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An amino acid index is a set of 20 numerical values
representing any of the different physicochemical and
biochemical properties of amino adds. As a follow-up to
the previous study, we have increased the size of the
database, which currently contains 402 published indices,
and re-performed the single-linkage cluster analysis. The
results basically confirmed the previous findings. Another
important feature of amino acids that can be represented
numerically is the similarity between them. Thus, a similar-
ity matrix, also called a mutation matrix, is a set of 20X20
numerical values used for protein sequence alignments
and similarity searches. We have collected 42 published
matrices, performed hierarchical cluster analyses and
identified several clusters corresponding to the nature of
the data set and the method used for constructing the
mutation matrix. Further, we have tried to reproduce each
mutation matrix by the combination of amino add indices
in order to understand which properties of amino adds
are reflected most. There was a relationship between the
PAM units of Dayhoff's mutation matrix and the volume
and hydrophobidty of amino adds. The database of 402
ammo add indices and 42 amino add mutation matrices
is made publicly available on the Internet
Keywords: cluster analysis/database/PAM/sequence alignment/
similarity matrix

Introduction
Amino acid sequence analysis often provides important insights
into the tertiary structure and biological function of proteins.
The basic strategy is first to find the similarity of sequences in
the forms of pairwise sequence alignments, multiple sequence
alignments and homology searches against the databases,
and then to infer 3-D structural similarity and/or functional
similarity. The sequence similarity is usually defined by an
optimization function based on a measure of similarity between
amino acids. Thus, the amino acid similarity matrix, also
called the amino acid mutation matrix, which defines this
measure, is the basis of various sequence analysis methods.

Dayhoff et al. (1978a) were the first to compile such a
mutation matrix. They constructed phylogenetic trees from 71
groups of closely related proteins (>85% pairwise sequence
identity) and collected the data of accepted point mutations
(PAMs) per 100 residues. Their log-odds matrix is still the
most widely used scoring scheme. The elements of the mutation
matrix compiled from such an observed amino acid exchange
frequency represent the degree of physicochemical and bio-
logical similarities of amino acids in molecular evolution. In
order to identify each accepted point mutation, Dayhoff et al.
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(1978a) used very similar protein amino acid sequences. Hence,
there is the indication that 'each alignment will have poor
informational content' (Risler et al, 1988) about substitutions
between distantly related proteins.

There have been attempts to observe directly exchanges of
amino acids from more divergent sequences. Henikoff and
Henikoff (1992) derived substitution frequencies from their
BLOCK database of protein sequence motifs, where conserved
segments were aligned no matter how evolutionarily distant
sequences were. Structural comparison methods were incor-
porated into alignments (Risler et al., 1988; Johnson and
Overington, 1993), but they had the limitation that the number
of data with known tertiary structures was smaller than the
number of available sequence data. Ltlthy et al. (1991) made
separate mutation matrices for different secondary structures
by using the profile method (Gribskov et al., 1987). They
suggested that, in detecting distantly related sequences with
similar folds, using their distinct matrices was better than
using Dayhoff's matrix alone.

There was another claim (Risler et al., 1988; George et al.,
1990) that it was possible that Dayhoff's matrix was biased
because of the size of the data set they had used. The amount
of sequence data currently available is much larger than that
used by Dayhoff et al. (1978a). Thus, the matrix has been
updated with larger numbers of amino acid sequences (Gonnet
et al., 1992; Jones et al, 1992). It has also been pointed out
that substitution tendencies of non-aqueous proteins may be
unlike those of soluble proteins (George et al, 1990). Most
recently a mutation matrix for transmembrane proteins was
constructed (Jones et al., 1994). In order to see the relationships
between different matrices, the cluster analysis was made with
nine (Risler et al, 1988) or 13 (Johnson and Overington,
1993) mutation matrices.

Mutation matrices can also be constructed from the physico-
chemical properties of amino acids, such as hydrophobicity,
volume and conformational preferences (Grantham, 1974;
Miyata et al, 1979; Mohana Rao, 1987). It is known that
the volume and hydrophobicity of amino acids contribute
significantly to Dayhoff's matrix (French and Robson, 1983;
Kidera et al, 1985b; Taylor, 1986). In fact these two properties
are the major factors that influence the amino acid substitution
during evolution (Grantham, 1974; Miyata et al, 1979).

Kidera et al. (1985b) derived 10 orthogonal factors that
expressed various amino acid properties, and represented each
position of aligned homologous protein sequences by linear
combinations of those factors. Kubota et al (1981, 1982) used
the correlation coefficient of several amino acid properties as
a measure for finding homologous regions between two protein
sequences. The 3-D-l-D scores of Bowie et al (1991) can be
regarded as kinds of amino acid properties that exhibit the
compatibility of 20 amino acids with each of the 18 environ-
ments they arranged.

The amino acid property can be represented by the set of
20 numerical values, which we call the amino acid index
(Kidera et al, 1985a; Nakai et al, 1988). As reported
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PALJ81O1O1
Normalized frequency of alpha-helix
0805095
Palau, J., Argos, P.

from LG (Palau et al.

and Puigdomenech, P.
Protein secondary structure
Int. J. Peptide Protein Res. 19, 394-^(01 (1981)
LG: a set of protein
CF: a set of protein
LEVM780104
PRAM900102
TANS770101
PALJ8101O2
CHOP78O201
GEIM800104
A/L R/K
1.30 0.93
1.30 1.23

samples formed
samples formed

0.988
0.943
0.918
0.889
0.881
0.841
N/M
0.90
1.32

by 44 proteins
by 33 proteins

NAGK73O1O1
LEVM780101
ROBB760101
MAXF760101
RACS820108
KAN800103

D/F C/P
1.02 0.92
1.09 0.63

1981)

0.953
0.943
0.914
0.889
0.872
0.836

o/s
1.04
0.78

GEIM 800101
KANM800101
CRAJ730101
ISOY800101
BURA740101
NAGK73O1O3

E/T GAV
1.43 0.63
0.80 1.03

0.951
0.928
0.891
0.882
0.850

-0.808
H/Y I/V
1.33 0.87
0.71 0.95

Fig. 1. An example of the amino acid index entry in the AAindex database. Each record of an entry is identified by the following codes: H, accession
number, D, data description; R, LITDB (Seto et al., 1988) literature database identifier, A, authors); T, title of the article; J, journal reference; C, accession
numbers of similar entries with the correlation coefficients of 0.8 (-0.8) or more (less); I, actual data in the specified order, and *, optional comments.

Table I. The list of 42 amino acid mutation matrices

Accession No. Matrix (reference) Basis

ALTS910101 The PAM-120 matrix (Altschul, 1991)
BENS940101 Log-odds scoring matrix collected in 6.4-8.7 PAM (Benner et al., 1994)
BENS940102 Log-odds scoring matrix collected in 22-29 PAM (Benner et al, 1994)
BENS940103 Log-odds scoring matrix collected in 74-100 PAM (Benner et al., 1994)
BENS940104 Genetic code matrix (Benner et al., 1994)
CSEM940101 Residue replace ability matrix (CserzS et al., 1994)
DAYM780301 Log odds matrix for 250 PAMs (Dayhoff et al., 1978)
FEND85O1O1 Structure-Genetic matrix (Feng et al., 1985)
FITW660101 Mutation values for the interconversion of amino acid pairs (Fitch, 1966)
GEOD900101 Hydrophobicify scoring matrix (George et al., 1990)
GONG920101 A composite log-odds matrix (Gonnet et al., 1992)
GRAR740104 Chemical distance (Grantham, 1974)
HENS920101 BLOSUM45 substitution matrix (Henikoff-Henikoff, 1992)
HENS920102 BLOSUM62 substitution matrix (Henikoff-Henikoff, 1992)
HENS920103 BLOSUM80 substitution matrix (Henikoff-Henikoff, 1992)
JOHM930101 Structure-based amino acid scoring table (Johnson-Overington, 1993)
JOND920103 The 250 PAM PET91 matrix (Jones et al., 1992)
JOND940I01 The 250 PAM transmembrane protein exchange matrix (Jones et al., 1994)
KOLA920101 Conformational similarity weight matrix (Kolaskar-Kulkarni-Kale, 1992)
LEVJ86O101 The secondary structure similarity matrix (Levin et al., 1986)
LUTR910101 Structure-based comparison table for outside other class (Lathy et al., 1991)
LUTR910102 Structure-based comparison table for inside other class (Uithy et al., 1991)
LUTR910103 Structure-based comparison table for outside alpha class (LOthy et al., 1991)
LUTR910104 Structure-based comparison table for inside alpha class (LUthy et al, 1991)
LUTR910105 Structure-based comparison table for outside beta class (LUthy et al, 1991)
LUTR910106 Structure-based comparison table for inside beta class (LUthy et al, 1991)
LUTR910107 Structure-based comparison table for other class (Ulthy et al., 1991)
LUTR910108 Structure-based comparison table for aJpha helix class (Luthy et al, 1991)
LUTR910109 Structure-based comparison table for beta strand class (LUthy et al, 1991)
MCLA710101 The similarity of pairs of amino acids (McLachlan, 1971)
MCLA720101 Chemical similarity scores (McLachlan, 1972)
MTYS930101 Base-substitution-protein-stability matrix (Miyazawa-Jemigan, 1993)
MIYT79O1O1 Amino acid pair distance (Miyata et al, 1979)
MOHR870101 EMPAR matrix (Mohana Rao, 1987)
NIEK910101 Structure-derived correlation matrix 1 (Niefind-Schomburg, 1991)
NIEK9I0102 Structure-derived correlation matrix 2 (Niefind-Schomburg, 1991)
OVEJ920101 STR matrix from structure-based alignments (Henikoff-Henikoff, 1993)*
QU_C93O101 Cross-correlation coefficients of preference factors (Qu et al, 1993)
QU_C930102 Cross-correlation coefficients of preference factors (Qu et al, 1993)
QU_C930103 The mutant distance based on spatial preference factor (Qu et al, 1993)
RISJ88O101 Scoring matrix (Risler et al, 1988)
TUDE900101 Isomorphicity of replacements (TUdos et al, 1990)

Sequence comparison
Sequence comparison
Sequence comparison
Sequence comparison
Genetic code
Neighbourhood selectivity
Sequence comparison
Genetic code and chemical similarity
Genetic code
Hydrophobicity index
Sequence comparison
Physical property indices
Sequence comparison by protein blocks
Sequence comparison by protein blocks
Sequence comparison by protein blocks
Structure-based sequence comparison
Sequence comparison
Sequence comparison
Main-chain folding angles
Sequence comparison by secondary structure
Sequence comparison
Sequence comparison
Sequence comparison
Sequence comparison
Sequence comparison
Sequence comparison
Sequence comparison
Sequence comparison
Sequence comparison
Sequence comparison
Chemical similarity
Genetic code and contact potential
Physical property indices
Structural and physical property indices
Main-chain folding angles
Main-chain folding angles
Structure-based sequence comparison
Contacts of main chain atoms
Contacts of side chain atoms
Main+side
Structure-based sequence comparison
Neighbourhood selectivity

The substitution data were obtained by Overington et al. (1992).

previously (Nakai et al., 1988) we constructed and maintain
the database of amino acid indices. Here we present the revised
format of this database, now called AAindex, and the results

of the single-linkage hierarchical cluster analysis of 402 amino
acid indices. We then report a new addition to the AAindex
database, which is a collection of 42 reported mutation matrices.
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Fig. 2. An example of the amino acid mutation matrix entry in the AAindex database. The data format is the same as described in Figure 1.

The relationships among these matrices are analysed by hier-
archical cluster analyses and each of the matrices is recon-
structed from the combination of amino acid indices in order
to find which properties of amino acids are reflected most

Materials and methods
Amino acid index database
The amino acid index database, AAindex, now contains 402
published indices as compared with the previous version of
222 indices (Nakai et ai, 1988). It is organized in a flat-file
format with one entry corresponding to one index, i.e. a set
of 20 numerical values and associated reference information.
A sample entry of the database is shown in Figure 1 and the
complete list of the 402 indices has been made publicly
available by the Japanese GenomeNet database service at the
following addresses:

FTP ftp.genome.ad.jp
Gopher gopher.genome.ad.jp
WWW http://www.genome.ad.jp/

In Gopher and WWW a database entry may be obtained by
using the DBGET Integrated Database Retrieval System. The
entire database may be downloaded by the anonymous FTP
from the directory /db/genomenet/aaindex with the file name
aaindex.

Mutation matrix database
There have been reports of different kinds of amino acid
mutation matrices for use of sequence alignments and similarity
searches. We have collected 42 published amino acid mutation
matrices, listed in Table I. Each entry contains the actual data
and the reference information as shown in Figure 2. The order
of the 210 elements (20 diagonal and 20X19/2 off-diagonal
elements) as they appear in the entry is shown in Figure 3.
The collection of amino acid mutation matrices is stored in

die same FTP directory with the file name aaindex2. This file
is not a part of the DBGET system; use the FTP option from
Gopher and WWW as well.

Cluster analysis
We first analysed the relationships among the 402 amino acid
indices by the single-linkage hierarchical cluster analysis. We
then analysed the relationships among the 42 amino acid
mutation matrices by both the single-linkage and the complete-
linkage hierarchical cluster analyses. To perform a cluster
analysis, we defined the distance d between each pair of
indices or matrices in die same manner as Nakai et al. (1988):

d = 1 - Id

where c is the correlation coefficient:

Here xt and y, represent an element of amino acid indices or
mutation matrices to be compared. The mean value is denoted
by x and y, and the number of elements by n, which is 20 in
the case of an amino acid index and 210 in the case of an
amino acid mutation matrix. The result of a hierarchical cluster
analysis is often represented by a dendrogram, but here we
show die result by a minimum spanning tree (Nakai et al.,
1988) because it is easier to conceive the overall groupings
when the number of data points is large.
Deriving mutation matrices from amino acid indices
In order to construct a mutation matrix from amino acid
indices, we proceeded as follows. When a mutation matrix is
derived from a single amino acid index, each element of die
matrix is die normalized value of die difference between two
index values of die corresponding amino acids. When a matrix
is reproduced by combining multiple amino acid indices, we
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Data
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HF
CP
PP
IS
DT
FT
EW
TW
HY
YY

rv
w

Fig. 3. The order of the matrix elements as stored in the AAindex database. The amino acid types are given in the standard one-letter codes.

adopted the method of Grantham (1974). For example, when
combining three indices p, q and r, an element of the derived
mutation matrix Dy for the pair of amino acids i and/ is given
by the following equation:

D,j = - pj)2 + p<4, - qj)2 + yir, - rj)2] 1/2

where

a = (I/Dp)2, p = (l/Dq)2, y = (1/Dr)

are the_ scaling factors which are calculated from the mean
value D of 190 off-diagonal elements. With the use of the 402
indices in the database, we search an index or indices in
combination that give the best correlation coefficient with each
of the 42 mutation matrices.

Results
Minimum spanning tree of amino acid indices
The minimum spanning tree of the 402 amino acid indices is
shown in Figure 4, where an index corresponds to a node
represented by a circle. Each index can be identified in the
enlarged drawing of Figure 5 by the number that corresponds
to the listing in the AAindex on the Internet. The linkage
between two indices was made by the single-linkage cluster
analysis. The shaded area denotes that the distance between
two indices is 0.1 or less, i.e. the absolute value of the
correlation coefficient is 0.9 or larger. For the sake of conveni-
ence, we divided the minimum spanning tree into six regions:
a and turn propensities, (J propensity, amino acid composition,
hydrophobicity, physicochemical properties, and other proper-
ties such as the frequency of left-handed helix (Maxfield and
Scheraga, 1976; Tanaka and Scheraga, 1977). The six regions
were identified, respectively, by the letters A, B, C, H, P and
O as shown in Figure 5. The boundaries of the regions
were determined by the largest distance among relevant node
connections; for example, B168 was nearer to B257 than to
HI70. Of course, the assignment to each of the six regions is
not very meaningful for the outlying indices. In the previous
study Nakai et al. (1988) classified the minimum spanning
tree of the 222 indices into four regions: a and rum propensities,
P propensity, hydrophobicity and physicochemical properties.

Hjdrophofctdtj

Comporftton

Fig. 4. The minimum spanning tree of 402 amino acid indices. The shaded
areas correspond to clusters identified by single-linkage with a threshold
distance of 0.1. The tree is conveniently divided into six regions.

Here the last physicochemical properties region was further
subdivided into three regions.

The result of clustering was generally consistent with the
previous study. The subgroups of the hydrophobicity cluster
that had been observed with the threshold distance of 0.05
were still present (data not shown). However, some minor
differences were also observed. When individual indices were
examined, there were instances of repositioning within a
large cluster. The helix-coil equilibrium constant (Ptitsyn and
Finkelstein, 1983, A256) used to be located in between the
a subgroup and the rum subgroup within the a and rum
propensities region. It is now a member of the mostly rum
propensity subgroup which also contains neural network
weights (Qian and Sejnowski, 1988) for coil at the window
positions -1 to 3 (A289-A293) as well as for helix at the
window positions 1 to 4 (A265-A268).

The number of indices for the amino acid composition was
increased. As shown in Figure 5C the composition indices of
mitochondrial proteins (Nakashima et al., 1990, C199, C201,
C203 and C208) and membrane proteins (Nakashima and
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A. a and turn propensities

B. P propensity C. Composition

H. Hydrophoblclty

P. Pbysicochemical properties O. Other properties

Fig. 5. Enlarged drawing of the minimum spanning tree of amino acid indices. Each amino acid index is identified in the text by the single-letter classification
code, A, B, C, H, P or O, followed by the number listed in the AAindex, available on the Internet

Nishikawa, 1992, C193 and C196) are separate from the
composition index of Dayhoff et al. (1978b, C64), when the
distance of 0.1 was used as the threshold.

It was interesting to observe in the lower right region of
Figure 5A that the helix index for alpha proteins (Geisow and
Roberts, 1980, A98) and the normalized frequency of helix in
all alpha class (Palau et al, 1981, A229) are highly correlated
(the correlation coefficient is 0.92) with each other. However,
except for the aperiodic index for alpha-proteins (Geisow and

Roberts, 1980, A105) there was no index that exhibited a
correlation coefficient of 0.8 or more with either of them.

Minimum spanning tree of amino acid mutation matrices
Figure 6 shows the minimum spanning tree of 42 amino acid
mutation matrices. The shaded areas denote a distance of 0.04
or less between two matrices, while the outer contours denote
a distance of 0.08 or less. When the distance is >0.3, the
linkage is represented by a dashed line. These are the results
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Fig. 6. The minimum spanning tree of 42 amino acid mutation matrices. The shaded areas and the outer contours correspond to clusters identified by single-
linkage with a threshold distances of 0.04 and 0.08, respectively. The thick lines denote clusters identified by complete-linkage with a threshold distance of
0.18. See Table II for identification of each matrix.

obtained by the single-linkage hierarchical cluster analysis.
In addition, the clusters identified by the complete-linkage
hierarchical cluster analysis with a threshold distance of 0.18
are shown by the thick lines in Figure 6.

The mutation matrices can now be grouped into several
clusters corresponding with the method and the data set used
for construction. When the distance of 0.08 was applied to the
threshold, a large cluster emerged containing most of the
matrices that are widely used in sequence alignments, such
as the Dayhoff PAM250 matrix (Dayhoff et al., 1978a,
DAYM780301) and the BLOSUM series matrices (Henikoff
and Henikoff, 1992, HENS920101-03). These matrices are
constructed from the observation of amino acid exchanges in
related proteins. The same clusters were also obtained by the
complete-linkage hierarchical cluster analysis with a threshold
distance of 0.18, which is illustrated by the thick lines in
Figure 6. Thus, the distance between any pair of the 13
matrices constituting this cluster is =£0.18 (complete linkage)
and any matrix has the closest one with a distance of 0.1 or
smaller (single linkage).

Among the matrices based on observed substitution data,
the mutation matrices for the different protein secondary
structure classes, a-helix, (J-strand and others, as well as inside
and outside (LUthy et al, 1991, LUTR910101-09) and the
matrix for transmembrane proteins (Jones et al., 1994,
JOND940101) are distinct and not included in the cluster of
13 matrices. The matrices for residues in the other secondary
structure class were classified into the same cluster (lower
middle of Figure 6) irrespective of whether inside or outside
of the globule (LUTR910101,02,07). Especially the matrix for
outside (LUTR910101) and inside and outside combined
(LUTR910107) are very close with a distance of only 0.01.
The three matrices for residues in {i-strands (LUTR-
910105,06,09) could be combined into a single cluster

32

(upper left of Figure 6) when a threshold distance of 0.09
was used, although the other class matrices would then be
merged into the above cluster of 13 matrices. For the three
matrices for a-helices, the matrix for all alpha (LUTR910108)
and the matrix for outside alpha (LUTR910103) are similar,
but the matrix for inside alpha (LUTR910104) is somewhat
different (upper middle of Figure 6).

The rest of the single member clusters in Figure 6 are
the matrices mainly based on physicochemical properties of
amino acids (McLachlan, 1972, MCLA720101; Grantham,
1974, GRAR740104; Miyata et al., 1979, MIYT790101;
George et al, 1990, GEOD900101), the matrices predom-
inantly based on conformational preferences (Mohana Rao,
1987, MOHR870101; Kolaskar and Kulkarni-Kale, 1992,
KOLA920101), the matrices based on indices that individual
authors had developed (Miyazawa and Jemigan, 1993,
MTYS9301O1; Qu et al, 1993, QU_C930101-03), and the
matrices dependent on the genetic code (Fitch, 1966,
FITW660101; Benner et al., 1994, BENS940104; Feng et al,
1985, FEND85O1O1). The matrix by Risler et al. (1988,
RISJ880101) is based on observed substitution data obtained
by using structural comparison of homologous proteins, but
the matrix is different because it is converted to the y}
distance matrix.

There are two small clusters in the lower left region
of Figure 6. One of them (Niefind and Schomburg, 1991,
NIEK910101,02) is based on main chain conformational prefer-
ences. The difference between the two members is due to the
treatment of the data as discrete or Gaussian distribution. In
the other cluster, one member (Cserzo et al, 1994,
CSEM940101) is a refined version of the other (Tudos et al,
1990, TUDE900101) based on their developed method of
neighbourhood selectivity (Cserzo and Simon, 1989). We noted
that the correlation coefficients reported in their subsequent
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Table II. The result

Matrix

GRAR74O1O4
GEOD900101
MIYT79OI01
MOHR870101

*GONG920101
MIYS93O101

*BENS94O103
LUTR910108
QU(C930102

•HENS920102
•HENS920103
•JOHM930101
•BENS940102
CSEM94O101
LUTR910104

•HENS920101
LUTR910109

•DAYM78O3O1
LEVJ860101

•OVEJ920101
QU(C93O1O3
LUTR910106
R1SJ88O1O1
TUDE900101

*JOND920103
•MCLA710101
•ALTS910101
KOLA920101
LUTR910102

*BENS94Ol01
LUTR910107
JOND940101
FEND85O1O1
LUTR910101
LUTR910105
NIEK910101
NIEK910102
LUTR91OIO3
MCLA720101
BENS940104
QU(C930101
FITW660101

of reproducing amio acid

Correlation coeff.

0.80
-0.99
0.75

-0.69
-0.74
-0.85
-0.73
-0.80
-0.70
-0.65
-0.64
-0.64
-0.69
-0.77
-0.76
-0.58
-0.67
-0.65
-0.75
-0.60
-0.62
-0.56
-0.55
-0.73
-0.63
-0.63
-0.60
-0.51
-0.57
-0.60
-0.60
-0.54
-0.64
-0.54
-0.52
-0.56
-0.54
-0.56
-0.43
-0.38
-0.36
0.32

mutation matrices

One index

HI 10
H153
H55
B277
H 55
H185
H 55
H212
H388
H2U
Hil l
H210
H 55
Hi l l
P216
H211
H 13
H212
H365
H210
H388
H389
O303
Hil l
H 55
H147
H212
A290
P353
H365
H384
H 71
Hil l
H147
H 13
A224
A224
H212
Hil l
H 71
A 50
H243

from the combination of amino acid indices*

Correlation

0.91
-0.99

1.00
-0.84
-0.84
-0.86
-0.84
-0.83
-0.80
-0.79
-0.80
-0.80
-0.81
-0.79
-0.81
-0.75
-0.74
-0.77
-0.79
-0.76
-0.72
-0.68
-0.70
-0.77
-0.76
-0.74
-0.75
-0.66
-0.69
-0.72
-0.69
-0.67
-0.69
-0.66
-0.67
-0.66
-0.65
-0.62
-0.61
-0.47
-0.41

0.39

coeff. Two indices

H110P353
H115 H153
Hill P112
H 68 A252
Hil l PU2
H 71 H185
Hill PI 12
H211 P383
H355 B 28
Hil l P112
Hil l P112
HI27 P353
Hil l P177
H 55 H213
H212P217
H151 PI 12
H127 H212
H365 PI77
H212 H365
HI27 P353
H 94 Hil l
H 13 H247
P216 O303
Hill H211
Hill P177
H 14 H150
H243 P216
P 1 A119
H181 A252
Hil l PI77
H147 P353
H151 P319
Hill P353
H 10P319
H11OP383
B161 A224
B161 A224
H365 PI 12
Hill P157
H 71 P177
H271 A 90
Hil l A52

Correlation coeff.

1.00
-0.97

0.97
-0.92
-0.87
-0.87
-0.86
-0.85
-0.85
-0.84
-0.84
-0.84
-0.83
-0.83
-0.83
-0.82
-0.82
-0.81
-0.81
-0.81
-0.81
-0.80
-0.80
-0.80
-0.79
-0.79
-0.78
-0.77
-0.77
-0.76
-0.76
-0.73
-0.72
-0.72
-0.71
-0.70
-0.69
-0.68
-0.65
-0.48
-0.46

0.44

Three indices

H110H111 P112
H 77 H115 H153
H 55 Hil l P112
H355 B164 A162
Hil l H211 P14y
H 71 H185 H384
Hil l H211 P149
H151 P383 P353
H 94HU1 B 28
H210 H389 P154
Hil l P217 B278
H127 H212 A165
Hil l H365 P177
H 67 Hil l P112
Hil l P217 P383
H210 H402 P 33
H127 H402 P216
Hil l H212 P177
H212 H365 A289
H127 H212 A165
H 87 H94 A121
H 13 P319 B168
P219 A308 O303
H 67 Hil l P158
Hil l H365 P177
H150 H365 P112
Hil l H212 P177
P 1 B120 A264
H 12 P177 A291
H151 H402 P177
H384 H402 P319
H151 H365 P319
Hil l H185 P177
H354 P158 A 75
H 77 H110P216
B161 A 19 A140
B161 A 19 A140
H 14 H148 P361
H241 H402 PI57
H 71 Hil l P177
H 94 A 90 0255
H184 H388 A 52

The amino acid index is represented by the classification code shown in the AAindex, available on the Internet.

paper (Tusn&dy et al., 1995) are somewhat different from ours
because the assignment of diagonal elements that are missing
in the original matrices is different.

When a distance of 0.04 is used as the threshold, the
large cluster of 13 matrices can be further divided into five
subclusters, which are named respectively Dayhoff's mutation
data matrix (MDM78) group, the updated mutation data matrix
(UMDM) group, Henikoff's BLOSUM group, the structure-
based matrix (STRM) group and McLachlan's alternative
amino acids-based matrix (AAAM) group. As mentioned,
these matrices are all obtained from the observed frequency
of amino acid substitution data, but apparently there are
differences due to the size and the nature of the data, which
are reflected in the five subclusters.

The MDM78 cluster contains the log odds matrices for 250
PAM units (Dayhoff et al., 1978a, DAYM780301) and for 120
PAM units (Altschul, 1991, ALTS910101). Both matrices are
based on the same sequence data (Dayhoff et al., 1978a);
namely, the mutation probability matrix for any PAM units
can be obtained by making the power of the matrix for 1 PAM
unit. Compared with Dayhoff's data set, the five matrices

constituting the UMDM group are made by using a larger
amount of sequence data. While the matrices of MDM78 and
UMDM groups are obtained by using closely related protein
sequences, the matrices in the other groups are constructed
by directly observing substitutions without respect to the
evolutionary distance among sequences being compared. The
BLOSUM group contains three matrices, BLOSUM 45
(HENS920101), BLOSUM 62 (HENS920102) and BLOSUM
80 (HENS920103), representing different levels of clustering
percentages to adjust contributions from closely related
sequences when they measured the amino acid replacement
frequency from the aligned segments of the BLOCK database.
The matrix JOHM930101 (Johnson and Overington, 1993) is
based on the amino acid exchange frequency observed in
structurally aligned sets of homologous proteins. The matrix
OVEJ920101 was computed in the same manner as the
BLOSUM series (Henikoff and Henikoff, 1993) from different
substitution data (Overington et al., 1992). It seems that
McLachlan's scoring scheme (McLachlan, 1971) is somewhat
peculiar; each score is assigned an integer between 0 and 9
from the relative substitution frequencies.
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Reproducing matrices from amino acid indices
According to the procedure described in Materials and methods,
we searched the best combination of up to three amino acid
indices to represent a mutation matrix. The result is summarized
in Table II where the best correlation coefficient for each of
the 42 published matrices is shown when the derived matrix
is obtained from a single amino acid index (column 2),
two indices in combination (column 4) and three indices in
combination (column 6). The best combination of two indices
was calculated from 80 601 (= 402^2) possibilities and the best
combination of three indices was searched from 10 746 800
(= 402C3) possibilities.

Here the correlation coefficients were calculated from 190
off-diagonal elements. When the calculation was made from
all 210 elements, the correlation coefficient for the amino
acid index-based matrices NIEK910101,02, KOLA920101 and
QU_C930101 or the genetic code-based matrices FTTW660101
and BENS940104 showed a marked improvement, ~0.1 or
more (data not shown). This is mainly due to the fact that all
diagonal elements of such matrices are equal, namely, the
difference is 0. The matrices RISJ880101, FEND850101,
MCLA710101 whose diagonal elements are 8 or 9 and the
matrix MCLA720101 whose diagonal elements are 5 or 6 also
have a similar bias. Except for these matrices the result with
190 elements conformed well to that with 210 elements.

Table II is sorted according to the value for the three index
combination. The top ones are the matrices calculated from
the indices stored in our database, so it was natural to observe
a perfect correlation. Concerning the 13 matrices that are
grouped into the same cluster in Figure 6, which are identified
by the asterisks in Table n, they exhibit a similar tendency.
When a single index was used to represent a matrix, all the
selected indices belonged to the large hydrophobicity cluster
(shaded area) shown in Figure 5H. When the combination
of two indices was used, all the selected pairs except for
MCLA710101 consisted of the hydrophobicity and the size of
the amino acid side chain. When 210 elements were used to
calculate the correlation coefficient, the matrix MCLA710101
also had a similar combination of the hydrophobicity and the
size. The refractivity index (McMeekin et al, 1964, PI77)
which often appeared here is also highly correlated with the
amino acid size indices in the physicochemical properties
region shown in Figure 5P. When the combination of three
indices was examined, only a slight improvement of the
correlation coefficient was observed over the two index com-
bination. Thus, the elements of the 13 published mutation
matrices reflect mostly the similarity of the volume and
hydrophobicity of amino acids. This suggests that for each
amino acid replacement during protein evolution the volume
needs be conserved to retain the packing of the globule and
the hydrophobicity needs be conserved to keep the properties
of inside and outside residues.

The matrices that take into account the main chain
torsion angles (Niefind and Schomburg, 1991, NIEK910101,02;
Kolaskar and Kulkami-Kale, 1992, KOLA920101) are cor-
related with the conformational preference indices. The matrix
MOHR870101 (Mohana Rao, 1987) is mostly explained by
only three indices in combination, despite the fact that the
matrix was established by using five parameters, i.e. three
conformational preference parameters, polarity and hydro-
phobicity. Although Levin et al. (1986) had empirically deter-
mined their matrix to optimize the secondary structure
matching, the matrix LEVJ860101 was highly correlated with

a single hydrophobicity index and no significant improvement
was observed in the combination of two or three indices. This
is consistent with the result of Risler et al. (1988), who found
an eigenvalue that could mostly represent the matrix of Levin
et al. (1986).

The genetic code-based matrices FITW660101 (Fitch, 1966)
and BENS940104 (Benner et al, 1994) did not have a good
correlation with any amino acid indices, which is consistent
with the observation by Nakai et al. (1988). The correlation
coefficients with the derived matrices were <0.5. When we
performed a search of best combinations using 400 pseudo-
indices that had sets of random values, the mean of the
correlation coefficients was 0.49. This implies that the genetic
code-based matrices cannot be represented by any amino acid
properties. Compared with these two matrices, the matrix
FEND85O1O1 (Feng et al., 1985) which is considered both
genetic code-based and physicochemical similarity-based did
exhibit correlations with some indices.

Discussion
Since the original efforts of Dayhoff and Eck (1968) and
McLachlan (1971) who studied amino acid substitutions in
homologous protein sequences, and of Fitch (1966) who
employed a matrix derived from the genetic code, there have
been reports of various mutation matrices to search for sequence
similarity. Among them Dayhoff's PAM 250 matrix (Dayhoff
et al., 1978a, DAYM780301) has long been used as a standard
similarity measure in protein sequence comparison. On the
other hand, Dayhoff's matrix has also been criticized because
of, for instance, the possible bias due to the limited size of
the data set, the influence of observing amino acid mutations
only in closely related proteins and their assumptions on the
evolutionary model of proteins. According to our analysis, at
least the first one is not really critical. That is, the updated
versions with larger sets of sequence data, JOND920103
(Jones et al, 1992), GONG920101 (Gonnet et al, 1992) and
BENS940101-03 (Benner et al, 1994) are all very similar to
the original Dayhoff matrix. For the second one, we have
shown that the matrices derived from sequence data of varying
evolutionary distances (MCLA720101, HENS920101-03,
OVEJ920101 and JOHM930101) are also correlated with the
original Dayhoff matrix. In practice, however, there may be
some differences in detecting sequence similarity.

Concerning the model of protein evolution, Benner et al.
(1994) suggested that the amino acid substitution patterns are
not uniform at any evolutionary distance between sequences,
by separately constructing matrices (BENS940101-03) with
specific divergence ranges of sequences. They concluded that
at low divergence the genetic code strongly affected amino
acid mutations, but chemical characters of amino acids were
influential at high divergence (Gonnet et al, 1992; Benner
et al, 1994). Our results in Table II also suggest that when
more divergent sequence data are used in constructing matrices,
these matrices have higher correlations with the size and
hydrophobicity of amino acids. If this is the case, why can
Dayhoff's matrix detect distantly related sequences despite the
fact that they only observed substitutions in closely related
(low divergent) sequences? Schwartz and Dayhoff (1978)
empirically found that the PAM 250 unit matrix was effective
to do so. Here we uncover another clue. Figure 7 shows the
correlation coefficients between the Dayhoff matrix calculated
for every 10 PAM units from 10 to 490 and the matrix derived
from the size (Grantham, 1974, PI 12) and hydrophobicity
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(a) 0.75
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1 0.6 "1
u 0.55
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200 300
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400 500

Fig. 7. The absolute value of the correlation coefficient between the matrix
constructed from the volume (PI 12) and hydrophobicity (H365) indices and
the Dayhoff matrix calculated at every 10 PAM units. The correlation
coefficient was obtained either from 190 off-diagonal elements (a) or from
all 210 elements (b).

(Sweet and Eisenberg, 1983, H365) indices. The correlation
coefficients were obtained from 190 off-diagonal elements
(Figure 7a) or from all 210 elements (Figure 7b). The PAM
unit range of 70 to 250 that includes widely used PAM 120
and PAM 250 matrices exhibits higher correlations with the
derived matrix of the size and hydrophobicity than the other
ranges. This indicates that the PAM units in this range indeed
reflect the size and hydrophobicity of amino acids. Dayhoff
et al. (1978a) were thus able to construct the matrix for
substitution patterns in distantly related proteins by extending
the PAM units of their mutation probability matrix.

There is, however, a large difference between the asymptotic
behaviors of Benner's and Dayhoff's matrices for longer
evolutionary distances. On the one hand, in Benner's matrix
the element of a pair of amino acids that are physicochemically
dissimilar but similar in the genetic code, e.g. Cys and Trp,
decreases in value as the evolutionary distance increases. On
the other hand, because of their assumption, i.e. a Markovian
model, the off-diagonal elements increase monotonically with
increasing distances in Dayhoff's matrix. Our analysis also
indicated that the matrices based on the genetic code
(FTTW660101 and BENS940104) did not sufficiently reflect
any properties of amino acids. This may be the reason why
such matrices are not suited for searching distantly related
proteins (Schwartz and Dayhoff, 1978; Feng et al, 1985).

The diversity of amino acid properties is the key to the
structure, function and evolution of protein molecules. Figure
8 is an illustration of how amino acid indices are related to
other parameters of amino acids. As shown in this paper the
amino acid mutation matrix is a manifestation of amino acid
indices, notably the hydrophobicity and the side-chain size.
While the mutation matrix is the scoring scheme for
sequence comparison, the so-called structural parameters are

Ala 5 0 -6 -2 0
Arg 0 -4 -6 -2 -5
Asn 0 -4 -6 -3 -4

Ala 20 19 5 19 33
Arg 49 35 22 35 8
Asn 12 77 12 77 25

Val 1 - 4 - 6 2 1 Val 10 -4 33 -4 66

ID Profile
(Position dependent amino acid

similarity scores)

Ala
Arg
Asn

Val -2 2

Ala
Arg
Asn

Val

1.8
-4.5
-3.5

4.2

3D Profile
(Position dependent structural parameters)

Ala
Arg
Asn

Val

1.42
0.98
0.67

1.06

0.83
0.93
0.89

1.70

0.74
1.01
1.46

0.59

AlaArgAsn • • • • Val A B C

Amino Acid Similarity Scores Amino Acid Index Structural Parameters

Fig. 8. An illustration showing the relationships among amino acid indices, mutation matrices (similarity scores) and profiles.
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the scoring scheme for structure prediction or sequence/
structure comparison. For example, the conformational para-
meters of Chou and Fasman (1978) represent empirical relation-
ships between 20 amino acid residues and three secondary
structure classes. The 1-D profile and the 3-D profile are,
respectively, the position dependent scoring schemes for
sequence/sequence comparison and sequence/structure com-
parison. The 1-D profile of Gribskov et al. (1987) is derived
from Dayhoff's PAM 250 matrix, while the 3-D-l-D scores
of Bowie et al. (1991) can be regarded as a refined form of
conformational parameters. The amino acid index database
AAindex, which currently contains various amino acid indices,
structural parameters, and mutation matrices, can thus be a
useful resource for sequence and structure analyses of proteins.
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