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We present a procedure that (i) automates the homology
modeling of mammalian olfactory receptors (ORs) based
on the six three-dimensional (3D) structures of G protein-
coupled receptors (GPCRs) available so far and (ii) per-
forms the docking of odorants on these models, using the
concept of colony energy to score the complexes. ORs
exhibit low-sequence similarities with other GPCR and
current alignment methods often fail to provide a reliable
alignment. Here, we use a fold recognition technique to
obtain a robust initial alignment. We then apply our pro-
cedure to a human OR that we have previously function-
ally characterized. The analysis of the resulting in silico
complexes, supported by receptor mutagenesis and func-
tional assays in a heterologous expression system, suggests
that antagonists dock in the upper part of the binding
pocket whereas agonists dock in the narrow lower part.
We propose that the potency of agonists in activating
receptors depends on their ability to establish tight inter-
actions with the floor of the binding pocket. We developed
a web site that allows the user to upload a GPCR se-
quence, choose a ligand in a library and obtain the 3D
structure of the free receptor and ligand–receptor
complex (http://genome.jouy.inra.fr/GPCRautomodel).
Keywords: G protein-coupled receptors/ligand docking/
olfactory receptors/threading/3D modeling

Introduction

G protein-coupled receptors (GPCRs) form the largest class
of membrane proteins and represent the largest gene family,
accounting for 3–5% of the mammalian genome (Schlyer
and Horuk, 2006). They are seven-transmembrane proteins
and key components of several cellular response mechanisms
to environmental signals (Gloriam et al., 2007). According to
the GRAFS classification (Fredriksson et al., 2003), GPCRs
are divided into five families. Class R family, which corre-
sponds to the ‘rhodopsin-like’ receptors, is the most

populated one, in part because it includes the very large ol-
factory receptor (OR) sub-family. ORs are present in almost
all multicellular organisms. They account for more than half
the GPCRs in mammalian species. For instance, the mouse
OR repertoire is made of .1000 functional genes. They
often exhibit very low-sequence identity.

Class R family is the only one for which structural
information is currently available. The first experimental
three-dimensional (3D) structure for a receptor, the bovine
rhodopsin, was solved in 2000 (Palczewski et al., 2000).
Since then, our knowledge about GPCR structures has
expanded with the release of the 3D structures of the turkey
b1-adrenergic receptor (Cherezov et al., 2007), squid rhodop-
sin (Murakami and Kouyama, 2008), human b2-adrenergic
receptor (Warne et al., 2008), human A2A-adenosine receptor
(Jaakola et al., 2008), human dopamine D3 receptor (Chien
et al., 2010) and human CXCR4 chemokine receptor (Wu
et al., 2010). However, there is still a very important lack of
receptor structures as, for instance in Humans, .700 active
receptors are identified (half of them being ORs). To narrow
the huge gap between known structures and receptors of
interest to the biologists, there is a pressing need for high-
throughput methods to determine these structures, or, in the
meantime, for in silico methods able to produce a satisfac-
tory model compatible with known experimental data.

With the availability of high-resolution structures, it
became possible to combine traditional homology modeling
techniques with ligand-based pharmacophore modeling
(Evers and Klabunde, 2005). Most of these approaches have
provided useful insights for drug design but are ill-suited for
large scale studies. Homology modeling techniques are crit-
ically dependent on the initial sequence alignment between
the query sequence and the sequence of a receptor whose 3D
structure is known (the template). Receptors of the class R
family exhibit relatively low-sequence identity, even within
the rhodopsin subfamily of GPCRs (Gloriam et al., 2007).
Automatic sequence alignment methods are prone to errors
when aligning such low-identity sequences and human
experts often need to correct the alignment manually. Human
intervention, of course, makes the process difficult to auto-
mate for large scale studies and also less reproducible.

In this paper, we present a fully automated method to
perform homology modeling of GPCR structures. It is based
on an improved version (to be published) of a threading
method that we developed a few years ago, FROST (Marin
et al., 2002). Threading techniques are intended to detect and
align remote homologs, i.e. homologs with low-sequence
identities. To the best of our knowledge, only Zhang et al.
(2006) have applied similar methods to model the 3D struc-
ture of GPCRs. In a second step, we carry out the docking of
selected ligands with the modeled receptor using VINA
(Trott and Olson, 2010) and we propose a new way of
scoring the conformations of the resulting complexes. To
validate our methodology, we first performed a cross-
comparison of all receptors with known 3D structures, i.e. we
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modeled the structure of each receptor in turn by aligning its
sequence with the 3D structure of other receptors using
FROST. X-ray experiments provide the structure of receptor–
ligand complexes. We checked the docking of the modeled
3D structures with the corresponding ligand (except for rhod-
opsin whose ligand, the retinal, is covalently bound to the re-
ceptor). These cross-comparisons allowed us to accurately
evaluate the performances of the proposed method.

We are chiefly interested in ORs, for which no experimen-
tal 3D structure is available. Therefore, to further assess our
methodology, we performed two experiments. First, we
modeled two ORs (the mouse mOR42-3 (Abaffy et al.,
2007) and mOR-EG (Katada et al., 2005) receptors) for
which models have previously been manually obtained by
experts. Site-directed mutagenesis guided by the models and
experimental assays were performed with different ligands to
test the functional importance of some residues for these
receptors. We checked the consistency of our models with
these sets of residues. Second, we also modeled an OR
already characterized by one of us (Sanz et al., 2005) for
which 3D-Quantitative Structure–Activity Relationship
(QSAR) data are available (Sanz et al., 2008): OR1G1
(UniProt P47890, HORDE 42-99). Using this model, we pro-
posed a limited number of mutations and predicted their pos-
sible influence on the binding of various odorant molecules.
The corresponding mutants were produced and their func-
tional response to different odorant molecules experimentally
tested. The results we obtained were in good agreement with
the predictions.

We developed a web site (http://genome.jouy.inra.fr/
GPCRautomodel) that allows the user to upload a GPCR se-
quence, choose a ligand in a library (or supply the required
information for a new ligand) and obtain the 3D structure of
the free receptor and ligand–receptor complex.

Materials and methods

Here we provide a brief description of the methodology
used. A more detailed account is given in Supplementary
Material.

Modeling of the 3D structure of the receptors
Alignment of the query receptor sequence with the sequences
of the structural templates. The first step of the homology
modeling procedure consists in aligning the sequence of the
query protein with the sequence of the homologous proteins
whose 3D structure is available (template proteins). This step
is crucial and determines the accuracy of the resulting model.
When the sequences of the query and template proteins are
not very similar (e.g. ,25% sequence identity), routine se-
quence alignment methods are prone to make alignment
errors. To overcome this problem, it is necessary to use more
advanced alignment methods such as profile/profile align-
ment methods or threading methods. Here we use an
in-house threading method, FROST. FROST, unlike most
other threading methods, does make use of the 3D structure
of the template, i.e. it performs a sequence–structure align-
ment (Andonov et al., 2008; Collet et al., 2010). Using the
3D structure allows the algorithm to take into account resi-
dues that are in close contact in the structure although they
may be far apart in the sequence. This additional piece of in-
formation is often critical to obtain the proper alignment

when the sequence identity between the query and template
proteins is low. We use a template library consisting of six of
the seven GPCR currently available (listed in Supplementary
Table ST1). For this work, we derived a new set of para-
meters dedicated to all-alpha membrane proteins (to be pub-
lished). Parameters were computed using multiple sequence
alignments of a set of all-alpha membrane proteins. This set
was retrieved from the PDBTM database (Tusnady et al.,
2005) that comprises 285 proteins sharing ,30% sequence
identity. The sequence–structure alignment algorithm used
in FROST is exact and it ensures that the alignment with the
largest score, for a given score function, of the query se-
quence with the structural core is obtained. For the GPCR
protein family, the structural core, i.e. the 3D structure con-
served parts on which the query sequence is aligned, consists
of the seven transmembrane helices (TMHs) (see
Supplementary Material for further details regarding the
FROST procedure).

Receptor 3D structure modeling. FROST alignment is trans-
formed into a PIR alignment which is then used as input for
MODELLER 9v6 (Sali and Blundell, 1993). MODELLER
optimizes the side-chain rotamers and models the loops
joining conserved core elements. We used the default
MODELLER protocol to build the models. For each query
sequence, template structure alignment, we chose to generate
10 models of the receptor 3D structure.

Ligand docking
Database of ligands. We have compiled a set of 124 ligands
in our database. They are defined by a standard set of files
obtained from the PRODRG web site (Schüttelkopf and van
Aalten, 2004). The server makes use of the PDB coordinates,
crystallography and NMR system topology and parameter
files. Other ligands can be used for docking provided they
comply with the PRODRG format.

Generation of complexes. Ligands are docked with the previ-
ously modeled receptors using the VINA software (Trott and
Olson, 2010). VINA allows the ligand and the protein
residue side chains to be flexible. Although all receptor
residue side chains can potentially be treated as flexible, this
would generate prohibitive computational times. For a given
template, the set of flexible residue side chains is therefore
limited to residues potentially involved in ligand recognition.
Flexible residues are located in the well and rim (for each
template structure, flexible residues are listed in
Supplementary Table ST6).

Scoring of complexes. VINA provides its own score function
to rank the complexes. However, this score function did not
adequately rank the structures of the complexes obtained ex-
perimentally (see Supplementary Figs SF1 and SF2). We
therefore developed the following scheme to rank the
complexes.

All conformations provided by VINA were refined using
the Xplor force field (Brunger et al., 1992) using the analytic-
al continuum electrostatics implementation of the generalized
Born implicit solvent model and CHARMM param19 para-
meters. A previous study reported that the relaxation of the
complex was important for the correct positioning of ligand
in GPCR pocket (Freddolino et al., 2004). We implemented a
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two-stage relaxation procedure. First, the complexes produced
by VINA were subjected to an all-atom minimization,
keeping the receptor fixed but allowing the ligand to move.
The receptor was then permitted to accommodate the ligand
by keeping its backbone fixed but letting the side chains and
the ligand move during a final set of 100 steps of Powell
minimization. The final conformation was then checked for
the type of ligand–receptor residue contacts. Conformations
involving too many contacts with residues that were not part
of the binding pocket were discarded. The remaining confor-
mations were then scored for their receptor–ligand shape and
electrostatic complementarities, based on the sum of their
van der Waals and electrostatic interaction energies corrected
for ligand desolvation:

E ¼ Evdw þ Eelec þ Ebound
solv � Efree

solv

where Evdw is the van der Waals energy, Eelec is the electro-
static energy and Ebound

solv and Efree
solv are the solvation energies

of the bound (respectively free) ligand.
To account for entropic effects, we implemented a modi-

fied version of the ‘colony energy’ statistical re-scoring
scheme introduced by Xiang et al. (2002) for loop modeling
and later used in the context of docking by Lee and Seok
(2008):

EcolðiÞ ¼,E . ln
X

j

Qij expðEð jÞ= ,E .Þ

where E( j) is the Xplor energy for the jth model, the sum-
mation is taken over all models that have a contact map simi-
larity Qij greater than a threshold (empirically set to 0.5 here)
and ,E. is the mean Xplor energy for all the models.
,E. is used for avoiding underflow/overflow problems with
the exponential. Notice that if the Qij threshold is set to 1,
the summation comprises only the ith model and Ecol(i) ¼
E(i), i.e. the Xplor energy. To measure the similarity
between binding modes we used the receptor–ligand con-
tacts maps (Launay and Simonson, 2011). These maps are
sparse matrices in which rows refer to ligand atoms and
columns to receptor residues. The contact map, Ci, for a par-
ticular complex i contains 1s for matrix elements correspond-
ing to receptor residues and ligand atoms in contact in the
3D structure, 0s otherwise. Using this representation, the
similarity Qij between two binding modes i, j can be com-
puted as

Qij ¼
NðCi;CjÞ

maxðCi;CjÞ

where N(Ci,Cj) is the number of common contacts between
the contact maps and max(Ci,Cj) the maximal number of
contact found in either maps. Hence, Qij tends toward 1 as
the complexes exhibit identical sets of contacts while being
equal to 0 if their sets of contacts are completely different.
The colony energy is used to rank the final docking
conformations.

To estimate the accuracy of the ligand docking, we com-
puted the interaction root-mean-square deviation (Irmsd)
between the predicted conformation and the corresponding
GPCR–ligand experimental structure. Irmsd is the heavy
atoms rmsd between the ligands after superimposition of the

receptors (Lrms quality measure in CAPRI contests, see
Lensink et al., 2007).

Experimental validation of the OR1G1 model
Experimental techniques used in this work are essentially
similar to those described in Sanz et al. (2005). We only
provide a brief description here (see Supplementary Material
for more details). OR1G1 or the mutated receptors were
stably co-expressed with Ga16 protein in HEK293 cells
(human embryo kidney cells) as previously described. Single
mutations (A112S and A112V) were introduced into the
OR1G1 sequence according to the instructions of the
QuickChange Site-directed Mutagenesis Kit (Stratagene).
Confocal immunofluorescence microscopy was used to check
that OR expression at the cell surface was similar for the
wild-type and mutant receptors. Functionality of receptors
was measured by calcium imaging as previously published,
but we applied odorants to cells during 2 min at 50 ml/min in
such a way that no air was present above the solution cover-
ing the cells (perfused top engineered by BRACER).
Odorants were purchased from Sigma-Aldrich, Fluka or
Acros Organics at the highest purity available. They were
freshly prepared by a first dilution at 100 mM into dimethyl
sulfoxide and serial dilutions into Hanks’ salt solution
(Eurobio) supplemented with 20 mM Hepes, pH 7.2. Calcium
responses were expressed as RCa2þðFÞ ¼ ðF � F0Þ=F0, where
F is the fluorescence intensity at each point and F0 the value
of emitted fluorescence before the stimulus application. Cell
responses to odorants were measured as the mean of RCa2þ (F)
values over 100 cells.

Results

Evaluation of the homology modeling procedure
We carried out a cross-comparison of the six receptor 3D
structures experimentally determined (these structures corres-
pond to the inactive form of the receptors, see Supplementary
Table ST1). The upper triangular part of Supplementary
Table ST2 displays the rmsd of the Cas (alpha carbons of the
residues) after optimal superimposition of the seven TMHs
using VAST (Madej et al., 1995; Gibrat et al., 1996). The
lower triangular part displays the sequence identity in the
seven TMHs after the structural alignment. Figure 1 presents
the boundaries and sequences of the helical segments that
were aligned in the six templates.

We then aligned, in turn, the sequence of each of the six
receptors of known structure with FROST, using the 3D
structure of the remaining five receptors as templates. From
the resulting alignment, we built 10 models for each query
sequence–template structure pair with MODELLER. Table I
shows the minimum and maximum rmsd obtained when
comparing the 10 models with the corresponding X-ray
structure. The rmsd is computed on the set of Cas used in
Supplementary Table ST2. In all cases, FROST provided the
same alignment as the one obtained with VAST (see Fig. 1).
Rmsds between the models and the X-ray structure are
similar to those of their template structures with the latter.

MODELLER provides a 3D-conformation for the loops
joining the TMHs. As there is no structural template avail-
able for the loops, the software has to resort to de novo mod-
eling. It is usually very difficult to accurately model loops
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that have more than 12 residues (Gibrat et al., 1992). Indeed,
the results provided by MODELLER for the loops of the
receptors were not very convincing (data not shown). This is
true, in particular, for the second extra-cellular loop (ECL2)
joining TMH4 to TMH5. This long loop acts as a sort of lid
on top of the binding pocket and some of its residues are
involved in interactions with the antagonists. In the follow-
ing, we omit the extra-cellular loops in the ligand docking
simulations since we found that they were more a nuisance
than a help. The omission of ECL2 certainly affects the
docking of ligands that interact with it, principally the
antagonists but also some of the largest agonists (see below).

Despite the low-sequence identity observed between some
TMHs in different receptors (sometimes, down to 10%), the
models provided by our procedure were all reasonably con-
firmed by the structure alignments.

Evaluation of the ligand docking procedure using
experimental complexes
We then addressed the evaluation of the ligand-docking step.
We used as test set all the GPCR–ligand complexes with
non-covalent binding mode, i.e. we omitted the rhodopsin/
retinal couple. We also discarded the b1-adrenergic
receptor–cyanopindolol complex, because cyanopindolol and

Fig. 1. GPCR templates and olfactory receptor multiple sequence alignment. Starting and ending positions of TMHs are indicated. Green boxes highlight
conserved positions previously reported in the literature. Position 50 of the Ballesteros–Weinstein numbering scheme is shown in orange. Pro II.58 is shown in
blue. 1, ‘C-start’ alignment; 2, ‘x-start’.

Table I. Structural comparisons between modeled and experimental receptors

Queries (sequences) Targets (3D templates)

2rh1A 1u19A 2vt4A 3emlA 3oduA 3pblA

2rh1A 2.17–2.47 0.80–0.91 2.14–2.37 2.17–2.42 1.51–1.82
1u19A 2.04–2.32 2.11–2.36 2.50–2.84 2.14–2.50 1.75–2.19
2vt4A 1.17–1.28 2.26–2.45 1.96–2.18 2.44–2.67 1.68–1.96
3emlA 2.08–2.27 2.36–2.76 1.95–2.24 2.68–3.07 2.25–2.61
3oduA 2.42–2.72 2.16–2.35 2.29–2.53 2.60–3.10 1.94–2.48
3pblA 1.38–1.54 1.68–1.96 1.56–1.80 2.22–2.70 1.82–2.18

Modeled and experimental receptor structures are compared using Ca rmsd. Positions taken into account for this calculation are identical to those in Table II.
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carazolol are close analogs and the b1 and b2-adrenergic
receptors are also very similar. The list of ligand–receptor
complexes that were used is shown in Supplementary
Table ST1. References for the A2A adenosine receptor–
NECA complex and for the complexes of b1-adrenergic
receptor with dobutamine, salbutamol, isoprenaline and
carmoterol are, respectively, Lebon et al. (2011) and Warne
et al. (2011).

The results of the nine trials are summarized in Table II,
where the predicted binding modes (the docking conforma-
tions of lowest colony energy) are characterized by their
Irmsd and their center of mass distance (Mdist) with the ex-
perimental ligand conformation. The colony energy weights
the Xplor energy by the number of ligand conformations that
establish the same types of interaction with the receptor.
Thus, it tends to favor ligand conformations that are clustered
in the binding pocket (see the energy– Irmsd scatter plots on
Supplementary Fig. SF1 and SF2). As illustrated on these
figures, the use of the colony energy scheme does result in a
better prediction of the ligand-docking conformation. A
small value of Mdist indicates that the predicted ligand
position is close to the experimentally observed one in the
binding pocket. A small value of Irmsd shows that the pre-
dicted and experimental positions have, in addition, the same
orientation in the binding pocket. Supplementary Figs SF3
and SF4 show the docking position of the nine ligands in the
corresponding receptors, both for the experimental (red) and
predicted (green) conformations.

The exclusion of ECL2 may have two undesirable effects
on the docking of the ligands. First, some of them, e.g.
NECA, ZM241385, it1t, do form extensive interactions with
ECL2 that cannot be correctly modeled (Table II). For in-
stance, ligands of the A2A adenosine receptor (NECA,
ZM241385) are stabilized by an aromatic stacking interaction
with Phe168 in ECL2. Second, the absence of ECL2 creates
an artificial cavity where the ligand can dock without steric
hindrance. Thus, the predicted ligand conformation (lowest
colony energy) for the D3 dopaminergic receptor–eticlopride
complex would actually result in a severe steric clash with
Ile183 of ECL2. Overall, it appears that the absence of
ECL2 can be especially detrimental for ligands establishing
many contacts with ECL2 as, as shown in Table II, we
cannot position the center of mass of these ligands within
3 Å of their true location, not to mention their orientation.

Results of the docking of the different ligands with the
adreno-receptors (b1 and b2) are more satisfactory than
those for the A2A adenosine receptor (with the exception of
carmoterol that makes contacts with ECL2). The docking of
ligands on models of the adreno-receptors is certainly a favor-
able case for two reasons. First, the interaction of the ligands
with the receptors involves no, or few, atomic contacts with
residues located in ECL2. Second, and we believe more
importantly, some of the models are very accurate (0.8–
0.9 Å, see Table I) since when modeling an adreno-receptor
we use the other adreno-receptor among the templates. This
makes the docking procedure more likely to succeed. In less
favorable cases, such as the modeling of ORs described
below, we expect models to be in the range of 2–3 Å rmsd
with respect to the genuine structure.

Thus, quite obviously, it appears difficult to predict accur-
ately ligand-binding conformations when the complexes
involve extensive interactions with residues belonging to
extra-cellular loops that are not present in the model. As will
be discussed hereafter, we believe this type of interactions to
be mostly characteristic of the binding of antagonists and
some of the largest agonists (see Fig. 2c). In contrast, when
the ligand–receptor interactions mainly involve residues in
the TMHs, the methodology we propose provides satisfactory
results.

Application to olfactory receptors
To verify the applicability of the above modeling/docking
procedure to ORs and further evaluate it, we carried out the
modeling of human OR1G1. For this OR, functional charac-
terization (Sanz et al., 2005) and 3D-QSAR analyses (Sanz
et al., 2008) have already been performed by one of us.

Homology modeling of olfactory receptors. We carried out
the modeling of OR1G1 using the six templates mentioned
in Methods. Alignments of the OR1G1 sequence with the
structural templates are presented in Fig. 1 (Supplementary
Table ST3 displays the sequence identity of the TMHs for
these alignments). TMH alignments are consistent except the
one for TMH6. For this TMH, two different alignments
exist, one for the rhodopsin and dopaminergic templates and
another one, shifted by one position, for the four remaining
templates. TMH6 in ORs is characterized by the ‘TCxSHL’
motif, located at the beginning of the TMH. Thr is not

Table II. Docking results for known ligand-receptors

PDB code Complexa Ligand type Predicted binding mode No. of contacts with ECL2

Irmsd Mdist

2rh1 b2AR/carazolol Inverse agonist 1.20 0.84 4
2y04 b1AR/salbutamol Partial agonist 1.66 0.99 0
2y01 b1AR/dobutamine Partial agonist 2.89 1.84 0
2y03 b1AR/isoprenaline Agonist 3.20 1.88 0
2y02 b1AR/carmoterol Agonist 4.95 3.78 4
3pbl D3DR/eticlopride Antagonist 3.59 1.44 4
2ydv A2AR/NECA Agonist 6.52 3.66 14
3eml A2AR/ZM241385 Antagonist 9.95 5.71 13
3odu CXCR/it1t Antagonist 8.81 3.35 16

The predicted docking mode is the one with the smallest colony energy (columns 4–5). The last column indicates the number of atomic contacts between the
ligand and the second extra-cellular loop. A contact corresponds to a distance ,3.6 Å between an atom of the ligand and an atom of ECL2.
aSee Supplementary Table ST1 for receptor acronyms.
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shown on Fig. 1 and ‘x’ represents a moderately conserved
residue (Ser in OR1G1, Gly in mOR42-3 and Ala in
mOR-EG). The first aforementioned alignment corresponds
to the alignment of the Cys in the motif and the second one
to the alignment of the ‘x’ residue with the first position of
the block representing TMH6 in the structural core.
Hereafter, we will refer to these alignments, respectively, as
the ‘C-start’ and ‘x-start’ alignments. Both models have very
close threading scores. TMH6 is particularly difficult to align
with the available templates as there is very little sequence
conservation in this TMH between the olfactory and the tem-
plate receptors. TMH6 is believed to play an important role
in the signal transduction mechanism. The Trp of the
‘CWxP’ motif (‘x’ is a Leu for all templates in Fig. 1) has
been described as a toggle switch (Nygaard et al., 2009).
Notice that this motif is not conserved in OR sequences.

To decide between the two above models, we carried out
the modeling of mOR-EG (Katada et al., 2005) and
mOR42-3 (Abaffy et al., 2007) for which previously pub-
lished models had been manually crafted. Using these
models and ligand docking studies to guide the experiments,
the authors investigated the functionally important residues
by site-directed mutagenesis and functional assays.
Unfortunately, they did not explain how the alignments were
obtained (other than ‘the alignment was refined manually’
and ‘Sequence alignment [. . .] was manually improved’) and
they did not supply the resulting alignments. However, they
provided a list of functionally important residues and figures
showing the interaction between the ligands and these resi-
dues. For mOR-EG, residues Phe252, Thr255, Ile256 and
Leu259 of TMH6 are interacting with the odorant and for
mOR42-3 only Thr259 in TMH6 is involved. We used these
pieces of information to find out which of the above two

alignments, ‘C-start’ or ‘x-start’ was the most likely correct,
if any. Figure 1 also displays the alignments of mOR-EG and
mOR42-3 with the six templates. Alignments of the three
ORs are consistent, and exhibit two alternative alignments
for TMH6. In the ‘x-start’ alignment, the side chains of the
residues interacting with the ligand point to the neighboring
TMH. In contrast, for the models based on the ‘C-start’
alignment of TMH6, the side chains of these residues are
positioned toward the ‘lumen’ of the binding pocket and are
thus able to establish interactions with the ligand. We also
checked that other residues involved in interactions with the
odorants and found in other TMHs (TMH3 and TMH5 for
mOR-EG and TMH3, TMH4 and TMH5 for mOR42-3) were
also correctly oriented relative to the binding pocket. In con-
clusion, it appears that the ‘C-start’ alignment of TMH6 is
the one that best explains experimental data.

Docking of odorants on the OR1G1 model. The modeling of
the OR1G1 3D structure was performed, forcing the ‘C-start’
alignment for the A2-adenosine, chemokine, and the two
b-adrenergic templates. Figure 2A shows the molecular
surface of the binding pockets for one of the OR1G1 models
based on the structural template 2rh1A and Supplementary
Table ST4 displays the 47 residues contributing to this mo-
lecular surface. To quantify the effect of the modeling pro-
cedure on the definition of the binding pocket, we
determined the accessible surface area of these residues in
different models, providing us with as many 47 element
vectors. Using these vectors we computed the correlation co-
efficient. For the 10 models built from the same template,
the correlation coefficient is 0.903. For models built with dif-
ferent templates, the correlation coefficient is 0.751. Thus,
different models lead to reasonably similar binding pockets.

Fig. 2. OR1G1-binding pocket. Inset A represents the molecular surface of the OR1G1-binding pocket for the model built with 2rh1A as structural template.
The binding pocket is viewed from the extra-cellular side. The extra-cellular loops have been removed for clarity. Inset B shows a schematic representation of
the pocket (viewed laterally). Three zones are defined, the well, the ledge and the rim shown, respectively, in red, orange and yellow in inset A. The well is
�10 Å deep. The cumulative depth of the rim and ledge zones is similar (10 Å). Inset C shows the binding mode of OR1G1 ligands (1-nonanol: light orange,
octanal: darker orange), b1 and b 2-adrenergic receptors (carazolol, dobutamine, salbutamol, carmoterol, isoprenaline in different shades of green), CXCR4
chemokine ligand (it1i in dark pink) and A2A adenosine receptor ligand (ZM241385 in light pink). Note: D3 dopaminergic receptor ligand, eticlopride, docks
at the same location as the ligands of the adreno-receptors and is not represented to avoid further cluttering the figure. Some residues of TMH2, TMH3 and
ECL1 have been removed to allow a better view of the ligands.
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Using the multiple sequence alignment of OR1G1, we also
computed the entropy of the different positions. We found 32
positions with an entropy .0.7 (we use a base 20 log thus
the value of the entropy is between 0 and 1), eight of them
(25%) belonging to the binding pocket.

Two zones can be identified, the lower part corresponds to
a relatively narrow and deep ‘well’ (shown in red in
Fig. 2A), and the upper part to a more open area that consists
of a kind of ‘ledge’ around the well and the ‘rim’ of the
binding pocket (shown in orange and yellow). Nygaard et al.
(2009) described the binding pocket as ‘a funnel with a
partial lid’, the lid consisting of the extra-cellular loops, in
particular ECL2. They also noticed that antagonists, in all
experimentally determined complexes, are located in the
upper part of the binding pocket and establish contacts with
residues in extra-cellular loops. In contrast, retinal forms
direct interactions with the Trp of ‘CWxP’ motif in TMH6
located in the ‘well’. This Trp is one of the identified micro-
switches. Therefore, they proposed that ‘a common mode of
action for all antagonists known today would be that they
prevent TMH6 from tilting inward in the main ligand-
binding pocket’.

We carried out the docking of 1-nonanol, a full agonist of
OR1G1, using the above OR1G1 models. Figure 2C shows
the predicted binding mode in the full-length receptor.
Figure 3A shows a zoom of the binding mode of 1-nonanol.
The ligand is vertically positioned in the ‘well’. It interacts
with residues located in TMH3, TMH6, TMH7 and, to a
lesser extent, TMH5. The aliphatic tail of the ligand estab-
lishes close contacts with the hydrophobic floor of the well,
consisting of the aromatic rings of Phe251 and Phe252 and
the methyl group of Ala112. The hydroxyl group of the
ligand, at the opposite side, takes part in a hydrogen bond
network with the backbone nitrogen of Thr279 and the hy-
droxyl groups of Ser255, Thr279 and Thr282 side chains.
The ligand also makes hydrophobic contacts with residues of
TMH3 (Phe107, Val108). This predicted binding mode is in
good agreement with results obtained by a previous study of
the OR1G1 odorant repertoire (Sanz et al., 2008). This study
performed a 3D-QSAR analysis of OR1G1 agonists. This led
to two ‘hypothesis’ models, one of them (‘A36’) consisting
of a set of hydrophobic, hydrophobic aliphatic and hydrogen

bond donor features. These features and the distances
between them can be approximately mapped onto the
binding conformation of 1-nonanol (data not shown).

We performed a limited number of site-directed mutations
with heterologous expression of the mutant and wild-type
receptors and functional Ca2þ imaging assays. On the basis
of the docking prediction, introducing a polar residue in the
hydrophobic floor of the well should result in less favorable
interactions with the hydrophobic tail of the ligand and to a
concomitant decrease of the mutant receptor functional re-
sponse. As shown in Table III (see Supplementary Fig. SF5),
the A112S mutant results in a weaker response of the recep-
tor for a variety of ligands having a long aliphatic tail, com-
pared with the wild type.

Functional response analysis of OR1G1 ranks octanal as a
weaker agonist than 1-nonanol (Sanz et al., 2005). To study
this difference, we docked octanal on the OR1G1 models.
Figure 2C presents the predicted binding mode in the full-
length receptor. Figure 3B presents a zoom of the binding
mode. It differs significantly from the conformation observed
for the 1-nonanol–OR1G1complex. The carbonyl oxygen of
octanal forms a strong electrostatic interaction with Lys80.
Singer (2000) proposed that the formation of a Schiff base
was the mechanism underlying the activation of the rat
rORI7 by aldehydes. He also mentioned the critical role of a
nearby Asp, acting as a counter ion that would prevent the
ligand ‘from binding the receptor too avidly’. Indeed, a
Schiff base results in a covalent double bond between the

Fig. 3. (A) docking mode of 1-nonanol in OR1G1 (green helices). The network of hydrogen bonds is shown with broken lines. (B) docking mode of octanal
in OR1G1 (magenta helices). Lys80 that interacts with the aldehyde function is shown on top of the figure (its nitrogen is shown in blue)

Table III. Response of OR1G1 wild type and A112S mutant to odorants

Odorants Wild type RCa2þ (Fmax) A112S RCa2þ (Fmax)

1-Nonanol 40 7�
Nonanal 24 9�
g-Decalactone 31 13�
Tridecanal 38 8�
9-Decen-1-ol 30 7�

Results are presented for odorant doses inducing the largest variation of
RCa2þ (Fmax) (mean for 100 cells, %) between mutants and OR1G1 (SD:
between 5 and 10% of the values, three independent experiments). Arrows
indicate a decrease of the mutant response compared with the wild-type one.
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nitrogen of a Lys side chain and the carbon of an aldehyde
carboxyl (as observed with the retinal in rhodopsin). Such a
strong bond would tether the ligand to the receptor in a more
or less irreversible way. We believe it is much more likely
that the interaction of rOR17 or OR1G1 with aldehydes
involves a Lys via non-covalent electrostatic interactions
between the positively charged nitrogen of the Lys side
chain and the partial, negative, charge on the carboxyl
oxygen than through a Schiff base formation.

According to the scoring scheme of GPCRautomodel, the
octanal–OR1G1 complex is energetically favored over the
1-nonanol–OR1G1 complex. In other words, octanal binds
tighter to OR1G1 than 1-nonanol does, yet it is a weaker
agonist. A possible explanation for this behavior is that al-
though the binding energy is important to explain the recep-
tor activation, the position of the ligand in the binding
pocket plays an even more critical role. For instance, an an-
tagonist might bind to the receptor even better than some
agonists, but, as discussed above, at a different location in
the pocket. In the binding mode shown in Fig. 3, octanal,
unlike 1-nonanol, does not come into contact with the
bottom of the well (residue Ala112). The A112V mutant, by
increasing the size of the side chain at this position, i.e.
raising the floor of the well, results in a slightly enhanced re-
sponse of the receptor to octanal (see Supplementary
Fig. SF6). Likewise, as shown in Table III, tridecanal, with
its longer aliphatic tail, is as good an agonist as 1-nonanol.

Discussion

One of the main sources of error regarding homology model-
ing that has been reported many times in CASP contests is
due to inaccurate alignments between the query and the tem-
plate sequences. Usually, it is impossible to recover from this
type of error and the resulting model is irremediably wrong.
GPCRs have low sequence similarity, even within families.
Indeed, this is the case of the R family (rhodopsin-like) we
consider in this work. In particular, in this family, members
of the OR sub-family seem to be among the most divergent
receptors. Automatically aligning R family receptors is thus
quite challenging. In most published works, it has proven ne-
cessary to resort to human expertise to improve manually the
initial sequence alignment. Note that in some markedly diffi-
cult cases, such as the one discussed above for TMH6, it is
likely that most experts would fail to find the right alignment
without clues from experimental data.

In this work, we developed a completely automated pro-
cedure for modeling OR 3D structures. The thorny step of
this procedure, i.e. the alignment of the query sequence with
the template sequences, relies on a fold recognition method-
ology. The results we obtained, both with available GPCR
3D structures and OR models validated with experimental
data, indicate that our methodology is robust.

We used a standard homology modeling technique
(MODELLER) to create OR 3D structure models from the
threading alignment. With this method, it is difficult to ac-
curately model long loops. Extra-cellular loops are important
for the docking of antagonists, in particular ECL2. However,
we noticed that including them in subsequent docking simu-
lations caused more harm than benefit. Thus, we decided to
omit extra-cellular loops from our models. Yet, Goldfeld
et al. (2011) have recently published a paper showing that it

is possible to predict accurately GPCR loops, including
ECL2, starting from the X-ray structures. It remains to be
seen whether the same accuracy can be reached starting from
models of the receptors.

As often with homology modeling methods, the resulting
model is closer, in terms of rmsd, to the template structure
than to the actual 3D structure. Some programs, such as
MEDELLER (Kelm et al., 2010), are specifically dedicated
to membrane protein modeling. Its authors claim that it pro-
vides better results than MODELLER in terms of rmsd of
the 3D structure models with respect to the native structures.
They obtained results of 2.1, 2.3 and 2.5 Å rmsd for three
models of the 3D structure of the human A2-adenosine recep-
tor. Our results for this receptor were comparable to these
values, with a minimum rmsd value of 1.95 Å (see Table I).
To improve the quality of the models, Monte Carlo or
Molecular Dynamics simulations could be performed permit-
ting a thorough exploration of the local conformational
space. However, we cannot afford to run such computer-
intensive simulations on the server for the GPCRautomodel
users.

For the sake of comparisons with existing modeling
methods, we submitted the sequences of mOR-EG and
mOR42-3 to the I-TASSER web site (Roy et al., 2010).
I-TASSER is a platform for modeling protein structures that
has been ranked as the best method in recent CASP experi-
ments. It integrates updated version of the programs that
were used by Zhang et al. (2006) to model human GPCRs.
I-TASSER provides five models and the alignments of the
first (best) one with the closest proteins of the PDB, in terms
of 3D structures, as well as other pieces of information that
do not concern us here. For mOR42-3, the list of closest pro-
teins includes, in this order, the A2A-adenosine receptor, the
b2 and b1-adrenergic receptors, the squid and bovine rho-
dopsins. For mOR-EG, the corresponding list comprises the
A2A-adenosine receptor, the b2-adrenergic receptor and the
bovine rhodopsin. We checked the positions of the TMHs in
these alignments. In brief, alignments of all TMHs except
TMH6 are identical to the ones we obtained. For mOR-EG
the alignment of TMH6 shows a shift of one residue (corre-
sponding to our ‘x-start’ alignment) and for mOR42-3 the
alignment of TMH6 exhibit a shift of six or four residues,
depending on the template. We then mapped the residues
that have been found by experimentalists as being critical for
the function of these two ORs. For mOR-EG, except for
residue Ile256, all other functionally important residues of
TMH6 (Phe252, Thr255, Leu259) are either facing another
TMH or the membrane, indicating a problem with the align-
ment provided by I-TASSER. For mOR42-3, there is only
one functionally important residue located in TMH6
(Thr259) and as the alignment is shifted by four positions,
i.e. one helix turn, it also points to the lumen of the binding
pocket, albeit higher compared with our model. It is thus dif-
ficult to decide, based on this evidence alone, which TMH6
alignment is the best for this OR. However, we note that in
our models, the conserved motif ‘CxSHL’, at the beginning
of TMH6 in ORs, is aligned in a consistent manner for the
three ORs we modeled. This is not the case for I-TASSER
models.

We performed, with VINA, the docking of ligands on the
previously obtained receptor models. We introduced a new
way for computing the docking energy of the ligand with the
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receptor, based on the concept of statistical rescoring (colony
energy). A similar scheme has previously been used to score
loop conformations (Xiang et al., 2002) and in the context of
ligand docking (Lee and Seok, 2008). As we consider a large
number of receptor models that differ significantly in terms
of rmsd, we cannot trust the Irmsd to cluster ligand conforma-
tions. Irmsd is too sensitive to small variations in the ligand
conformation and receptor 3D structure. As described in
Methods, our scheme favors ligand conformations that have
the same interaction ‘fingerprint’ with the receptor (based on
the receptor–ligand contact map overlap). Loosely speaking,
this statistical rescoring scheme allows us to take some sort
of entropic effect into account. We tested this scoring
scheme on available experimental complexes. Unfortunately,
a number of these complexes involve antagonists that have
extensive interactions with extra-cellular loops, which we
chose to omit in our docking simulations. Therefore, the
modeling of such complexes is beyond the capacity of our
method. We succeeded in modeling the carazolol–
b2-adrenergic receptor and salbutamol–b1-adrenergic recep-
tor complexes very accurately. We were also able to model
reasonably well the dobutamine–b1-adrenergic receptor and
isoprenaline–b1-adrenergic receptor complexes. As the
b2-adrenergic receptor and the b1-adrenergic receptor are
close homolog sharing .70% sequence identity within the
TMHs, we obtained very good models (in the range 0.8–
0.9 Å rmsd, see Table I) using one as the template and the
other as the query. This docking experiment shows that our
protocol is capable of locating the ligand precisely in the re-
ceptor 3D structure, when the receptor model is accurate and
the ligand does not interact too closely with the extra-cellular
loops. More generally, when the query sequence shares
�20% sequence identity with the structural template
sequences, we expect the models to be in the range of 2–3 Å
rmsd. It is the case for ORs and the results we obtained were
consistent with our experiments, which is quite encouraging.
Our protocol for docking ligands on the receptor 3D models
provides only a ‘static’ view of the process and a relatively
coarse estimate of the corresponding energy terms.
Calculations based on free energy perturbation methods (see
for instance Kurland et al., 2010) might prove more effective
to carry out a more comprehensive analysis of the energetics
of ligand docking.

The binding free energy of a ligand to a GPCR is of
course an important parameter for receptor activation.
However, ligand binding is not a sufficient condition for re-
ceptor activation. Indeed, antagonists bind tightly to the re-
ceptor too, but they do not trigger the signal transduction. A
crucial parameter consists of the ligand-docking position
within the binding pocket. Nygaard et al. (2009) have pro-
posed that antagonists dock in the upper part of the binding
pocket (corresponding to the ledge and rim in our definition
of the pocket). Odorants are often low molecular weight
organic compounds. We suggest that OR agonists, which are
thus relatively small compared with other GPCR ligands,
bind in the narrow lower part of the pocket (the well). Our
results with OR1G1 tend to show that the efficacy of the
ligand in activating the receptor depends on its capacity to
interact with the bottom of the well. The most potent ligands
are able to establish tight van der Waals contacts with side
chains of residues forming the well floor. It is interesting to
notice that, although all OR agonists appear to bind within

the well, they do so in very different ways according to their
functional groups. For OR1G1, the aliphatic tail of alcohol
ligands interacts with the floor of the well while the hydroxyl
group participates in a hydrogen bond network involving
Ser255, Thr279 and Thr282. For aldehyde ligands, the car-
bonyl group forms a strong electrostatic interaction with
Lys80 while their aliphatic tail, if long enough, also interacts
with the well floor. Although using completely different
ligands (a benzene ring substituted at three different positions
with various functional groups), Katada et al. (2005) defined
a very similar binding site in the well. Supplementary
Table ST5 shows the 10 residues that they predicted to inter-
act with eugenol (mOR-EG was isolated from a eugenol-
responsive olfactory neuron) and the corresponding residues
in OR1G1 according to the alignment shown in Fig. 1.
Residues that we found interacting with 1-nonanol are indi-
cated in bold. Ala112 in OR1G1 corresponds to the bottom
of the well. It is predicted to interact with the aliphatic tail of
the ligands. Indeed, its substitution by a Ser results in a de-
crease of the receptor response to all strong agonist tested
(see Table III). Incidentally, in mOR-EG, this position in the
well corresponds to Ser113, but Ser113 is predicted to inter-
act with the hydroxyl group at position R1 of eugenol.
Conversely, residue Ser255 in OR1G1, which participates in
the hydrogen bond network also involving the hydroxyl
group of 1-nonanol, corresponds to Ile256 in mOR-EG.
Ile256 is involved in van der Waals interactions with the
ligand and ‘is responsible for defining the spatial configur-
ation of the binding pocket’ according to Katada et al.
(2005) Recently, Baud et al. (2011) showed that mOR-EG is
capable of being activated by a variety of ligands and that
the residues involved in the interaction receptor–ligand
differ with the type of ligand.

Conclusions

To further dissect the mechanisms resulting in signal trans-
duction, it would be interesting, in the future, to go beyond
the approach we presented here. From the theoretical stand-
point, using more powerful (but more costly) simulation
techniques such as those based on free-energy perturbation
methodologies could provide a more dynamical view of the
ligand-docking process and activation mechanisms. In the
absence of experimental structures, molecular modeling and
computer simulations can suggest a number of hypotheses to
be validated experimentally, for instance by mutagenesis,
heterologous expression of receptors and functional assays.
This interplay between simulations and experimental valida-
tions is crucial to progress in our understanding of the signal
transduction by ORs or, more generally, GPCRs.

The method developed in this work, GPCRautomodel,
should constitute a useful starting point for this endeavor. Its
main purpose was to automate the construction of GPCR 3D
structure models, based on all the structural templates pres-
ently available, and to obviate the need for a human expert
to manually curate the initial alignment, thus allowing for
high throughput, reproducible modeling of GPCR structures.
The results presented in this paper indicate that our proced-
ure, in this regard, is robust and accurate. In addition, the
web site allows the user to dock ligands (chosen from a pre-
defined library or user-defined) with the generated models.
The colony energy scheme we proposed to rank ligand–
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receptor complexes provides encouraging results when the
ligands do not interact too intimately with extra-cellular
loops, in particular ECL2. Thus, GPCRautomodel allows
biologists to explore, in silico, the very large repertoire of
functional fingerprints that permit ORs to recognize a seem-
ingly infinite variety of chemical structures. Hopefully, thor-
ough investigations of the complex models coupled with
experimental validations will allow them to decipher the bio-
chemical mechanisms used by evolution to tune the mamma-
lian olfactory repertoire.

Supplementary data

Supplementary data are available at PEDS online.
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