Abstract

The role of electrostatic factors in the enzyme-substrate encounter process of manganese and iron containing superoxide dismutases has been studied in the enzyme from Propionibacterium shermanii by chemical neutralization of lysine residues and site-directed mutagenesis of the highly conserved residue Lys175. Lysine residues have been neutralized by carbamoylation and Lys175 has been selectively replaced by isoleucine and arginine. Catalytic measurements show a dramatic decrease of the activity in the chemically modified enzyme. Electrostatic potential calculations evidence in the modified enzyme a large contraction of the positive potential areas which surround the active sites in the native enzyme, indicating that electrostatic factors are critical in the enzyme-substrate encounter process of Mn- and Fe-superoxide dismutases. The activity drastically decreases also in Lys175-->Ile but not in the Lys175-->Arg mutant. Brownian dynamics simulations indicate that the decrease of activity in the Lys175-->Ile mutant cannot be due only to a decrease of the enzyme-substrate association rate, suggesting that Lys175 plays a relevant role also in the structural stabilization of the active site.

This content is only available as a PDF.
You do not currently have access to this article.