation expression pattern and
reached the maximum early in the light period. When the seed-
lings were transferred into continuous darkness, the expression

pattern was only slightly changed (Fig. 4B). Results here indi-
cate that the expression of both CATA and CATC is controlled
by a circadian rhythm.

The effect of water stress on the expression pattern of CAT
genes is different from that of the variation of diurnal rhythm.
The expression of both CATA and CATC is significantly sup-
pressed by water stress whereas the CATB transcript is induced
by water stress (Fig. 4C). This result indicates that the OsCATB
gene may play an important role under water stress.

ABA changed the expression of CATB and CATC in
rice leaf

The above results prove that ABA is responsible for water
stress-induced H2O2 accumulation and both ABA and CAT re-
spond to water stress. To clarify their relationship further, we
tested the effect of different concentrations of ABA and H2O2

on the expression of CAT genes in rice leaf blade. Both ABA and
H2O2 failed to change the transcript level of CATA (Fig. 5).
Similarly to the effect of water stress on CAT genes, ABA
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increased CATB expression profile while suppressing the expres-
sion of CATC and functioned in a concentration-dependent
manner (Fig. 5A). Interestingly, H2O2 slightly induced the ex-
pression of CATB and CATC in either low or high concentration
in rice leaf blade (Fig. 5B). These results indicate that it is ABA
rather than H2O2 that regulates the transcript profiles of CAT
genes. The activities of CAT and SOD in leaves were upregu-
lated by a high concentration of ABA (Fig. 6A, C). Although
H2O2 did not significantly change the expression of CAT genes,
it still enhanced CAT and SOD activities at high concentration
(Fig. 6B, D); probably because H2O2 treatment had perturbed
the redox homeostasis in rice leaves.

ABA upregulated OsCATB to contain H2O2

content under water stress

To further demonstrate the dynamic effect of different treat-
ments on CAT gene expression in rice blade, a time-course
experiment was performed. The result showed that both ex-
ogenous ABA and water stress treatment had a similar dynamic
effect on CATB and CATC (Fig. 7A, B). However, the responses
of these two genes to ABA treatment were earlier than the PEG
treatment, indicating that the expression of CATB and CATC
genes could be induced by the accumulation of endogenous
ABA, and the increased expression of CATB may play an im-
portant role in scavenging ROS during water stress. Such re-
sponses were not found in the H2O2 treatment (Fig. 7C).

To detect whether endogenous ABA is the inducer of CATB
gene expression, ABA biosynthesis inhibitors, NDGA and tung-
state, were applied. As shown in Fig. 8A, the accumulation of
endogenous ABA was effectively retarded by these inhibitors.
Pretreatment with these inhibitors also blocked the induction
of CATB gene and eliminated the suppression of CATC gene
under water stress (Fig. 8B). The variations in H2O2 accumula-
tion and CAT activity were consistent with the ABA content in
both pretreated samples and control (Fig. 8C, D). However, the
effect of inhibitors on CAT gene expression, H2O2 accumulation
and CAT activity was altogether weakened by exogenous ABA
(Fig. 8B–D). All these results indicate that ABA not only me-
diates the accumulation of H2O2, but also indirectly controls
H2O2 level by regulating the expression of OsCATB.

Discussion

Despite its cytotoxicity, H2O2 is involved in many developmen-
tal processes and stress responses acting as a signaling molecule
(Neill et al. 2002, Ushio-Fukai 2006, Veal et al. 2007). To per-
form such a function, H2O2 production and accumulation must
be well regulated. Water stress induced ABA and H2O2 produc-
tion and H2O2 is mediated by endogenous ABA (Jiang and
Zhang 2001, Hu et al. 2006). In this study, results prove that
ABA not only mediates the accumulation of H2O2, but also
controls the production of H2O2 by changing the expression
pattern of the antioxidant gene, the rice CAT gene family, under
water stress.
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Using the RIA method, we demonstrated the dynamic ac-
cumulation and degradation of ABA during a dehydration and
rehydration cycle in rice seedlings (Fig. 1A), which provided
a clue to analyzing the effect of ABA on the expression of

CAT genes. Interestingly, the OsNCED1 gene, which has the
highest expression level in rice leaf and is the housekeeping
gene in normal conditions, was significantly suppressed by
water stress (Fig. 1B). This may lead to the conclusion that
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ABA accumulation has a feedback effect on the expression of
OsNCED1 gene (Tian et al. 2004).

Previous work proved the involvement of H2O2 in
ABA-mediated stomatal closing under water stress conditions
(Pei et al. 2000). Both endogenous and exogenous ABA can
cause the generation of H2O2 in plant cells or tissues (Zhang
et al. 2001, Kwak et al. 2003, Hu et al. 2005). Hu et al. (2006)
further demonstrated that ABA mediates the accumulation of
H2O2 in leaves of maize plants exposed to water stress. In this

report, our findings are consistent with previous studies. The
production of H2O2 was induced by endogenous ABA, which
was induced by PEG treatment and exogenous ABA (Fig. 2B).
The accumulation of H2O2 and enhancement of CAT and SOD
activities required endogenous ABA because such effects were
abolished by treatment with ABA biosynthesis inhibitors
(Fig. 2C, D), suggesting that endogenous ABA accumulation
is indispensable to H2O2 production. These results indicate the
crucial role of ABA as a key regulator of redox homeostasis in
rice leaves exposed to water stress.

Though CATs have been studied biochemically for over 100
years (Nicholls et al. 2000), their functions and interrelationship
under stress conditions are still obscure because of their fairly
complex spatial and temporal expression patterns (Scandalios
et al. 1997, Willekens et al. 1997). In this study, we systematic-
ally analyzed the expression of the rice CAT gene family under
water deficit conditions. Our results show that CATA is ex-
pressed mainly in leaf sheath and CATC is abundant in leaf
blade (Fig. 4A); both of them are controlled by a circadian
rhythm, which was not shifted but weakened under water
stress. In contrast, expression of CATB was significantly induced
in rice leaves exposed to water stress (Fig. 4C). Two orthologs of
OsCATB, CAT1 from maize and CAT2 from wheat, were proved
to be induced by water stress (Guan et al. 2000, Luna et al.
2004). These results indicate that CATC gene is responsible
for scavenging photorespiration-associated H2O2 production
and CATB gene plays a pivotal role in response to water
stress. In plant leaves, there are at least six CAT enzymes
and a CAT enzyme can be assembled from the same subunits
or different subunits (Frugoli et al. 1996). The different re-
sponses of CAT genes imply that the plant has evolved with a
mechanism to induce certain CAT genes to cope with stress
conditions, which is also found in NCED genes under water
stress (Fig. 1B).

It is well known that water stress induces the accumulation
of H2O2 and CAT activity (Jiang and Zhang 2001, 2002).
However, little is known about the mechanism of water
stress-induced CAT gene expression. In this report, we provide
results that the expression of the CATB gene is induced by ABA
in a concentration-dependent manner and that CATC gene is
suppressed by ABA (Fig. 5A). Expression of these two genes was
not changed in plants exposed to H2O2 treatment (Fig. 5B),
although applying H2O2 can also increase the total H2O2 con-
tent in rice leaf (Fig. 2C). These results indicate that it is ABA
rather than H2O2 that regulates the expression of CAT genes
under water stress. Results from the time-course experiment
show that responses of CAT genes to water stress and ABA are
similar. However, the effect of exogenous ABA treatment was
faster than that of water stress treatment on the expression of
CAT genes (Fig. 7A, B) due to the rapid increase in ABA.
Pretreatment with ABA biosynthesis inhibitors NDGA and
tungstate could arrest the expression of CATB and CATC
genes under water deficit (Fig. 8B). The enhancement of CAT
activity was also blocked by NDGA and tungstate (Fig. 8D).
Together with previous results (Hu et al. 2006), this study
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demonstrates that endogenous ABA regulates both H2O2 pro-
duction and CAT gene expression, which in turn keep H2O2 as a
signaling molecule rather than a cytotoxic chemical.

In conclusion, our results suggest that water stress-induced
ABA prevents the excessive accumulation of H2O2, through the
induction of the expression of CATB gene during water stress.
Such fine control of H2O2 production by ABA indicates its
pivotal role when plants are under stress conditions.

Materials and Methods

Plant materials and treatments

Rice seeds (Oryza sativa L. cv. Yangdao 6) were surface sterilized
by NaClO3 for 20 min and soaked in distilled water overnight,
and then germinated in a Petri dish with filter papers in dark-
ness at 28�C for 2–3 d till the root measured 1 cm. Germinated
seedlings were transferred to a black mesh and grown in Kimura
B nutrient solution with a renewal every 3 d in a greenhouse
at 25–30�C with 14-h/10-h (day/night) photoperiod shift.
Two-week-old seedlings were prepared for further experimen-
tal use.

Water stress was imposed on seedlings in the presence of
15% PEG solution (�0.8 MPa) by immersing the root in the
solution. In addition, plants were also treated with ABA (1,
10, 25 and 50 mM) and H2O2 (5, 10, 20 and 50 mM) solutions
for various lengths of time (1, 4 and 6 h). To estimate the effect
of ABA biosynthesis inhibitor, rice seedlings were pretreated
with 100mM NDGA or 2 mM tungstate by immersing the
roots in these solutions for 6 h and spraying on the leaves
every 2 h. Samples of rice leaves under different treatments
were stored at �80�C for ABA determination, antioxidant
enzyme assays and RNA isolation. The collection of samples
and the extraction of H2O2 were conducted as soon as possible
in order to prevent H2O2 degradation. Triplicates were set for
all the experiments.

Measurement of endogenous ABA level

For the measurement of endogenous ABA levels, leaves were
ground in liquid nitrogen, with the addition of 1 ml of water per
200 mg frozen ground tissue, and then shaken at 4�C overnight.
The homogenates were centrifuged at 12 000� g for 20 min at
4�C and the supernatant was used directly for ABA assay. ABA
analysis was carried out using the RIA method as described by
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Quarrie et al. (1988). The 450-ml reaction mixture contained
200 ml of phosphate buffer (pH 6.0), 100 ml of diluted antibody
(Mac 252) solution, 100 ml of [3H]ABA (about 8000 cpm) solu-
tion and 50ml of crude extract. The mixture was then incubated
at 4�C for 45 min and the bound radioactivity was measured in
50% saturated (NH4)2SO4-precipitated pellets with a liquid
scintillation counter (Ren et al. 2007).

Enzyme assays

Frozen leaf segments (0.2 g) were crushed into fine powder in a
mortar and pestle in liquid nitrogen. Soluble proteins were ex-
tracted by homogenizing the powder in 1 ml of 50 mM potas-
sium phosphate buffer (pH 7.0) containing 1 mM EDTA and 1%
polyvinylpyrrolidone. The homogenate was centrifuged at 15
000� g for 20 min at 4�C and the supernatant was used for the
following enzyme assays. Protein content was determined ac-
cording to the method of Bradford (1976) with bovine serum
albumin as standard.

Total SOD (EC 1.15.1.1) activity was assayed by monitoring
inhibition of the photochemical reduction of nitro blue tetra-
zolium (NBT) according to the method of Giannopolitis and
Ries (1977). The 2.5-ml reaction mixture contained 50 mM po-
tassium phosphate buffer (pH 7.8), 13 mM methionine, 75 mM
NBT, 2 mM riboflavin, 0.1 mM EDTA and 20 ml of enzyme ex-
tract. The reaction mixtures were illuminated for 15 min at a
light intensity of 5000 lx. One unit of SOD activity was defined
as the amount of enzyme required to cause 50% inhibition of
the reduction of NBT as monitored at 560 nm.

CAT (EC 1.11.1.6) activity was determined by following the
consumption of H2O2 (extinction coefficient 39.4 mM�1 cm�1)
at 240 nm for 1 min (Aebi, 1984). The reaction mixture con-
tained 50 mM potassium phosphate buffer (pH 7.0), 10 mM
H2O2 and 50 ml of enzyme extract in a 3-ml volume.

H2O2 measurement

An Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit
(Invitrogen, Carlsbad, CA, USA) was used to measure H2O2

production in 2-week-old plants. Leaves were ground in liquid
nitrogen. Then 500 ml of phosphate buffer (20 mM K2HPO4,
pH 6.5) was added to 50 mg of ground frozen tissue. After
centrifugation, 50ml of the supernatant was incubated with
0.2 U ml�1 horseradish peroxidase and 100 mM Amplex Red re-
agent (10-acetyl-3,7-dihydrophenoxazine) at room tempera-
ture for 30 min under dark conditions. The fluorescence was
quantified using Infinite� 200 PRO microplate reader (Tecan,
Switzerland) (excitation at 560 nm and emission at 590 nm)
(Xing et al. 2008).

RNA isolation and quantitative real time (qRT)-PCR

Total RNA was extracted from rice seeds with a Plant RNA
Isolation Mini Kit (Agilent Technologies, USA) and then di-
gested with RNase-free DNase I (Amersham, USA) to eliminate
genomic DNA contamination. First-strand cDNA was synthe-
sized with oligo(dT) primers using a SuperScript first-strand

synthesis system according to the manufacturer’s instructions
(Invitrogen, USA). Transcript levels of each gene were measured
by qRT-PCR using a Mx3000p QPCR System (Agilent, USA)
with iQ SYBR Green Supermix (Bio-Rad, USA). The data were
normalized to the amplification of a rice ACTIN gene. For each
sample, the mean value from three qRT-PCRs was adopted to
calculate the transcript abundance, and the mean values were
then plotted with the standard deviation (SDs). Primer se-
quences of ACTIN and OsCAT genes used for qRT-PCR are
listed in Table 1.
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