Abstract

A suite of dolerite dykes from the Ahlmannryggen region of western Dronning Maud Land (Antarctica) forms part of the much more extensive Karoo igneous province of southern Africa. The dyke compositions include both low- and high-Ti magma types, including picrites and ferropicrites. New 40Ar/39Ar age determinations for the Ahlmannryggen intrusions indicate two ages of emplacement at ∼178 and ∼190 Ma. Four geochemical groups of dykes have been identified in the Ahlmannryggen region based on analyses of ∼60 dykes. The groups are defined on the basis of whole-rock TiO2 and Zr contents, and reinforced by rare earth element (REE), 87Sr/86Sr and 143Nd/144Nd isotope data. Group 1 were intruded at ∼190 Ma and have low TiO2 and Zr contents and a significant Archaean crustal component, but also evidence of hydrothermal alteration. Group 2 dykes were intruded at ∼178 Ma; they have low to moderate TiO2 and Zr contents and are interpreted to be the result of mixing of melts derived from an isotopically depleted source with small melt fractions of an enriched lithospheric mantle source. Group 3 dyke were intruded at ∼190 Ma and form the most distinct magma group; these are largely picritic with superficially mid-ocean ridge basalt (MORB)-like chemistry (flat REE patterns, 87Sr/86Sri ∼0·7035, εNdi ∼9). However, they have very high TiO2 (∼4 wt %) and Zr (∼500 ppm) contents, which is not consistent with melting of MORB-source mantle. The Group 3 magmas are inferred to be derived by partial melting of a strongly depleted mantle source in the garnet stability field. This group includes several high Mg–Fe dykes (ferropicrites), which are interpreted as high-temperature melts. Some Group 3 dykes also show evidence of contamination by continental crust. Group 4 dykes are low-K picrites intruded at ∼178 Ma; they have very high TiO2–Zr contents and are the most enriched magma group of the Karoo–Antarctic province, with ocean-island basalt (OIB)-like chemistry. Dykes of Group 1 and Group 3 are sub-parallel (ENE–WSW) and both groups were emplaced at ∼190 Ma in response to the same regional stress field, which had changed by ∼178 Ma, when Group 2 and Group 4 dykes were intruded along a dominantly NNE–SSW strike.

INTRODUCTION

The role of mantle plumes in the generation of large igneous provinces (LIPs) has been, and remains, a subject of intense debate (e.g. Ernst & Buchan, 2001; Foulger, 2002). The magmatism of the Karoo province of southern Africa has been reliably dated (40Ar/39Ar and U–Pb) at 179–184 Ma, with a significant peak of activity at 182–183 Ma (Duncan et al., 1997). Although a definite plume link has never been established for the Karoo igneous province (e.g. Hawkesworth et al., 1999), most workers (e.g. Cox, 1989; Ellam & Cox, 1991; Sweeney et al., 1994) have concluded that a significant thermal anomaly must have existed to generate the large volume of erupted magma (>2 × 106 km3; Elliot et al., 1999) over such a short period of time (Duncan et al., 1997). The geochemistry of Karoo igneous rocks has been interpreted by some workers to indicate either derivation of the magmas from an enriched lithospheric mantle source, or crustal contamination of partial melts of a lithospheric mantle source (e.g. Erlank, 1984). Other workers have proposed that the Karoo magmas are plume-derived, but contaminated by the lithospheric mantle en route to the surface (Cox, 1992; Ellam et al., 1992). Central to this debate is the need to establish that a plume source exists and to evaluate if its role is restricted to conductive heat transfer to the base of the lithosphere, or if there is any surface evidence of eruption of uncontaminated plume-derived magmas.

The lavas and dykes of western Dronning Maud Land, Antarctica, are generally considered as an extension of the Karoo large igneous province of southern Africa (Harris et al., 1991; Luttinen et al., 1998). The regional dolerite dykes of the Ahlmannryggen area (Fig. 1) have previously been described by Harris et al. (1991), who made comparisons with the composition of basalt lavas from the Kirwanveggen area further to the south (Harris et al., 1990), and also with the high-Ti basalts of the Karoo province (Duncan et al., 1984). This study extends the work of Harris et al. (1991) by providing a full geochemical and isotopic dataset over a broader geographical area, therefore allowing comparisons to be made with more recent data on the Karoo igneous province of southern Africa (e.g. Sweeney et al., 1994), and elsewhere in East Antarctica (e.g. Luttinen & Furnes, 2000).

Fig. 1.

Location map of rock outcrops in western Dronning Maud Land (Antarctica) from Vestfjella to H. U. Svedrupfjella. The inset is a pre-break-up Gondwana reconstruction of Africa and Antarctica showing the extent of the Kaapvaal–Grunehogna craton and the outcrop of Early–Middle Jurassic age Karoo igneous rocks (after Luttinen & Furnes, 2000). ODS, Okavango dyke swarm; SRBF, Sabie River Basalt Formation; RRDS, Rooi Rand dyke swarm.

Fig. 1.

Location map of rock outcrops in western Dronning Maud Land (Antarctica) from Vestfjella to H. U. Svedrupfjella. The inset is a pre-break-up Gondwana reconstruction of Africa and Antarctica showing the extent of the Kaapvaal–Grunehogna craton and the outcrop of Early–Middle Jurassic age Karoo igneous rocks (after Luttinen & Furnes, 2000). ODS, Okavango dyke swarm; SRBF, Sabie River Basalt Formation; RRDS, Rooi Rand dyke swarm.

Where sub-lithospheric mantle sources for continental flood basalts can be identified there is mounting evidence that they are heterogeneous in composition, with both depleted and enriched source components (e.g. Kerr et al., 1995; Fitton et al., 1997); the magmas derived from these components include ferropicrites (Gibson et al., 2000) and lamprophyric rock types (le Roex & Lanyon, 1998; Thompson et al., 2001). The data presented here allow us to evaluate, assess and model these components, with respect to the ‘Karoo plume’.

GEOLOGICAL SETTING

Basaltic lavas and minor intrusions of Jurassic age crop out at several localities in western Dronning Maud Land, Antarctica (Fig. 1). Both flood basalts and dykes are exposed at Vestfjella, Heimefrontfjella and Kirwanveggen, whereas only dykes are exposed in the Ahlmannryggen, Mannefallknausane and H. U. Svedrupfjella areas (Fig. 1). In the Kirwanveggen, the lavas are sub-horizontal and form a succession up to 300 m in thickness (Harris et al., 1990). The Kirwanveggen lavas overlie clastic sediments of the Amelang Plateau Formation; these sedimentary rocks overlie Proterozoic gneisses basement of the Svedrupfjella Group. Locally, the sedimentary succession is absent and the lavas directly overlie the gneisses. Two of these lava flows have been dated by 40Ar/39Ar geochronology (Duncan et al., 1997), with Middle Jurassic ages of 180·6 ± 0·6 and 182·8 ± 0·6 Ma. In Vestfjella, the thickness of the lava pile exceeds 900 m in the north and 400 m in the south (Luttinen & Furnes, 2000). The lava pile is cut by dolerite dykes and sills and, at Muren and Utpostane (Fig. 1), by gabbro intrusions (Vuori & Luttinen, 2003), which have been dated at 177·0 ± 0·5 Ma (40Ar/39Ar on plagioclase; Zhang et al., 2003). The age of the Vestfjella lavas is poorly constrained, although plagioclase K–Ar ages of ∼180 Ma for the north Vestfjella lavas (Peters et al., 1991) provide the best age estimate available and correspond to the age of the Kirwanveggen lavas (Duncan et al., 1997).

The basement of western Dronning Maud Land is divided into two major domains. Prior to the Mesozoic break-up of Gondwana, the Archaean Grunehogna craton (Fig. 1) is presumed to have been part of the Kaapvaal craton (Groenewald et al., 1995). The craton is bounded to the east and SE by the Mesoproterozoic Maud Belt, the Antarctic extension of the Natal Belt of Africa (Jacobs et al., 1993). The exact position of the Archaean–Proterozoic lithospheric terrane boundary is not firmly established, but, on the basis of gravity and aeromagnetic data, it has been interpreted to be located between 72° and 73° S, i.e. close to north Vestfjella (Luttinen & Furnes, 2000).

The minor intrusions of the Ahlmannryggen area intrude Neoproterozoic age rocks of the Ritscherflya Supergroup, which cover the entire Ahlmannryggen and Borg Massivet regions (Fig. 1). The Ritscherflya Supergroup, which overlies Archaean (2·8–3·0 Ga) basement, consists of relatively undeformed sedimentary and volcanogenic rocks of the Ahlmannryggen and Jutulstraumen groups (Wolmarans & Kent, 1982), which have been intruded extensively by massive tholeiitic sills and dykes of the Borgmassivet Intrusions (Wolmarans & Kent, 1982). Wolmarans & Kent (1982) reported a Rb–Sr whole-rock isochron age of 1073 ± 40 Ma based on seven mafic sills from the Ahlmannryggen, therefore the Borgmassivet Intrusions could be coeval with the Umkondo large igneous province of southern Africa (1·1 Ga; Hanson et al., 1998). This date is close to the inferred lithification age of the Ritscherflya Supergroup sedimentary rocks (1085 ± 27 Ma; Moyes et al., 1995) and therefore supports the field observations of Krynauw et al. (1988) and Curtis & Riley (2003) that the Borgmassivet Intrusions were emplaced into wet, partially lithified sediments.

SAMPLING STRATEGY

Over 90 dykes and sills were recorded from the Ahlmannryggen region of western Dronning Maud Land (Fig. 2). Each dyke or sill was sampled and its strike, dip, width and exact position were recorded. Based on petrography, whole-rock geochemistry and preliminary geochronology, a significant (∼25%) subset of these dykes and sills were believed to be Proterozoic in age (∼1100 Ma). Forty-seven Mesozoic dykes (Fig. 2) were selected for this study, which were the freshest samples available and geochemically showed the least evidence of hydrothermal alteration.

Fig. 2.

Geographical distribution of the Ahlmannryggen minor intrusions by geochemical group. The four geochemical groups (1–4) are defined in the text. Two samples (Groups 1 and 4) from the Kirwanveggen are also shown in the inset map. The right-hand panel shows frequency strike plots for geochemical Groups 1–4 and their mean strike directions (arrows).

Fig. 2.

Geographical distribution of the Ahlmannryggen minor intrusions by geochemical group. The four geochemical groups (1–4) are defined in the text. Two samples (Groups 1 and 4) from the Kirwanveggen are also shown in the inset map. The right-hand panel shows frequency strike plots for geochemical Groups 1–4 and their mean strike directions (arrows).

GEOCHRONOLOGY

Previous work

Very few reliable ages have been published for the minor intrusions of western Dronning Maud Land. Mesozoic ages have been reported by Wolmarans & Kent (1982), who dated an olivine-bearing dolerite dyke from Nils Jorgennutane (Fig. 1) at 192 ± 8 Ma (K–Ar whole rock), whereas Watters & Rex [K–Ar unpublished data cited by Harris et al. (1991)] have reported ages in the range 190–200 Ma. 40Ar/39Ar geochronology on plagioclase mineral separates by Brewer et al. (1996) indicated two episodes of mafic magmatism, at 182·4 ± 1·9 Ma (dolerite sill) and a younger episode at 172·4 ± 2·1 Ma (basalt lava), from the nearby Heimefrontfjella area (Fig. 1). The older episode of magmatism has been confirmed by Duncan et al. (1997), who carried out an 40Ar/39Ar study on basaltic lavas from Kirwanveggen (Fig. 1), which yielded plateau ages of 180·4 ± 0·6 and 182·6 ± 0·6 Ma, coincident with the main Karoo volcanism of southern Africa (Riley & Knight, 2001). Zhang et al. (2003) have recently completed a detailed 40Ar/39Ar study on a variety of basaltic rocks from the Vestfjella region (Fig. 1) of western Dronning Maud Land, which display a broad range of Jurassic ages. They reported ages of 177·0 ± 0·5 Ma for the Utpostane gabbro and 176·6 ± 0·5 Ma for a dolerite dyke from the Kirwanveggen, whereas a dolerite dyke from Basen (Fig. 1) was dated at ∼193 Ma. 40Ar/39Ar geochronology data reported by Grantham (1996) for the Straumsvola and Tvora (Fig. 1) alkaline plutons (Harris & Grantham, 1993) from western Dronning Maud Land indicate intrusion ages in the range 178–182 Ma, and Harris et al. (2002) gave an age of ∼180 Ma for the nearby Sistefjell syenite (Fig. 1).

This study

Analytical methods

Whole-rock core samples of 5 mm diameter were packaged in evacuated quartz vials, and irradiated in the Oregon State University TRIGA Reactor for 6 h at 1 MW power. The neutron flux was measured using standard FCT-3 biotite, 28·03 Ma (Renne et al., 1994). Reactor temperatures can reach up to 270°C. Additionally, samples were baked at 195°C for 48 h during extraction line pump-down to ∼10−9 torr.

Depending on sample composition, the incremental heating experiment started in the range 400–600°C and was typically complete by 1400°C using a Heine low-blank resistance furnace with a Ta/Nb crucible and Mo liner. Each heating step was of 20 min duration with an additional 5 min cooling and continued removal of active gases with St101 Zr–Al and St172 Zr–V–Fe getters.

A MAP 215-50 rare gas mass spectrometer, source at 3000 V, and equipped with a Johnston MM1-1SG electron multiplier at 2050 V, was used for analysis. During the 15 min analysis time per mass peak height, data were collected for 10 cycles of masses 35–40 for baselines and peak-tops. Data were reduced and age calculations completed using ArArCALC v2.2 software for 40Ar/39Ar geochronology (Koppers, 2002).

Results

The 40Ar/39Ar data for five samples are presented in Table 1. The groundmass from sample Z.1801.1, an olivine basalt, yielded a six-step ‘error plateau’ (191·3 ± 3·2 Ma; Fig. 3a) comprising 72% of the total gas released. The ‘error plateau’ is close to a plateau age but is sufficiently disturbed that individual step ages are statistically different from the weighted mean age. There is a strong recoil shape to the profile from step 5 to fusion (Fig. 3a). The corresponding errorchron age is 190·7 ± 9·7 Ma, which is in close agreement with the ‘error plateau’ and may be close to the crystallization age, although it is not completely reliable by the usual criteria.

Table 1:

40Ar/39Ar age determinations (Ma)

Sample
 
Material
 
Total fusion
 
Plateau age (steps, % 39Ar)
 
Isochron age
 
40Ar/36Ar initial
 
Z.1801.1 groundmass 196·1 ± 1·1 191·3 ± 3·2 (6 of 11, 71·9) 190·7 ± 9·7 302·3 ± 169·3 
Z.1804.3 whole rock 190·7 ± 0·7 178·3 ± 3·7 (7 of 13, 57·4) 177·0 ± 7·7 295·7 ± 2·3 
Z.1812.1 groundmass 214·9 ± 1·2 204·0 ± 3·0 (6 of 13, 74·3) 176·8 ± 9·4 978·1 ± 201·5 
Z.1814.1 whole rock 183·0 ± 0·6 190·7 ± 0·8 (4 of 12, 41·7) 190·7 ± 1·6 295·1 ± 20·2 
   176·2 ± 0·6 (4 of 12, 54·0) 177·4 ± 3·3 268·6 ± 36·1 
Z.1816.1 whole rock 224·9 ± 1·7 187·3 ± 3·6 (4 of 12, 46·6) 177·2 ± 4·1 505·7 ± 27·2 
Sample
 
Material
 
Total fusion
 
Plateau age (steps, % 39Ar)
 
Isochron age
 
40Ar/36Ar initial
 
Z.1801.1 groundmass 196·1 ± 1·1 191·3 ± 3·2 (6 of 11, 71·9) 190·7 ± 9·7 302·3 ± 169·3 
Z.1804.3 whole rock 190·7 ± 0·7 178·3 ± 3·7 (7 of 13, 57·4) 177·0 ± 7·7 295·7 ± 2·3 
Z.1812.1 groundmass 214·9 ± 1·2 204·0 ± 3·0 (6 of 13, 74·3) 176·8 ± 9·4 978·1 ± 201·5 
Z.1814.1 whole rock 183·0 ± 0·6 190·7 ± 0·8 (4 of 12, 41·7) 190·7 ± 1·6 295·1 ± 20·2 
   176·2 ± 0·6 (4 of 12, 54·0) 177·4 ± 3·3 268·6 ± 36·1 
Z.1816.1 whole rock 224·9 ± 1·7 187·3 ± 3·6 (4 of 12, 46·6) 177·2 ± 4·1 505·7 ± 27·2 

Samples irradiated at Oregon State University TRIGA reactor for 12 h at 1 MW power. Neutron flux measured using FCT-3 biotite monitor (28·04 ± 0·16 Ma, Renne et al., 1998). Samples in bold are the preferred ages.

Fig. 3.

39Ar release spectra for samples Z.1801.1, Z.1804.3, Z.1812.1, Z.1814.1 and Z.1816.1. All samples generate plateaux but fail to satisfy the criteria of three release steps comprising 50% of the total release. Also shown are the isochron diagrams for the five samples.

Fig. 3.

39Ar release spectra for samples Z.1801.1, Z.1804.3, Z.1812.1, Z.1814.1 and Z.1816.1. All samples generate plateaux but fail to satisfy the criteria of three release steps comprising 50% of the total release. Also shown are the isochron diagrams for the five samples.

Whole-rock sample Z.1804.3 is an olivine basalt with a quenched glassy texture. It has a matrix partly replaced by clay minerals, but is also characterized by some fresh microphenocrysts. It has a classic recoil pattern with decreasing measured step age vs temperature. The seven-step ‘error plateau’ yields an age of 178·3 ± 3·7 Ma (Fig. 3b) comprising 57% of the total gas released. The corresponding total fusion age is 190·7 ± 0·7 Ma.

The groundmass from sample Z.1812.1, an olivine dolerite, yielded a six-step ‘error plateau’ of 204·0 ± 3·0 Ma (Fig. 3c) comprising 74% of the total gas released. The ‘error plateau’ is clearly disturbed and the strongly increasing age toward fusion step 3 is common in excess 40Ar profiles. An isochron calculated using steps 6–11 produces an age of 176·8 ± 9·4 Ma, which has a statistical measure of significance. The case for excess 40Ar is strong in this sample, hence the isochron age is preferred, albeit with relatively large uncertainty.

Whole-rock sample Z.1814.1 is an olivine basalt, which yielded a low-temperature four-step plateau of 190·7 ± 0·8 Ma (Fig. 3d), but comprising only 42% of the total gas released. A higher temperature, four-step plateau, comprising 54% of the gas released, yields an age of 176·2 ± 0·6 Ma. If excess 40Ar is involved, then the younger age would be preferred.

Whole-rock sample Z.1816.1 is an olivine basalt with abundant clay minerals replacing the poorly crystallized matrix. The four-step ‘error plateau’ yields an age of 187·3 ± 3·6 Ma (Fig. 3e) comprising 47% of the total gas released, which is considered to be acceptable. An isochron calculated using eight steps produced a statistically acceptable fit with an age of 176·4 ± 4·8 Ma.

40Ar/39Ar geochronology on a separate suite of Ahlmannryggen dykes and sills was undertaken by A. Fazel (unpublished data) at the Open University (UK) and reveals a similar age pattern to the data obtained from Oregon State University. The data, which are summarized in Fig. 4, indicate a prominent Mesozoic peak (∼65% of the intrusions yielded Mesozoic ages) composed of several small peaks at ∼178, 181, 188 and 198 Ma.

Fig. 4.

Cumulative probability curve for the ages of basic minor intrusions of western Dronning Maud Land (A. Fazel, unpublished data). The main peak includes two smaller peaks at ∼178 Ma and 188 Ma, which correspond closely to the proposed intrusive episodes at 178 and 190 Ma.

Fig. 4.

Cumulative probability curve for the ages of basic minor intrusions of western Dronning Maud Land (A. Fazel, unpublished data). The main peak includes two smaller peaks at ∼178 Ma and 188 Ma, which correspond closely to the proposed intrusive episodes at 178 and 190 Ma.

Discussion

The minor intrusions from the Ahlmannryggen area proved very difficult to date, with both laboratories (Oregon State University and Open University) experiencing similar problems. In many cases, the criteria used to define age plateau [(1) each fraction of the plateau is internally concordant and overlaps with the plateau age within a 2σ uncertainty; (2) the fractions containing the plateau are continuous and contain at least 50% of the total 39Ar released] were not met. There is little doubt concerning their affinity with the Karoo volcanic province, based on the age ranges obtained, but distinguishing age differences is difficult because of the effects of alteration, 39Ar recoil redistribution and excess 40Ar.

Two dates that are repeated throughout this study are a pre-Karoo volcanism (182 Ma) age of ∼190 Ma and a post-Karoo volcanism age of ∼178 Ma. The 178 Ma age is in close agreement with recent age data from the Okavango dyke swarm (Botswana), which yield 40Ar/39Ar (whole-rock and plagioclase) plateau ages in the range 178·4 ± 1·1 to 180·9 ± 1·3 Ma (Elburg & Goldberg, 2000; Le Gall et al., 2002; Jourdan et al., 2004a), with a magmatic peak at ∼178 Ma. Zhang et al. (2003) also reported ages of ∼177 Ma for lavas, dykes and gabbros from Vestfjella and Kirwanveggen, western Dronning Maud Land (Fig. 1). The study by Zhang et al. (2003) highlighted similar problems to those of this study, and they noted that the majority of their plagioclase samples yielded discordant age spectra, which they interpreted as reflecting alteration, excess 40Ar and recoil redistribution.

The pre-Karoo ages of ∼190 Ma are problematic because dates of ∼10 Myr older than the main Karoo peak at 182 Ma have not been considered as viable crystallization ages before. Zhang et al. (2003) dated plagioclase from a Vestfjella dolerite dyke at 193·0 Ma, but discounted this date as discordant. Jourdan et al. (2004a) also published an integrated age of 191·5 ± 8·4 Ma for a dyke from the Okavango swarm using their ‘speedy’ step-heating experiments. Several of the Ahlmannryggen dykes yield ages of ∼190 Ma, although there is a scientific case for some of them also to be interpreted as ∼178 Ma if different steps at different temperatures are used for calculation, or if an isochron or errorchron age is adopted instead of a plateau age.

WHOLE-ROCK MAJOR AND TRACE ELEMENT AND Sr–Nd ISOTOPE GEOCHEMISTRY

Analytical techniques

Powders for geochemical analysis were prepared from 2–3 kg of fresh rock. Samples were reduced to pass a 1700 µm sieve using a hardened steel fly press. The powders were produced using an agate Tema-mill. Sr and Nd isotope compositions were measured at the NERC Isotope Geosciences Laboratory (Keyworth, UK) on a Finnegan-MAT 262 mass-spectrometer. Rb–Sr and Sm–Nd analysis followed procedures described by Pankhurst & Rapela (1995). Sr isotope composition was determined in multidynamic peak-jumping mode. During the period of analysis, 32 analyses of the Sr isotope standard NBS987 gave a value of 0·710250 ± 0·000016 (2σ errors). Nd-isotope composition was determined in static collection mode. Thirty-one analyses of the in-house J&M Nd isotope standard gave a value of 0·511199 ± 22 (2σ errors); reported 143Nd/144Nd values were normalized to a value of 0·511130 for this standard, equivalent to 0·511864 for La Jolla.

Major and trace element analysis [Cr, Ni, V, Zr by X-ray fluorescence (XRF) in Table 2] was by standard XRF techniques at the Department of Geology, University of Keele, with methods fully detailed by Floyd (1985). Higher precision trace element abundances were determined by inductively coupled plasma mass spectrometry (ICP-MS) at the University of Durham. The analytical methods, precision, and detection limits have been detailed by Ottley et al. (2003).

Table 2:

Geochemical and isotopic compositions of minor intrusives from the Ahlmannryggen, western Dronning Maud Land (Antarctica)

Sample: Z.1801.1 Z.1801.2 Z.1814.1 Z.1814.2 Z.1814.3 Z.1814.4 Z.1805.1 Z.1808.1 Z.1810.1 Z.1822.1 Z.1823.1 Z.1828.1 
CIPW: Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th 
Group: 
Latitude (S): 73·1572 73·1573 72·0367 72·0367 72·0367 72·0367 72·2218 72·1443 72·2775 72·0176 72·0133 71·9951 
Longitude (W): 2·1363 2·1363 2·7986 2·7986 2·7986 2·7986 3·4170 3·1806 3·4239 3·3713 3·3656 3·3152 
Altitude (m): 2020 2020 1202 1202 1202 1202 1304 1411 1631 1342 1354 1154 
Dyke strike (deg.): 067 074 068 060 052 049 007 179 002 177 171 019 
Dyke width (cm):
 
93
 
112
 
96
 
191
 
11
 
10
 
409
 
2500
 
1500
 
38
 
7900
 
33
 
SiO2 50·69 50·63 49·96 50·34 49·32 55·66 50·68 47·91 49·57 48·89 48·57 49·13 
TiO2 1·53 1·52 2·27 2·22 2·24 2·26 2·20 2·39 2·30 2·34 2·49 2·28 
Al2O3 11·75 11·73 13·45 13·45 13·18 14·62 14·08 13·44 13·86 13·66 13·29 14·08 
Fe2O3(T) 12·17 12·49 15·47 15·04 15·17 11·21 13·44 15·60 14·81 15·38 16·26 14·54 
MnO 0·19 0·17 0·20 0·20 0·18 0·16 0·20 0·21 0·21 0·23 0·22 0·21 
MgO 8·57 8·16 5·56 5·57 5·32 5·46 5·45 5·43 6·10 5·67 5·68 5·80 
CaO 10·00 10·15 9·27 9·26 9·42 8·68 9·89 10·25 9·78 9·80 9·41 10·23 
Na22·05 2·28 2·68 2·54 2·85 1·92 2·37 2·47 2·50 2·15 2·63 2·34 
K20·77 0·58 0·78 0·61 0·39 1·27 0·35 0·23 0·34 0·19 0·50 0·20 
P2O5 0·18 0·18 0·22 0·21 0·21 0·12 0·24 0·24 0·24 0·25 0·25 0·24 
LOI 1·67 2·62 0·64 0·97 1·10 0·56 1·30 1·23 0·50 1·74 0·24 1·42 
Total 99·59 100·52 100·49 100·40 99·38 100·58 100·20 99·40 100·23 100·30 99·56 100·47 
Sc 24·4 24·3 29·6 30·1 30·8 30·3 32·0 33·6 33·1 45·0 44·7 35·1 
258·2 260·1 424·8 418·6 420·4 424·8 327·2 341·6 336·0 423·6 430·2 343·4 
Cr 668 708 75 77 78 76 84 62 84 72 71 90 
Co 52·5 54·9 51·8 51·0 51·5 52·2 44·3 44·8 46·3 51·6 51·9 46·4 
Ni 294 318 84 81 86 83 64 43 66 62 62 69 
Cu 94·9 98·3 204·7 201·2 202·3 205·5 100·2 76·6 97·2 104·9 106·8 99·1 
Zn 92·9 96·2 124·4 123·9 123·8 124·4 118·9 131·9 118·0 149·0 141·2 110·4 
Ga 17·5 17·4 22·6 22·6 22·5 22·7 19·5 19·4 19·6 21·4 22·1 20·1 
Rb 14·1 25·5 12·6 17·5 3·3 12·9 6·5 3·7 6·9 3·7 11·9 3·4 
Sr 248 340 288 281 299 356 181 196 213 208 225 200 
27·2 27·4 30·2 29·3 29·5 30·1 34·4 34·2 34·3 36·0 37·9 34·6 
Zr 122 123 164 163 160 163 159 155 153 159 167 154 
Nb 7·2 7·2 9·6 9·5 9·3 9·4 11·9 11·7 11·9 12·1 12·7 11·7 
Cs 0·3 1·1 0·2 0·4 1·3 7·8 0·6 0·4 0·4 2·9 0·6 1·9 
Ba 310 313 267 208 405 314 115 91 100 85 129 109 
La 14·70 14·83 17·42 16·50 17·22 17·54 12·80 12·08 12·34 12·56 13·03 13·13 
Ce 31·79 32·07 38·73 36·74 38·07 38·59 30·62 29·34 29·87 30·59 31·92 31·47 
Pr 4·35 4·39 5·60 5·31 5·45 5·51 4·57 4·40 4·47 4·79 4·99 4·84 
Nd 18·87 19·00 24·64 23·28 23·78 24·51 21·35 20·85 21·03 22·45 23·44 22·51 
Sm 4·49 4·54 5·95 5·52 5·71 5·86 5·48 5·34 5·46 5·84 6·03 5·76 
Eu 1·40 1·42 1·94 1·79 1·87 1·90 1·79 1·81 1·78 1·83 2·00 1·86 
Gd 5·20 5·34 6·42 6·07 6·16 6·43 6·46 6·38 6·38 6·56 6·90 6·36 
Tb 0·85 0·86 0·99 0·94 0·96 0·99 1·04 1·01 1·02 1·07 1·12 1·04 
Dy 4·88 4·94 5·60 5·36 5·49 5·62 5·99 5·91 5·98 6·43 6·69 6·11 
Ho 0·95 0·97 1·09 1·07 1·08 1·10 1·22 1·19 1·20 1·34 1·37 1·25 
Er 2·46 2·51 2·78 2·64 2·76 2·76 3·25 3·19 3·20 3·50 3·60 3·35 
Tm 0·39 0·40 0·43 0·41 0·42 0·43 0·53 0·52 0·52 0·56 0·57 0·53 
Yb 2·21 2·25 2·45 2·29 2·35 2·41 3·08 3·02 3·00 3·25 3·34 3·12 
Lu 0·34 0·35 0·38 0·36 0·37 0·37 0·49 0·49 0·48 0·52 0·54 0·50 
Hf 3·12 3·17 4·32 4·24 4·17 4·37 4·05 3·91 3·92 4·17 4·49 4·04 
Ta 0·45 0·44 0·60 0·59 0·59 0·60 0·77 0·75 0·77 0·79 0·84 0·75 
Pb 4·18 4·13 4·45 4·66 4·54 4·22 11·47 3·93 2·00 3·83 2·59 5·96 
Th 1·86 1·86 2·47 2·38 2·38 2·42 1·35 1·22 1·22 1·10 1·17 1·26 
0·57 0·65 0·46 0·45 0·45 0·46 0·49 0·43 0·44 0·41 0·42 0·45 
Nb/Nb* 0·46 0·47 0·49 0·51 0·49 0·49 0·97 1·03 1·04 1·10 1·10 0·98 
ΔNb −0·09 −0·09 −0·17 −0·18 −0·17 −0·17 0·00 0·02 0·03 0·03 0·03 0·02 
87Rb/86Sr 0·1637 0·2168 0·1259   0·1047 0·1038 0·0547 0·0936 0·0508 0·1531  
87Sr/86Srmeasured 0·707603 0·707885 0·706688   0·708805 0·704599 0·704049 0·704797 0·703554 0·704753  
87Sr/86Srnormalized 0·707608 0·70789 0·706693   0·70881 0·704604 0·704054 0·704802 0·703559 0·704758  
87Sr/86Sr180 0·707189 0·707335 0·706371   0·708542 0·704338 0·703914 0·704563 0·703429 0·704366  
147Sm/144Nd 0·1514 0·1511 0·1484   0·1479 0·1588 0·1592 0·1605 0·1607 0·1601  
143Nd/144Ndmeasured 0·512339 0·512324 0·512338   0·512351 0·512699 0·512739 0·512751 0·512739 0·512743  
143Nd/144Ndnormalized 0·512271 0·512256 0·51227   0·512283 0·512631 0·512671 0·512682 0·512671 0·512675  
εNd180 −6·1 −6·4 −6·1   −5·8 0·7 1·5 1·7 1·5 1·6  
Age (Ma) 191·3  190·7          
Sample: Z.1801.1 Z.1801.2 Z.1814.1 Z.1814.2 Z.1814.3 Z.1814.4 Z.1805.1 Z.1808.1 Z.1810.1 Z.1822.1 Z.1823.1 Z.1828.1 
CIPW: Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th 
Group: 
Latitude (S): 73·1572 73·1573 72·0367 72·0367 72·0367 72·0367 72·2218 72·1443 72·2775 72·0176 72·0133 71·9951 
Longitude (W): 2·1363 2·1363 2·7986 2·7986 2·7986 2·7986 3·4170 3·1806 3·4239 3·3713 3·3656 3·3152 
Altitude (m): 2020 2020 1202 1202 1202 1202 1304 1411 1631 1342 1354 1154 
Dyke strike (deg.): 067 074 068 060 052 049 007 179 002 177 171 019 
Dyke width (cm):
 
93
 
112
 
96
 
191
 
11
 
10
 
409
 
2500
 
1500
 
38
 
7900
 
33
 
SiO2 50·69 50·63 49·96 50·34 49·32 55·66 50·68 47·91 49·57 48·89 48·57 49·13 
TiO2 1·53 1·52 2·27 2·22 2·24 2·26 2·20 2·39 2·30 2·34 2·49 2·28 
Al2O3 11·75 11·73 13·45 13·45 13·18 14·62 14·08 13·44 13·86 13·66 13·29 14·08 
Fe2O3(T) 12·17 12·49 15·47 15·04 15·17 11·21 13·44 15·60 14·81 15·38 16·26 14·54 
MnO 0·19 0·17 0·20 0·20 0·18 0·16 0·20 0·21 0·21 0·23 0·22 0·21 
MgO 8·57 8·16 5·56 5·57 5·32 5·46 5·45 5·43 6·10 5·67 5·68 5·80 
CaO 10·00 10·15 9·27 9·26 9·42 8·68 9·89 10·25 9·78 9·80 9·41 10·23 
Na22·05 2·28 2·68 2·54 2·85 1·92 2·37 2·47 2·50 2·15 2·63 2·34 
K20·77 0·58 0·78 0·61 0·39 1·27 0·35 0·23 0·34 0·19 0·50 0·20 
P2O5 0·18 0·18 0·22 0·21 0·21 0·12 0·24 0·24 0·24 0·25 0·25 0·24 
LOI 1·67 2·62 0·64 0·97 1·10 0·56 1·30 1·23 0·50 1·74 0·24 1·42 
Total 99·59 100·52 100·49 100·40 99·38 100·58 100·20 99·40 100·23 100·30 99·56 100·47 
Sc 24·4 24·3 29·6 30·1 30·8 30·3 32·0 33·6 33·1 45·0 44·7 35·1 
258·2 260·1 424·8 418·6 420·4 424·8 327·2 341·6 336·0 423·6 430·2 343·4 
Cr 668 708 75 77 78 76 84 62 84 72 71 90 
Co 52·5 54·9 51·8 51·0 51·5 52·2 44·3 44·8 46·3 51·6 51·9 46·4 
Ni 294 318 84 81 86 83 64 43 66 62 62 69 
Cu 94·9 98·3 204·7 201·2 202·3 205·5 100·2 76·6 97·2 104·9 106·8 99·1 
Zn 92·9 96·2 124·4 123·9 123·8 124·4 118·9 131·9 118·0 149·0 141·2 110·4 
Ga 17·5 17·4 22·6 22·6 22·5 22·7 19·5 19·4 19·6 21·4 22·1 20·1 
Rb 14·1 25·5 12·6 17·5 3·3 12·9 6·5 3·7 6·9 3·7 11·9 3·4 
Sr 248 340 288 281 299 356 181 196 213 208 225 200 
27·2 27·4 30·2 29·3 29·5 30·1 34·4 34·2 34·3 36·0 37·9 34·6 
Zr 122 123 164 163 160 163 159 155 153 159 167 154 
Nb 7·2 7·2 9·6 9·5 9·3 9·4 11·9 11·7 11·9 12·1 12·7 11·7 
Cs 0·3 1·1 0·2 0·4 1·3 7·8 0·6 0·4 0·4 2·9 0·6 1·9 
Ba 310 313 267 208 405 314 115 91 100 85 129 109 
La 14·70 14·83 17·42 16·50 17·22 17·54 12·80 12·08 12·34 12·56 13·03 13·13 
Ce 31·79 32·07 38·73 36·74 38·07 38·59 30·62 29·34 29·87 30·59 31·92 31·47 
Pr 4·35 4·39 5·60 5·31 5·45 5·51 4·57 4·40 4·47 4·79 4·99 4·84 
Nd 18·87 19·00 24·64 23·28 23·78 24·51 21·35 20·85 21·03 22·45 23·44 22·51 
Sm 4·49 4·54 5·95 5·52 5·71 5·86 5·48 5·34 5·46 5·84 6·03 5·76 
Eu 1·40 1·42 1·94 1·79 1·87 1·90 1·79 1·81 1·78 1·83 2·00 1·86 
Gd 5·20 5·34 6·42 6·07 6·16 6·43 6·46 6·38 6·38 6·56 6·90 6·36 
Tb 0·85 0·86 0·99 0·94 0·96 0·99 1·04 1·01 1·02 1·07 1·12 1·04 
Dy 4·88 4·94 5·60 5·36 5·49 5·62 5·99 5·91 5·98 6·43 6·69 6·11 
Ho 0·95 0·97 1·09 1·07 1·08 1·10 1·22 1·19 1·20 1·34 1·37 1·25 
Er 2·46 2·51 2·78 2·64 2·76 2·76 3·25 3·19 3·20 3·50 3·60 3·35 
Tm 0·39 0·40 0·43 0·41 0·42 0·43 0·53 0·52 0·52 0·56 0·57 0·53 
Yb 2·21 2·25 2·45 2·29 2·35 2·41 3·08 3·02 3·00 3·25 3·34 3·12 
Lu 0·34 0·35 0·38 0·36 0·37 0·37 0·49 0·49 0·48 0·52 0·54 0·50 
Hf 3·12 3·17 4·32 4·24 4·17 4·37 4·05 3·91 3·92 4·17 4·49 4·04 
Ta 0·45 0·44 0·60 0·59 0·59 0·60 0·77 0·75 0·77 0·79 0·84 0·75 
Pb 4·18 4·13 4·45 4·66 4·54 4·22 11·47 3·93 2·00 3·83 2·59 5·96 
Th 1·86 1·86 2·47 2·38 2·38 2·42 1·35 1·22 1·22 1·10 1·17 1·26 
0·57 0·65 0·46 0·45 0·45 0·46 0·49 0·43 0·44 0·41 0·42 0·45 
Nb/Nb* 0·46 0·47 0·49 0·51 0·49 0·49 0·97 1·03 1·04 1·10 1·10 0·98 
ΔNb −0·09 −0·09 −0·17 −0·18 −0·17 −0·17 0·00 0·02 0·03 0·03 0·03 0·02 
87Rb/86Sr 0·1637 0·2168 0·1259   0·1047 0·1038 0·0547 0·0936 0·0508 0·1531  
87Sr/86Srmeasured 0·707603 0·707885 0·706688   0·708805 0·704599 0·704049 0·704797 0·703554 0·704753  
87Sr/86Srnormalized 0·707608 0·70789 0·706693   0·70881 0·704604 0·704054 0·704802 0·703559 0·704758  
87Sr/86Sr180 0·707189 0·707335 0·706371   0·708542 0·704338 0·703914 0·704563 0·703429 0·704366  
147Sm/144Nd 0·1514 0·1511 0·1484   0·1479 0·1588 0·1592 0·1605 0·1607 0·1601  
143Nd/144Ndmeasured 0·512339 0·512324 0·512338   0·512351 0·512699 0·512739 0·512751 0·512739 0·512743  
143Nd/144Ndnormalized 0·512271 0·512256 0·51227   0·512283 0·512631 0·512671 0·512682 0·512671 0·512675  
εNd180 −6·1 −6·4 −6·1   −5·8 0·7 1·5 1·7 1·5 1·6  
Age (Ma) 191·3  190·7          
Sample: Z.1828.3 Z.1828.4 Z.1828.5 Z.1830.1 Z.1835.2 Z.1835.3 Z.1835.4 Z.1839.1 Z.1839.2 Z.1803.1 Z.1803.2 Z.1803.3 
CIPW: Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th 
Group: 
Latitude (S): 71·9948 71·9948 71·9948 72·0207 72·0538 72·0538 72·0538 72·0485 72·0535 72·1355 72·1355 72·1355 
Longitude (W): 3·3113 3·3113 3·3111 3·3704 3·3940 3·3940 3·3940 3·3909 3·3927 3·3041 3·3041 3·3041 
Altitude (m): 1147 1147 1153 1198 1348 1346 1348 1307 1321 1529 1529 1534 
Dyke strike (deg.): 158 163 176 016 033  033 027 032 042  045 
Dyke width (cm):
 
172
 
13
 
30
 
3000
 
41
 

 
43
 
161
 
43
 
358
 

 
281
 
SiO2 49·06 49·79 49·08 49·11 48·85 47·08 46·70 49·28 48·68 48·37 48·46 48·47 
TiO2 2·17 2·29 2·19 2·62 2·46 2·53 2·42 2·46 2·41 4·00 3·93 3·42 
Al2O3 13·96 13·86 13·19 13·20 13·12 12·48 13·96 13·22 12·88 11·83 11·69 9·71 
Fe2O3(T) 14·11 14·04 14·18 16·27 15·08 16·52 16·74 15·74 15·31 14·17 13·54 13·94 
MnO 0·20 0·17 0·20 0·23 0·21 0·24 0·19 0·22 0·25 0·17 0·16 0·17 
MgO 5·83 5·69 5·65 5·18 5·66 5·73 5·66 5·53 5·44 8·52 9·35 11·17 
CaO 9·81 10·16 10·37 9·41 9·64 10·46 10·54 9·43 10·11 10·29 9·90 9·92 
Na22·28 2·61 2·18 2·57 2·39 2·60 2·10 2·44 2·21 1·81 1·86 1·62 
K20·44 0·37 0·17 0·43 0·30 0·42 0·27 0·39 0·28 0·43 0·41 0·34 
P2O5 0·23 0·24 0·23 0·26 0·24 0·23 0·25 0·24 0·24 0·24 0·24 0·21 
LOI 2·06 1·57 1·90 0·38 1·34 1·12 1·76 1·02 1·57 0·69 0·66 1·07 
Total 100·15 100·30 99·53 99·65 99·29 99·40 100·60 99·97 99·40 100·50 100·20 100·04 
Sc 36·2 35·3 35·2 38·3 40·1 40·8 40·2 40·1 39·8 29·6 30·0 29·4 
355·7 349·3 350·7 404·5 406·8 415·8 410·0 415·5 404·9 344·7 344·7 311·7 
Cr 91 91 90 50 73 76 75 64 70 479 501 705 
Co 47·6 46·5 47·3 50·0 52·3 53·2 52·9 53·1 52·1 57·9 59·0 64·7 
Ni 71 71 70 53 65 67 69 63 64 390 411 576 
Cu 93·9 94·3 96·2 110·6 107·7 103·0 98·6 106·7 100·1 146·2 145·3 122·3 
Zn 92·6 85·1 100·0 125·9 105·4 100·5 107·8 110·6 97·1 143·7 138·7 127·0 
Ga 20·0 20·3 20·0 22·1 21·6 21·9 22·2 22·4 21·4 21·0 20·6 18·3 
Rb 13·8 9·5 3·4 7·7 17·5 19·0 6·7 8·4 7·8 11·6 11·3 8·8 
Sr 197 193 193 214 220 223 189 217 197 257 246 219 
33·8 34·5 34·7 39·8 37·3 37·9 36·7 38·5 37·0 43·7 43·4 37·7 
Zr 150 155 155 177 164 168 161 172 163 275 271 232 
Nb 11·4 11·6 11·6 13·5 12·3 12·6 12·1 12·8 12·2 10·0 9·9 8·4 
Cs 1·9 1·7 2·3 0·5 25·7 21·4 1·2 3·0 2·8 1·1 1·1 1·0 
Ba 165 196 100 123 128 146 153 110 113 112 104 84 
La 12·56 12·39 12·80 14·54 13·10 13·35 13·28 13·75 12·99 10·98 10·97 9·26 
Ce 30·52 30·80 31·15 35·66 32·17 33·02 32·46 33·93 32·20 30·82 30·59 25·85 
Pr 4·71 4·79 4·84 5·54 5·06 5·18 5·06 5·32 5·08 5·39 5·34 4·50 
Nd 21·98 22·26 22·48 26·05 23·83 24·33 23·62 25·01 23·92 29·28 29·00 24·54 
Sm 5·59 5·70 5·75 6·67 6·13 6·21 6·06 6·41 6·17 9·36 9·24 7·85 
Eu 1·80 1·83 1·85 2·20 1·99 2·02 2·04 2·09 1·97 3·15 3·10 2·64 
Gd 6·27 6·30 6·36 7·41 6·66 6·77 6·60 6·91 6·68 10·98 10·85 9·35 
Tb 1·01 1·03 1·03 1·21 1·10 1·12 1·09 1·14 1·10 1·68 1·64 1·41 
Dy 6·01 6·09 6·15 7·14 6·46 6·64 6·50 6·78 6·48 8·88 8·77 7·57 
Ho 1·23 1·24 1·25 1·45 1·32 1·34 1·31 1·36 1·32 1·62 1·60 1·37 
Er 3·25 3·26 3·33 3·86 3·49 3·57 3·48 3·62 3·49 3·85 3·81 3·25 
Tm 0·52 0·53 0·54 0·62 0·56 0·58 0·56 0·59 0·55 0·56 0·55 0·47 
Yb 3·04 3·07 3·16 3·59 3·25 3·28 3·22 3·35 3·24 3·04 3·03 2·58 
Lu 0·49 0·49 0·50 0·58 0·52 0·53 0·51 0·54 0·51 0·44 0·44 0·38 
Hf 4·00 4·02 4·08 4·75 4·23 4·34 4·23 4·45 4·17 7·37 7·28 6·16 
Ta 0·74 0·75 0·76 0·87 0·79 0·81 0·79 0·83 0·78 0·68 0·68 0·57 
Pb 3·34 2·98 4·73 2·21 2·49 2·60 3·04 1·90 2·37 2·13 2·08 1·81 
Th 1·18 1·21 1·20 1·25 1·10 1·12 1·09 1·15 1·10 1·15 1·18 1·03 
0·43 0·44 0·43 0·45 0·39 0·40 0·39 0·41 0·39 0·34 0·34 0·30 
Nb/Nb* 1·01 1·02 1·01 1·07 1·10 1·10 1·08 1·09 1·09 0·96 0·94 0·92 
ΔNb 0·03 0·02 0·02 0·03 0·02 0·02 0·02 0·01 0·02 −0·43 −0·43 −0·43 
87Rb/86Sr   0·051   0·2468   0·1146 0·1302  0·1165 
87Sr/86Srmeasured   0·703966   0·705028   0·70403   0·705728 
87Sr/86Srnormalized   0·703971   0·705033   0·704035 0·705842  0·705733 
87Sr/86Sr180   0·703840   0·704401   0·703742 0·705509  0·705435 
147Sm/144Nd   0·1589   0·1603   0·1608 0·2019  0·2052 
143Nd/144Ndmeasured   0·512748   0·512744   0·512728   0·512997 
143Nd/144Ndnormalized   0·512679   0·512671   0·51266 0·512902  0·512928 
εNd180   1·7   1·5   1·3 5·0  5·5 
Age (Ma)             
Sample: Z.1828.3 Z.1828.4 Z.1828.5 Z.1830.1 Z.1835.2 Z.1835.3 Z.1835.4 Z.1839.1 Z.1839.2 Z.1803.1 Z.1803.2 Z.1803.3 
CIPW: Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th 
Group: 
Latitude (S): 71·9948 71·9948 71·9948 72·0207 72·0538 72·0538 72·0538 72·0485 72·0535 72·1355 72·1355 72·1355 
Longitude (W): 3·3113 3·3113 3·3111 3·3704 3·3940 3·3940 3·3940 3·3909 3·3927 3·3041 3·3041 3·3041 
Altitude (m): 1147 1147 1153 1198 1348 1346 1348 1307 1321 1529 1529 1534 
Dyke strike (deg.): 158 163 176 016 033  033 027 032 042  045 
Dyke width (cm):
 
172
 
13
 
30
 
3000
 
41
 

 
43
 
161
 
43
 
358
 

 
281
 
SiO2 49·06 49·79 49·08 49·11 48·85 47·08 46·70 49·28 48·68 48·37 48·46 48·47 
TiO2 2·17 2·29 2·19 2·62 2·46 2·53 2·42 2·46 2·41 4·00 3·93 3·42 
Al2O3 13·96 13·86 13·19 13·20 13·12 12·48 13·96 13·22 12·88 11·83 11·69 9·71 
Fe2O3(T) 14·11 14·04 14·18 16·27 15·08 16·52 16·74 15·74 15·31 14·17 13·54 13·94 
MnO 0·20 0·17 0·20 0·23 0·21 0·24 0·19 0·22 0·25 0·17 0·16 0·17 
MgO 5·83 5·69 5·65 5·18 5·66 5·73 5·66 5·53 5·44 8·52 9·35 11·17 
CaO 9·81 10·16 10·37 9·41 9·64 10·46 10·54 9·43 10·11 10·29 9·90 9·92 
Na22·28 2·61 2·18 2·57 2·39 2·60 2·10 2·44 2·21 1·81 1·86 1·62 
K20·44 0·37 0·17 0·43 0·30 0·42 0·27 0·39 0·28 0·43 0·41 0·34 
P2O5 0·23 0·24 0·23 0·26 0·24 0·23 0·25 0·24 0·24 0·24 0·24 0·21 
LOI 2·06 1·57 1·90 0·38 1·34 1·12 1·76 1·02 1·57 0·69 0·66 1·07 
Total 100·15 100·30 99·53 99·65 99·29 99·40 100·60 99·97 99·40 100·50 100·20 100·04 
Sc 36·2 35·3 35·2 38·3 40·1 40·8 40·2 40·1 39·8 29·6 30·0 29·4 
355·7 349·3 350·7 404·5 406·8 415·8 410·0 415·5 404·9 344·7 344·7 311·7 
Cr 91 91 90 50 73 76 75 64 70 479 501 705 
Co 47·6 46·5 47·3 50·0 52·3 53·2 52·9 53·1 52·1 57·9 59·0 64·7 
Ni 71 71 70 53 65 67 69 63 64 390 411 576 
Cu 93·9 94·3 96·2 110·6 107·7 103·0 98·6 106·7 100·1 146·2 145·3 122·3 
Zn 92·6 85·1 100·0 125·9 105·4 100·5 107·8 110·6 97·1 143·7 138·7 127·0 
Ga 20·0 20·3 20·0 22·1 21·6 21·9 22·2 22·4 21·4 21·0 20·6 18·3 
Rb 13·8 9·5 3·4 7·7 17·5 19·0 6·7 8·4 7·8 11·6 11·3 8·8 
Sr 197 193 193 214 220 223 189 217 197 257 246 219 
33·8 34·5 34·7 39·8 37·3 37·9 36·7 38·5 37·0 43·7 43·4 37·7 
Zr 150 155 155 177 164 168 161 172 163 275 271 232 
Nb 11·4 11·6 11·6 13·5 12·3 12·6 12·1 12·8 12·2 10·0 9·9 8·4 
Cs 1·9 1·7 2·3 0·5 25·7 21·4 1·2 3·0 2·8 1·1 1·1 1·0 
Ba 165 196 100 123 128 146 153 110 113 112 104 84 
La 12·56 12·39 12·80 14·54 13·10 13·35 13·28 13·75 12·99 10·98 10·97 9·26 
Ce 30·52 30·80 31·15 35·66 32·17 33·02 32·46 33·93 32·20 30·82 30·59 25·85 
Pr 4·71 4·79 4·84 5·54 5·06 5·18 5·06 5·32 5·08 5·39 5·34 4·50 
Nd 21·98 22·26 22·48 26·05 23·83 24·33 23·62 25·01 23·92 29·28 29·00 24·54 
Sm 5·59 5·70 5·75 6·67 6·13 6·21 6·06 6·41 6·17 9·36 9·24 7·85 
Eu 1·80 1·83 1·85 2·20 1·99 2·02 2·04 2·09 1·97 3·15 3·10 2·64 
Gd 6·27 6·30 6·36 7·41 6·66 6·77 6·60 6·91 6·68 10·98 10·85 9·35 
Tb 1·01 1·03 1·03 1·21 1·10 1·12 1·09 1·14 1·10 1·68 1·64 1·41 
Dy 6·01 6·09 6·15 7·14 6·46 6·64 6·50 6·78 6·48 8·88 8·77 7·57 
Ho 1·23 1·24 1·25 1·45 1·32 1·34 1·31 1·36 1·32 1·62 1·60 1·37 
Er 3·25 3·26 3·33 3·86 3·49 3·57 3·48 3·62 3·49 3·85 3·81 3·25 
Tm 0·52 0·53 0·54 0·62 0·56 0·58 0·56 0·59 0·55 0·56 0·55 0·47 
Yb 3·04 3·07 3·16 3·59 3·25 3·28 3·22 3·35 3·24 3·04 3·03 2·58 
Lu 0·49 0·49 0·50 0·58 0·52 0·53 0·51 0·54 0·51 0·44 0·44 0·38 
Hf 4·00 4·02 4·08 4·75 4·23 4·34 4·23 4·45 4·17 7·37 7·28 6·16 
Ta 0·74 0·75 0·76 0·87 0·79 0·81 0·79 0·83 0·78 0·68 0·68 0·57 
Pb 3·34 2·98 4·73 2·21 2·49 2·60 3·04 1·90 2·37 2·13 2·08 1·81 
Th 1·18 1·21 1·20 1·25 1·10 1·12 1·09 1·15 1·10 1·15 1·18 1·03 
0·43 0·44 0·43 0·45 0·39 0·40 0·39 0·41 0·39 0·34 0·34 0·30 
Nb/Nb* 1·01 1·02 1·01 1·07 1·10 1·10 1·08 1·09 1·09 0·96 0·94 0·92 
ΔNb 0·03 0·02 0·02 0·03 0·02 0·02 0·02 0·01 0·02 −0·43 −0·43 −0·43 
87Rb/86Sr   0·051   0·2468   0·1146 0·1302  0·1165 
87Sr/86Srmeasured   0·703966   0·705028   0·70403   0·705728 
87Sr/86Srnormalized   0·703971   0·705033   0·704035 0·705842  0·705733 
87Sr/86Sr180   0·703840   0·704401   0·703742 0·705509  0·705435 
147Sm/144Nd   0·1589   0·1603   0·1608 0·2019  0·2052 
143Nd/144Ndmeasured   0·512748   0·512744   0·512728   0·512997 
143Nd/144Ndnormalized   0·512679   0·512671   0·51266 0·512902  0·512928 
εNd180   1·7   1·5   1·3 5·0  5·5 
Age (Ma)             
Sample: Z.1803.4 Z.1803.5 Z.1812.1 Z.1812.2 Z.1812.3 Z.1812.5 Z.1813.1 Z.1816.1 Z.1816.2 Z.1816.3 Z.1817.2 Z.1834.3 
CIPW: Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Oliv Th Qtz Th Qtz Th 
Group: 
Latitude (S): 72·1355 72·1355 72·0505 72·0501 72·0496 72·0498 72·0531 72·0545 72·0545 72·0545 72·0605 72·0743 
Longitude (W): 3·3041 3·3041 2·7160 2·7136 2·7077 2·7091 2·7399 2·7124 2·7124 2·7124 2·7133 3·4154 
Altitude (m): 1529 1529 1071 1071 1098 1132 1257 1242 1245 1242 1306 1347 
Dyke strike (deg.): 106 092 066 082 066 093 066 053  084 077 110 
Dyke width (cm):
 
330
 
20
 
193
 
110
 
81
 
61
 
230
 
73
 

 
143
 
180
 
100
 
SiO2 48·55 47·83 45·64 47·62 48·20 46·96 45·22 47·35 45·50 45·78 46·54 46·74 
TiO2 4·19 3·53 3·99 4·21 4·04 4·60 3·50 3·25 3·76 3·25 3·86 4·85 
Al2O3 12·60 10·32 8·15 9·09 9·30 9·98 9·59 9·13 8·00 8·14 10·22 11·47 
Fe2O3(T) 13·91 14·19 15·03 14·61 14·24 14·71 14·73 13·92 14·62 12·27 14·44 14·03 
MnO 0·17 0·17 0·19 0·17 0·17 0·17 0·17 0·16 0·17 0·18 0·17 0·17 
MgO 7·63 11·47 13·45 11·31 11·68 9·96 12·19 14·33 14·27 21·61 12·00 9·61 
CaO 10·42 9·69 9·62 10·24 10·10 10·85 9·87 8·75 9·76 7·67 9·91 10·57 
Na21·87 1·64 1·31 1·32 1·31 1·44 1·65 1·39 1·22 1·25 1·57 1·79 
K20·47 0·27 0·20 0·19 0·18 0·20 0·32 0·20 0·14 0·55 0·27 0·28 
P2O5 0·24 0·22 0·24 0·24 0·24 0·24 0·22 0·22 0·23 0·19 0·24 0·27 
LOI 0·25 1·05 1·69 0·96 1·05 1·23 1·93 1·89 2·61 1·28 0·77 0·22 
Total 100·30 100·40 99·50 99·97 100·50 100·34 99·40 100·60 100·27 99·50 100·00 99·99 
Sc 29·3 28·3 29·7 30·9 31·4 32·8 31·5 37·4 35·0 32·1 36·0 33·9 
351·5 311·8 302·0 327·8 327·3 358·6 338·1 374·7 333·4 315·6 368·5 412·1 
Cr 397 676 1006 889 906 711 728 803 966 823 683 558 
Co 50·5 64·8 67·1 61·6 64·8 58·8 67·1 65·7 74·9 71·3 68·0 63·2 
Ni 251 578 619 432 467 336 597 500 769 727 578 291 
Cu 157·3 128·2 121·8 134·6 132·3 150·1 140·6 145·5 130·5 128·2 154·4 134·3 
Zn 140·4 131·6 132·9 137·6 150·7 146·8 128·6 146·5 149·7 127·2 139·9 125·8 
Ga 21·9 18·4 16·2 17·8 17·8 19·7 18·9 19·5 16·9 17·6 20·5 20·6 
Rb 8·2 11·0 3·7 3·8 3·6 3·5 6·5 2·4 2·1 4·0 6·2 4·0 
Sr 275 237 201 215 215 235 282 246 218 230 283 446 
46·0 38·2 37·7 41·5 41·1 45·4 37·4 43·9 38·0 35·3 42·0 37·4 
Zr 289 238 258 288 295 316 228 295 253 216 262 273 
Nb 10·6 8·7 7·4 8·2 8·2 9·0 9·6 8·4 7·3 3·2 10·1 11·8 
Cs 1·8 4·6 0·3 0·3 0·4 0·2 1·6 0·4 0·6 4·3 0·5 2·0 
Ba 120 102 39 42 76 66 79 38 33 132 65 112 
La 11·58 9·61 6·64 7·44 7·33 8·12 9·96 7·47 6·32 7·82 9·26 11·54 
Ce 32·26 26·70 21·83 24·42 24·05 26·66 27·54 24·84 21·00 16·40 27·48 33·22 
Pr 5·63 4·65 4·28 4·77 4·69 5·23 4·82 5·02 4·25 2·21 5·11 6·00 
Nd 30·80 25·15 24·90 27·92 27·47 30·43 25·30 29·64 24·97 9·26 27·93 32·13 
Sm 9·78 7·97 8·20 9·21 9·02 10·00 7·84 9·91 8·42 2·13 8·69 9·54 
Eu 3·30 2·71 2·78 3·08 3·04 3·38 2·70 3·35 2·81 0·65 3·01 3·19 
Gd 11·53 9·47 9·83 10·81 10·75 11·82 9·18 11·36 9·62 2·35 10·23 9·95 
Tb 1·74 1·44 1·46 1·61 1·62 1·77 1·40 1·73 1·46 0·38 1·56 1·47 
Dy 9·24 7·68 7·68 8·51 8·47 9·31 7·45 9·10 7·79 2·29 8·41 7·82 
Ho 1·68 1·40 1·38 1·53 1·52 1·67 1·40 1·67 1·42 0·48 1·54 1·40 
Er 3·99 3·34 3·26 3·60 3·54 3·94 3·29 3·88 3·34 1·25 3·58 3·29 
Tm 0·58 0·49 0·47 0·52 0·51 0·57 0·48 0·57 0·49 0·20 0·52 0·47 
Yb 3·17 2·64 2·51 2·78 2·76 3·03 2·57 3·01 2·58 1·22 2·81 2·48 
Lu 0·46 0·39 0·36 0·41 0·40 0·44 0·38 0·43 0·37 0·21 0·42 0·37 
Hf 7·68 6·30 6·76 7·56 7·68 8·23 6·19 8·05 6·80 1·51 6·93 7·28 
Ta 0·72 0·59 0·51 0·57 0·58 0·64 0·66 0·59 0·51 0·21 0·69 0·83 
Pb 2·17 1·90 0·87 0·83 1·15 1·51 1·33 0·79 1·03 2·92 1·10 1·37 
Th 1·23 1·06 0·44 0·48 0·51 0·56 0·67 0·42 0·35 1·68 0·65 0·77 
0·36 0·31 0·16 0·18 0·19 0·20 0·23 0·15 0·14 1·38 0·22 0·23 
Nb/Nb* 0·95 0·92 1·46 1·47 1·43 1·43 1·26 1·61 1·65 0·30 1·39 1·34 
ΔNb −0·43 −0·43 −0·58 −0·58 −0·60 −0·58 −0·36 −0·57 −0·56 −0·50 −0·41 −0·42 
87Rb/86Sr  0·1344 0·0539 0·0511 0·0489 0·0432 0·0668 0·0284 0·0274 0·0502 0·0632 0·0258 
87Sr/86Srmeasured  0·706492 0·703847 0·703678 0·70377 0·703903 0·704238 0·703642 0·703583 0·704051 0·703813 0·705382 
87Sr/86Srnormalized  0·706497 0·703852 0·703683 0·703775 0·703908 0·704243 0·703647 0·703588 0·704056 0·703818 0·705387 
87Sr/86Sr180  0·706153 0·703714 0·703552 0·703650 0·703798 0·704072 0·703574 0·703518 0·703928 0·703656 0·705321 
147Sm/144Nd  0·2023 0·2131 0·2095 0·2066 0·2077 0·2003 0·209 0·212 0·2069 0·2028 0·191 
143Nd/144Ndmeasured  0·512983 0·513157 0·513162 0·513158 0·513154 0·513068 0·513181 0·513181 0·513084 0·513081 0·512976 
143Nd/144Ndnormalized  0·512914 0·513089 0·513089 0·513089 0·513086 0·512999 0·513113 0·513108 0·513015 0·513008 0·512903 
εNd180  5·3 8·4 8·5 8·6 8·5 7·0 9·0 8·8 7·1 7·1 5·3 
Age (Ma)   204     187·3     
Sample: Z.1803.4 Z.1803.5 Z.1812.1 Z.1812.2 Z.1812.3 Z.1812.5 Z.1813.1 Z.1816.1 Z.1816.2 Z.1816.3 Z.1817.2 Z.1834.3 
CIPW: Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Oliv Th Qtz Th Qtz Th 
Group: 
Latitude (S): 72·1355 72·1355 72·0505 72·0501 72·0496 72·0498 72·0531 72·0545 72·0545 72·0545 72·0605 72·0743 
Longitude (W): 3·3041 3·3041 2·7160 2·7136 2·7077 2·7091 2·7399 2·7124 2·7124 2·7124 2·7133 3·4154 
Altitude (m): 1529 1529 1071 1071 1098 1132 1257 1242 1245 1242 1306 1347 
Dyke strike (deg.): 106 092 066 082 066 093 066 053  084 077 110 
Dyke width (cm):
 
330
 
20
 
193
 
110
 
81
 
61
 
230
 
73
 

 
143
 
180
 
100
 
SiO2 48·55 47·83 45·64 47·62 48·20 46·96 45·22 47·35 45·50 45·78 46·54 46·74 
TiO2 4·19 3·53 3·99 4·21 4·04 4·60 3·50 3·25 3·76 3·25 3·86 4·85 
Al2O3 12·60 10·32 8·15 9·09 9·30 9·98 9·59 9·13 8·00 8·14 10·22 11·47 
Fe2O3(T) 13·91 14·19 15·03 14·61 14·24 14·71 14·73 13·92 14·62 12·27 14·44 14·03 
MnO 0·17 0·17 0·19 0·17 0·17 0·17 0·17 0·16 0·17 0·18 0·17 0·17 
MgO 7·63 11·47 13·45 11·31 11·68 9·96 12·19 14·33 14·27 21·61 12·00 9·61 
CaO 10·42 9·69 9·62 10·24 10·10 10·85 9·87 8·75 9·76 7·67 9·91 10·57 
Na21·87 1·64 1·31 1·32 1·31 1·44 1·65 1·39 1·22 1·25 1·57 1·79 
K20·47 0·27 0·20 0·19 0·18 0·20 0·32 0·20 0·14 0·55 0·27 0·28 
P2O5 0·24 0·22 0·24 0·24 0·24 0·24 0·22 0·22 0·23 0·19 0·24 0·27 
LOI 0·25 1·05 1·69 0·96 1·05 1·23 1·93 1·89 2·61 1·28 0·77 0·22 
Total 100·30 100·40 99·50 99·97 100·50 100·34 99·40 100·60 100·27 99·50 100·00 99·99 
Sc 29·3 28·3 29·7 30·9 31·4 32·8 31·5 37·4 35·0 32·1 36·0 33·9 
351·5 311·8 302·0 327·8 327·3 358·6 338·1 374·7 333·4 315·6 368·5 412·1 
Cr 397 676 1006 889 906 711 728 803 966 823 683 558 
Co 50·5 64·8 67·1 61·6 64·8 58·8 67·1 65·7 74·9 71·3 68·0 63·2 
Ni 251 578 619 432 467 336 597 500 769 727 578 291 
Cu 157·3 128·2 121·8 134·6 132·3 150·1 140·6 145·5 130·5 128·2 154·4 134·3 
Zn 140·4 131·6 132·9 137·6 150·7 146·8 128·6 146·5 149·7 127·2 139·9 125·8 
Ga 21·9 18·4 16·2 17·8 17·8 19·7 18·9 19·5 16·9 17·6 20·5 20·6 
Rb 8·2 11·0 3·7 3·8 3·6 3·5 6·5 2·4 2·1 4·0 6·2 4·0 
Sr 275 237 201 215 215 235 282 246 218 230 283 446 
46·0 38·2 37·7 41·5 41·1 45·4 37·4 43·9 38·0 35·3 42·0 37·4 
Zr 289 238 258 288 295 316 228 295 253 216 262 273 
Nb 10·6 8·7 7·4 8·2 8·2 9·0 9·6 8·4 7·3 3·2 10·1 11·8 
Cs 1·8 4·6 0·3 0·3 0·4 0·2 1·6 0·4 0·6 4·3 0·5 2·0 
Ba 120 102 39 42 76 66 79 38 33 132 65 112 
La 11·58 9·61 6·64 7·44 7·33 8·12 9·96 7·47 6·32 7·82 9·26 11·54 
Ce 32·26 26·70 21·83 24·42 24·05 26·66 27·54 24·84 21·00 16·40 27·48 33·22 
Pr 5·63 4·65 4·28 4·77 4·69 5·23 4·82 5·02 4·25 2·21 5·11 6·00 
Nd 30·80 25·15 24·90 27·92 27·47 30·43 25·30 29·64 24·97 9·26 27·93 32·13 
Sm 9·78 7·97 8·20 9·21 9·02 10·00 7·84 9·91 8·42 2·13 8·69 9·54 
Eu 3·30 2·71 2·78 3·08 3·04 3·38 2·70 3·35 2·81 0·65 3·01 3·19 
Gd 11·53 9·47 9·83 10·81 10·75 11·82 9·18 11·36 9·62 2·35 10·23 9·95 
Tb 1·74 1·44 1·46 1·61 1·62 1·77 1·40 1·73 1·46 0·38 1·56 1·47 
Dy 9·24 7·68 7·68 8·51 8·47 9·31 7·45 9·10 7·79 2·29 8·41 7·82 
Ho 1·68 1·40 1·38 1·53 1·52 1·67 1·40 1·67 1·42 0·48 1·54 1·40 
Er 3·99 3·34 3·26 3·60 3·54 3·94 3·29 3·88 3·34 1·25 3·58 3·29 
Tm 0·58 0·49 0·47 0·52 0·51 0·57 0·48 0·57 0·49 0·20 0·52 0·47 
Yb 3·17 2·64 2·51 2·78 2·76 3·03 2·57 3·01 2·58 1·22 2·81 2·48 
Lu 0·46 0·39 0·36 0·41 0·40 0·44 0·38 0·43 0·37 0·21 0·42 0·37 
Hf 7·68 6·30 6·76 7·56 7·68 8·23 6·19 8·05 6·80 1·51 6·93 7·28 
Ta 0·72 0·59 0·51 0·57 0·58 0·64 0·66 0·59 0·51 0·21 0·69 0·83 
Pb 2·17 1·90 0·87 0·83 1·15 1·51 1·33 0·79 1·03 2·92 1·10 1·37 
Th 1·23 1·06 0·44 0·48 0·51 0·56 0·67 0·42 0·35 1·68 0·65 0·77 
0·36 0·31 0·16 0·18 0·19 0·20 0·23 0·15 0·14 1·38 0·22 0·23 
Nb/Nb* 0·95 0·92 1·46 1·47 1·43 1·43 1·26 1·61 1·65 0·30 1·39 1·34 
ΔNb −0·43 −0·43 −0·58 −0·58 −0·60 −0·58 −0·36 −0·57 −0·56 −0·50 −0·41 −0·42 
87Rb/86Sr  0·1344 0·0539 0·0511 0·0489 0·0432 0·0668 0·0284 0·0274 0·0502 0·0632 0·0258 
87Sr/86Srmeasured  0·706492 0·703847 0·703678 0·70377 0·703903 0·704238 0·703642 0·703583 0·704051 0·703813 0·705382 
87Sr/86Srnormalized  0·706497 0·703852 0·703683 0·703775 0·703908 0·704243 0·703647 0·703588 0·704056 0·703818 0·705387 
87Sr/86Sr180  0·706153 0·703714 0·703552 0·703650 0·703798 0·704072 0·703574 0·703518 0·703928 0·703656 0·705321 
147Sm/144Nd  0·2023 0·2131 0·2095 0·2066 0·2077 0·2003 0·209 0·212 0·2069 0·2028 0·191 
143Nd/144Ndmeasured  0·512983 0·513157 0·513162 0·513158 0·513154 0·513068 0·513181 0·513181 0·513084 0·513081 0·512976 
143Nd/144Ndnormalized  0·512914 0·513089 0·513089 0·513089 0·513086 0·512999 0·513113 0·513108 0·513015 0·513008 0·512903 
εNd180  5·3 8·4 8·5 8·6 8·5 7·0 9·0 8·8 7·1 7·1 5·3 
Age (Ma)   204     187·3     
Sample: Z.1804.3 Z.1825.1 Z.1825.3 Z.1826.1 Z.1826.2 Z.1831.5 Z.1833.1 Z.1833.2 Z.1838.1 Z.1653.2 A3091 
CIPW: Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Oliv Th Qtz Th Qtz Th 
Group: 
Latitude (S): 72·2537 71·9943 71·9941 71·9923 71·9923 72·0426 72·0372 72·0369 71·9572 74·0583 74·0600 
Longitude (W): 3·3770 3·3506 3·3515 3·3606 3·3606 3·5346 3·5064 3·5056 3·3229 6·3001 6·3000 
Altitude (m): 1302 1227 1236 1296 1296 1210 1203 1185 1066 2248 2240 
Dyke strike (deg.):  014 030 028 008 044 178 174 018 025  
Dyke width (cm):
 

 
449
 
26
 
32
 
14
 
240
 
73
 
33
 
225
 
46
 

 
SiO2 49·16 47·86 48·10 47·97 47·82 54·81 45·78 45·23 46·35 48·31 50·22 
TiO2 3·87 5·28 4·90 4·27 4·30 4·02 3·94 4·02 3·99 4·09 4·24 
Al2O3 9·38 9·42 9·37 8·57 8·39 9·97 8·65 7·98 7·51 14·45 13·64 
Fe2O3(T) 12·71 12·82 12·78 12·89 12·91 10·11 12·60 13·03 12·75 14·27 13·09 
MnO 0·17 0·15 0·15 0·15 0·15 0·14 0·15 0·16 0·15 0·18 0·18 
MgO 11·25 8·92 11·55 14·01 14·33 5·77 14·70 14·44 15·84 5·46 5·00 
CaO 9·44 10·11 9·12 8·50 8·41 7·70 8·13 8·37 7·74 8·99 9·52 
Na21·66 2·03 1·68 1·43 1·29 1·79 1·73 1·81 1·82 2·55 2·62 
K20·89 0·83 0·55 0·42 0·41 3·60 0·69 0·71 0·80 0·97 1·00 
P2O5 0·29 0·34 0·35 0·33 0·33 0·40 0·38 0·36 0·36 0·36 0·51 
LOI 0·99 1·62 1·85 2·05 1·91 1·21 3·75 3·33 2·28 0·93 1·59 
Total 99·81 99·40 100·40 100·60 100·25 99·52 100·50 99·45 99·60 100·57 101·61 
Sc 26·5 38·1 36·1 34·2 34·8 25·6 27·3 28·3 27·0 28·3 32·90 
283·7 362·5 340·9 319·3 318·2 260·7 281·8 283·4 274·1 342·0 357 
Cr 702 652 733 834 865 390 859 918 965 125 127 
Co 53·4 49·3 56·7 66·4 66·4 40·0 71·2 71·1 72·2 44·1  
Ni 419 226 425 666 675 160 787 789 885 85 76 
Cu 139·8 160·4 151·4 140·3 137·4 95·9 133·1 132·7 122·4 268·0 266·0 
Zn 120·5 150·7 149·0 140·6 137·2 91·7 103·3 100·6 95·7 145·0 125·0 
Ga 16·4 20·0 18·8 17·0 16·5 18·7 17·5 17·3 15·8 24·5 21·0 
Rb 12·0 30·4 25·5 21·9 19·8 59·2 31·1 33·4 54·0 41·6 46·9 
Sr 509 817 774 584 569 557 983 1005 775 549 615 
33·4 46·7 43·4 38·6 38·2 35·6 34·9 34·8 34·6 44·4 45·9 
Zr 343 517 481 413 408 568 479 477 444 373 344 
Nb 22·5 29·5 27·7 22·0 21·1 30·4 27·7 27·5 32·6 34·4 31·7 
Cs 1·1 4·8 2·5 5·1 4·3 0·3 16·0 14·3 2·1 1·7 1·7 
Ba 314 512 465 337 319 1352 713 702 561 797 947 
La 26·80 42·19 38·75 27·68 27·14 67·00 60·92 59·79 47·50 41·76 43·18 
Ce 66·01 103·43 94·63 71·15 70·24 150·04 140·38 137·87 111·49 93·21 92·43 
Pr 10·15 16·24 14·94 11·69 11·57 22·46 20·64 20·27 16·69 13·04 11·72 
Nd 47·38 75·70 68·86 55·57 55·24 96·61 85·58 84·50 72·24 58·09 52·49 
Sm 10·89 16·98 15·57 12·95 13·11 17·97 15·65 15·41 14·55 12·28 13·01 
Eu 3·27 5·02 4·58 3·94 3·95 4·63 4·26 4·18 3·98 3·68 3·94 
Gd 10·42 15·30 14·02 12·09 11·93 13·26 11·94 11·69 11·40 11·80 11·96 
Tb 1·41 2·07 1·88 1·67 1·67 1·68 1·59 1·55 1·52 1·67 1·78 
Dy 7·05 10·40 9·45 8·40 8·38 8·07 7·77 7·64 7·53 8·83 9·91 
Ho 1·23 1·82 1·67 1·47 1·49 1·36 1·32 1·30 1·29 1·62 1·79 
Er 2·89 4·11 3·75 3·32 3·36 3·05 3·03 2·96 2·96 3·91 4·34 
Tm 0·42 0·59 0·53 0·47 0·47 0·43 0·42 0·42 0·42 0·59 0·57 
Yb 2·25 3·07 2·86 2·46 2·52 2·32 2·23 2·18 2·22 3·29 3·24 
Lu 0·33 0·45 0·41 0·37 0·37 0·34 0·33 0·32 0·32 0·50 0·48 
Hf 8·68 13·77 12·76 10·82 10·65 14·41 12·18 11·98 11·17 9·17  
Ta 1·52 2·00 1·83 1·50 1·44 1·94 1·80 1·77 2·33 2·21 2·13 
Pb 4·29 4·44 4·02 2·96 2·82 7·67 5·77 5·64 4·82 5·11 4·81 
Th 2·55 3·58 3·28 2·08 2·04 4·86 4·58 4·50 3·73 4·11 3·80 
0·63 0·73 0·52 0·51 0·94 0·86 0·84 0·85  0·94 0·86 
Nb/Nb* 0·92 0·81 0·83 0·98 0·96 0·57 0·56 0·57 0·83 0·89 0·84 
ΔNb −0·37 −0·46 −0·46 −0·48 −0·49 −0·64 −0·55 −0·55 −0·41 −0·15 −0·10 
87Rb/86Sr 0·0683 0·1077 0·0953 0·1084 0·1008 0·3076 0·0916 0·0961 0·2016   
87Sr/86Srmeasured 0·70492 0·705213 0·705007 0·705647 0·705051 0·70665 0·705645 0·705183 0·706012   
87Sr/86Srnormalized 0·704925 0·705218 0·705012 0·705652 0·705056 0·706655 0·70565 0·705188 0·706017  0·705385 
87Sr/86Sr180 0·704750 0·704942 0·704768 0·705374 0·704798 0·705868 0·705416 0·704942 0·705501  0·704820 
147Sm/144Nd 0·1459 0·1396 0·1499 0·1481 0·1509 0·1162 0·1162 0·1167 0·1257  0·1334 
143Nd/144Ndmeasured 0·512726 0·512659 0·51267 0·512743 0·512779 0·512381 0·5124 0·512394 0·512577   
143Nd/144Ndnormalized 0·512658 0·512591 0·512601 0·51266 0·512709 0·512308 0·512331 0·512321 0·512494  0·512514 
εNd180 1·6 0·4 0·4 1·5 2·4 −4·6 −4·1 −4·3 −1·2  −1·0 
Age (Ma) 178·3          176·6 
Sample: Z.1804.3 Z.1825.1 Z.1825.3 Z.1826.1 Z.1826.2 Z.1831.5 Z.1833.1 Z.1833.2 Z.1838.1 Z.1653.2 A3091 
CIPW: Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Qtz Th Oliv Th Qtz Th Qtz Th 
Group: 
Latitude (S): 72·2537 71·9943 71·9941 71·9923 71·9923 72·0426 72·0372 72·0369 71·9572 74·0583 74·0600 
Longitude (W): 3·3770 3·3506 3·3515 3·3606 3·3606 3·5346 3·5064 3·5056 3·3229 6·3001 6·3000 
Altitude (m): 1302 1227 1236 1296 1296 1210 1203 1185 1066 2248 2240 
Dyke strike (deg.):  014 030 028 008 044 178 174 018 025  
Dyke width (cm):
 

 
449
 
26
 
32
 
14
 
240
 
73
 
33
 
225
 
46
 

 
SiO2 49·16 47·86 48·10 47·97 47·82 54·81 45·78 45·23 46·35 48·31 50·22 
TiO2 3·87 5·28 4·90 4·27 4·30 4·02 3·94 4·02 3·99 4·09 4·24 
Al2O3 9·38 9·42 9·37 8·57 8·39 9·97 8·65 7·98 7·51 14·45 13·64 
Fe2O3(T) 12·71 12·82 12·78 12·89 12·91 10·11 12·60 13·03 12·75 14·27 13·09 
MnO 0·17 0·15 0·15 0·15 0·15 0·14 0·15 0·16 0·15 0·18 0·18 
MgO 11·25 8·92 11·55 14·01 14·33 5·77 14·70 14·44 15·84 5·46 5·00 
CaO 9·44 10·11 9·12 8·50 8·41 7·70 8·13 8·37 7·74 8·99 9·52 
Na21·66 2·03 1·68 1·43 1·29 1·79 1·73 1·81 1·82 2·55 2·62 
K20·89 0·83 0·55 0·42 0·41 3·60 0·69 0·71 0·80 0·97 1·00 
P2O5 0·29 0·34 0·35 0·33 0·33 0·40 0·38 0·36 0·36 0·36 0·51 
LOI 0·99 1·62 1·85 2·05 1·91 1·21 3·75 3·33 2·28 0·93 1·59 
Total 99·81 99·40 100·40 100·60 100·25 99·52 100·50 99·45 99·60 100·57 101·61 
Sc 26·5 38·1 36·1 34·2 34·8 25·6 27·3 28·3 27·0 28·3 32·90 
283·7 362·5 340·9 319·3 318·2 260·7 281·8 283·4 274·1 342·0 357 
Cr 702 652 733 834 865 390 859 918 965 125 127 
Co 53·4 49·3 56·7 66·4 66·4 40·0 71·2 71·1 72·2 44·1  
Ni 419 226 425 666 675 160 787 789 885 85 76 
Cu 139·8 160·4 151·4 140·3 137·4 95·9 133·1 132·7 122·4 268·0 266·0 
Zn 120·5 150·7 149·0 140·6 137·2 91·7 103·3 100·6 95·7 145·0 125·0 
Ga 16·4 20·0 18·8 17·0 16·5 18·7 17·5 17·3 15·8 24·5 21·0 
Rb 12·0 30·4 25·5 21·9 19·8 59·2 31·1 33·4 54·0 41·6 46·9 
Sr 509 817 774 584 569 557 983 1005 775 549 615 
33·4 46·7 43·4 38·6 38·2 35·6 34·9 34·8 34·6 44·4 45·9 
Zr 343 517 481 413 408 568 479 477 444 373 344 
Nb 22·5 29·5 27·7 22·0 21·1 30·4 27·7 27·5 32·6 34·4 31·7 
Cs 1·1 4·8 2·5 5·1 4·3 0·3 16·0 14·3 2·1 1·7 1·7 
Ba 314 512 465 337 319 1352 713 702 561 797 947 
La 26·80 42·19 38·75 27·68 27·14 67·00 60·92 59·79 47·50 41·76 43·18 
Ce 66·01 103·43 94·63 71·15 70·24 150·04 140·38 137·87 111·49 93·21 92·43 
Pr 10·15 16·24 14·94 11·69 11·57 22·46 20·64 20·27 16·69 13·04 11·72 
Nd 47·38 75·70 68·86 55·57 55·24 96·61 85·58 84·50 72·24 58·09 52·49 
Sm 10·89 16·98 15·57 12·95 13·11 17·97 15·65 15·41 14·55 12·28 13·01 
Eu 3·27 5·02 4·58 3·94 3·95 4·63 4·26 4·18 3·98 3·68 3·94 
Gd 10·42 15·30 14·02 12·09 11·93 13·26 11·94 11·69 11·40 11·80 11·96 
Tb 1·41 2·07 1·88 1·67 1·67 1·68 1·59 1·55 1·52 1·67 1·78 
Dy 7·05 10·40 9·45 8·40 8·38 8·07 7·77 7·64 7·53 8·83 9·91 
Ho 1·23 1·82 1·67 1·47 1·49 1·36 1·32 1·30 1·29 1·62 1·79 
Er 2·89 4·11 3·75 3·32 3·36 3·05 3·03 2·96 2·96 3·91 4·34 
Tm 0·42 0·59 0·53 0·47 0·47 0·43 0·42 0·42 0·42 0·59 0·57 
Yb 2·25 3·07 2·86 2·46 2·52 2·32 2·23 2·18 2·22 3·29 3·24 
Lu 0·33 0·45 0·41 0·37 0·37 0·34 0·33 0·32 0·32 0·50 0·48 
Hf 8·68 13·77 12·76 10·82 10·65 14·41 12·18 11·98 11·17 9·17  
Ta 1·52 2·00 1·83 1·50 1·44 1·94 1·80 1·77 2·33 2·21 2·13 
Pb 4·29 4·44 4·02 2·96 2·82 7·67 5·77 5·64 4·82 5·11 4·81 
Th 2·55 3·58 3·28 2·08 2·04 4·86 4·58 4·50 3·73 4·11 3·80 
0·63 0·73 0·52 0·51 0·94 0·86 0·84 0·85  0·94 0·86 
Nb/Nb* 0·92 0·81 0·83 0·98 0·96 0·57 0·56 0·57 0·83 0·89 0·84 
ΔNb −0·37 −0·46 −0·46 −0·48 −0·49 −0·64 −0·55 −0·55 −0·41 −0·15 −0·10 
87Rb/86Sr 0·0683 0·1077 0·0953 0·1084 0·1008 0·3076 0·0916 0·0961 0·2016   
87Sr/86Srmeasured 0·70492 0·705213 0·705007 0·705647 0·705051 0·70665 0·705645 0·705183 0·706012   
87Sr/86Srnormalized 0·704925 0·705218 0·705012 0·705652 0·705056 0·706655 0·70565 0·705188 0·706017  0·705385 
87Sr/86Sr180 0·704750 0·704942 0·704768 0·705374 0·704798 0·705868 0·705416 0·704942 0·705501  0·704820 
147Sm/144Nd 0·1459 0·1396 0·1499 0·1481 0·1509 0·1162 0·1162 0·1167 0·1257  0·1334 
143Nd/144Ndmeasured 0·512726 0·512659 0·51267 0·512743 0·512779 0·512381 0·5124 0·512394 0·512577   
143Nd/144Ndnormalized 0·512658 0·512591 0·512601 0·51266 0·512709 0·512308 0·512331 0·512321 0·512494  0·512514 
εNd180 1·6 0·4 0·4 1·5 2·4 −4·6 −4·1 −4·3 −1·2  −1·0 
Age (Ma) 178·3          176·6 
1

A. V. Luttinen (unpublished data).

Classification

Full major and trace element analyses of the Ahlmannryggen dykes are presented in Table 2. The data exhibit significant variations in SiO2, TiO2, K2O, Al2O3, Fe2O3 and MgO. The analysed samples are subalkaline and range in composition from basalt to basaltic andesite (Fig. 5). On the basis of their CIPW norms (Yoder & Tilley, 1962) the majority of the samples can be classified as quartz tholeiites, with two samples classifying as olivine tholeiites, which may be the result of olivine accumulation (Fig. 5 and Table 2). It is clear from major element variation diagrams (Fig. 6) that the rocks fall into two clear groupings and the main discriminant between the two groups is MgO content; one group has MgO contents typically <8 wt % and the other has MgO contents >8 wt %. The other key observations are the high TiO2 and Zr and the variation in Al2O3. Harris et al. (1991) also commented on the low Al2O3 at high MgO for some of the dykes of the Ahlmannryggen. Many of the major and trace elements exhibit compositional trends typical of tholeiites (Fig. 6), with negative correlations of Fe2O3 and TiO2 with MgO. Cr and Ni contents vary widely (Cr: 39–1006 ppm; Ni: 43–885 ppm).

Fig. 5.

Total alkali vs SiO2 diagram (wt %) for the minor intrusions from the Ahlmannryggen. The samples are classified as quartz or olivine tholeiites based on their CIPW norms (see Table 2 for details). Classification boundaries are from Le Bas et al. (1986).

Fig. 5.

Total alkali vs SiO2 diagram (wt %) for the minor intrusions from the Ahlmannryggen. The samples are classified as quartz or olivine tholeiites based on their CIPW norms (see Table 2 for details). Classification boundaries are from Le Bas et al. (1986).

Fig. 6.

Variations in Zr, TiO2, SiO2, Ni, Al2O3, Fe2O3, CaO, Nb and Y vs MgO. The four geochemical groups are defined as discussed in the text.

Fig. 6.

Variations in Zr, TiO2, SiO2, Ni, Al2O3, Fe2O3, CaO, Nb and Y vs MgO. The four geochemical groups are defined as discussed in the text.

In common with other studies of Mesozoic and older flood basalt provinces we primarily use the incompatible high field strength elements (HFSE; Ti, Zr, Y, Nb) as discriminants between magma types. These elements are considered largely immobile during low-temperature alteration processes (e.g. Peate, 1997) and ratios between them are not significantly modified by moderate amounts of fractional crystallization or susceptible to variations in the degree of partial melting (e.g. Luttinen & Furnes, 2000). Zr can be used as an effective index of differentiation in magmas that do not crystallize zircon.

Zr vs TiO2, Nb and Y plots (Fig. 7a–c) for all the data from the Ahlmannryggen dykes (this study) allow us to differentiate a number of distinct dyke groups. Data from Harris et al. (1991) were not included in these HFSE plots because, based on the geochronology results of this study, there is considerable uncertainty regarding the age of the minor intrusions of the Ahlmannryggen and there is no guarantee that all of the Harris et al. (1991) data are from Mesozoic dykes.

Fig. 7.

Variations in (a) Zr vs TiO2, (b) Zr vs Nb and (c) Zr vs Y for Early–Middle Jurassic basic dykes from the Ahlmannryggen.

Fig. 7.

Variations in (a) Zr vs TiO2, (b) Zr vs Nb and (c) Zr vs Y for Early–Middle Jurassic basic dykes from the Ahlmannryggen.

Based on the Zr vs TiO2 plot (Fig. 7a) three geochemical groups can be identified from the Ahlmannryggen dataset; a low Ti–Zr group (<2·6 wt % TiO2 and <200 ppm Zr), a high Ti–Zr group (TiO2 in the range 2·6 5 wt % and Zr 200–400 ppm) and a very high Ti–Zr group (∼>4 wt % TiO2 and Zr >400 ppm). These three groups are replicated on the Zr vs Nb plot (Fig. 7b), although there is a clear split in the low Ti–Zr group, with a small subset with lower Nb contents (<10 ppm Nb). On the Zr vs Y plot (Fig. 7c) the three groups are again apparent; here the low Ti–Zr group has been split into two distinct subgroups, one with low Y (<30 ppm) and another with Y >35 ppm. The splitting of the low Ti–Zr group on the basis of Y is consistent with the subgroup based on Nb contents (Fig. 7b).

These four geochemical groups are subsequently referred to as Groups 1–4; Group 1: low Ti–Zr–Y (TiO2 <2·3 wt %, Zr <165 ppm, Nb <10 ppm and Y <30 ppm); Group 2: low Ti–Zr group (TiO2 <2·6 wt %, Zr <200 ppm, Nb >10 ppm and Y >33 ppm); Group 3: high Ti–Zr (TiO2 >3 wt % and Zr 200–400 ppm); Group 4: very high Ti–Zr group (TiO2 >4 wt % and Zr >400 ppm).

When the data for the four dyke groups are plotted against MgO (wt %) as an index of differentiation (Fig. 6) it is clear that samples from Groups 1 and 2 are typically the most differentiated, with MgO contents ∼6 wt %, whereas samples from Groups 3 and 4 have >7 wt % MgO. Ni is strongly correlated with MgO, suggesting olivine control during magmatic differentiation. Al2O3 increases sharply as MgO decreases, suggesting that plagioclase fractionation is not important until MgO contents fall below ∼6 wt %. Groups 1 and 2 are distinctive in showing wide ranges of variation in SiO2, Fe2O3, CaO, Al2O3 and Y at constant MgO contents.

Group 1

Only six of the minor intrusions analysed from the Ahlmannryggen fall into the low TiO2–Zr Group 1. The six samples have TiO2 contents in the range 1·5–2·3 wt % and Zr contents of 122–164 ppm. These dykes overlap, in part, with the field of Kirwanveggen lavas (Harris et al., 1990), which are Middle Jurassic in age (Duncan et al., 1997) and they also partially overlap with the CT1 Vestfjella lavas of Luttinen & Furnes (2000). Group 1 rocks have SiO2 contents in the range 49·3–55·7 wt %. They typically have low mg-numbers [∼50; mg-number = 100 × Mg/(Mg + Fe2+); FeO = Fe2O3/1·15]. Cr and Ni contents are varied, with Cr ranging from 75 to 708 ppm and Ni from 81 to 318 ppm. Group 1 rocks are light rare earth element (LREE) enriched with (La/Yb)N ranging from 0·5 to 4·9 and LREE contents up to 25 times chondrite (Fig. 8a). Almost all samples have relatively flat middle to heavy chondrite-normalized REE (MREE to HREE) patterns with (Sm/Lu)N ∼1·8. The mid-ocean ridge basalt (MORB)-normalized multi-element variation diagrams in Fig. 9a are characterized by troughs at Ta–Nb and Ti. Group 1 rocks exhibit a wide range of variation in 87Sr/86Sr180 (0·7064–0·7085) at fairly constant εNdi (−5·8 to −6·4) (Fig. 10). The variation in 87Sr/86Sr at fairly constant εNd is typical of post-magmatic hydrothermal alteration. A summary of the key characteristics of Group 1 rocks is provided in Table 3.

Fig. 8.

Chondrite-normalized REE diagrams for (a) Group 1, (b) Group 2, (c) Group 3 and (d) Group 4 of the Ahlmannryggen dykes. Normalizing values are taken from Nakamura (1974). Data for Rooi Rand dykes (RRDS; dashed lines) are taken from Duncan et al. (1990) and P27-AVL (CT2) from Vestfjella from Luttinen & Furnes (2000).

Fig. 8.

Chondrite-normalized REE diagrams for (a) Group 1, (b) Group 2, (c) Group 3 and (d) Group 4 of the Ahlmannryggen dykes. Normalizing values are taken from Nakamura (1974). Data for Rooi Rand dykes (RRDS; dashed lines) are taken from Duncan et al. (1990) and P27-AVL (CT2) from Vestfjella from Luttinen & Furnes (2000).

Fig. 9.

N-MORB-normalized incompatible element diagrams for (a) Group 1, (b) Group 2, (c) Group 3 and (d) Group 4 of the Ahlmannryggen. Normalizing values are from Sun & McDonough (1989).

Fig. 9.

N-MORB-normalized incompatible element diagrams for (a) Group 1, (b) Group 2, (c) Group 3 and (d) Group 4 of the Ahlmannryggen. Normalizing values are from Sun & McDonough (1989).

Fig. 10.

Initial εNd and 87Sr/86Sr (T = 180 Ma for all rocks shown) for Groups 1–4 from the Ahlmannryggen; the four main groups are highlighted by continuous lines. Other rocks from the Karoo and Ferrar magmatic provinces are highlighted by dotted lines. Data sources: Duncan et al. (1990); Harris et al. (1990); Hergt et al. (1991); Sweeney et al. (1994); Fleming et al. (1995); Harmer et al. (1998); Mitchell et al. (1999); Elburg & Goldberg (2000); Luttinen & Furnes (2000). All data are age corrected to 180 Ma. ODS, Okavango dyke swarm, P27-AVL [most depleted composition of Luttinen & Furnes (2000)]. Binary bulk mixing curves are indicated between Group 3 and Borgmassivet Intrusions, and Group 3 (Z.1816.2) and SCLM partial melt. Group 3: 87Sr/86Sr = 0·7035, Sr 300 ppm, εNd = 8·5, Nd 25 ppm; lamproite (SCLM partial melt): 87Sr/86Sr = 0·7096, Sr 1830 ppm, εNd = −25, Nd 150 ppm. Borgmassivet Intrusions: 87Sr/86Sr = 0·7240, Sr 130 ppm, εNd = −11, Nd 13 ppm. AFC model curve: Archaean crust contaminant (Luttinen & Furnes, 2000): 87Sr/86Sr = 0·710, Sr 500 ppm, εNd = −52, Nd 11 ppm, r value = 0·4.

Fig. 10.

Initial εNd and 87Sr/86Sr (T = 180 Ma for all rocks shown) for Groups 1–4 from the Ahlmannryggen; the four main groups are highlighted by continuous lines. Other rocks from the Karoo and Ferrar magmatic provinces are highlighted by dotted lines. Data sources: Duncan et al. (1990); Harris et al. (1990); Hergt et al. (1991); Sweeney et al. (1994); Fleming et al. (1995); Harmer et al. (1998); Mitchell et al. (1999); Elburg & Goldberg (2000); Luttinen & Furnes (2000). All data are age corrected to 180 Ma. ODS, Okavango dyke swarm, P27-AVL [most depleted composition of Luttinen & Furnes (2000)]. Binary bulk mixing curves are indicated between Group 3 and Borgmassivet Intrusions, and Group 3 (Z.1816.2) and SCLM partial melt. Group 3: 87Sr/86Sr = 0·7035, Sr 300 ppm, εNd = 8·5, Nd 25 ppm; lamproite (SCLM partial melt): 87Sr/86Sr = 0·7096, Sr 1830 ppm, εNd = −25, Nd 150 ppm. Borgmassivet Intrusions: 87Sr/86Sr = 0·7240, Sr 130 ppm, εNd = −11, Nd 13 ppm. AFC model curve: Archaean crust contaminant (Luttinen & Furnes, 2000): 87Sr/86Sr = 0·710, Sr 500 ppm, εNd = −52, Nd 11 ppm, r value = 0·4.

Table 3:

Definition of geochemical Groups 1–4 Ahlmannryggen dykes

Group: 
Number of samples:
 
6
 
14
 
15
 
9
 
SiO2 49·32–55·66 46·70–50·68 45·22–48·55 45·23–54·81 
TiO2 1·52–2·27 2·17–2·62 3·25–4·85 3·87–5·28 
MgO 5·32–8·57 5·18–6·1 7·63–21·61 5·77–15·84 
Al2O3 11·73–14·62 12·48–14·08 8·00–12·60 7·51–9·97 
Fe2O3(T) 11·21–15·47 13·44–16·74 12·27–15·03 10·11–13·03 
Zr 122–164 150–177 216–316 343–568 
Nb 7·2–15·2 11·4–13·5 3·2–11·8 21·1–32·6 
Ni 81–318 43–71 251–769 160–885 
(La/Yb)N 0·54–4·90 2·58–2·81 1·64–4·29 7·20–19·31 
Ti/Y 333–455 378–420 291–777 664–694 
87Sr/86Sri 0·7064–0·7085 0·7034–0·7046 0·7035–0·7062 0·7048–0·7059 
εNdi −5·8 to −6·4 0·7 to 1·7 5·0 to 9·0 −4·6 to 2·4 
Approx. strike (deg.) 062 010 079 017 
Approx. age (Ma) 191 178 191 178 
Group: 
Number of samples:
 
6
 
14
 
15
 
9
 
SiO2 49·32–55·66 46·70–50·68 45·22–48·55 45·23–54·81 
TiO2 1·52–2·27 2·17–2·62 3·25–4·85 3·87–5·28 
MgO 5·32–8·57 5·18–6·1 7·63–21·61 5·77–15·84 
Al2O3 11·73–14·62 12·48–14·08 8·00–12·60 7·51–9·97 
Fe2O3(T) 11·21–15·47 13·44–16·74 12·27–15·03 10·11–13·03 
Zr 122–164 150–177 216–316 343–568 
Nb 7·2–15·2 11·4–13·5 3·2–11·8 21·1–32·6 
Ni 81–318 43–71 251–769 160–885 
(La/Yb)N 0·54–4·90 2·58–2·81 1·64–4·29 7·20–19·31 
Ti/Y 333–455 378–420 291–777 664–694 
87Sr/86Sri 0·7064–0·7085 0·7034–0·7046 0·7035–0·7062 0·7048–0·7059 
εNdi −5·8 to −6·4 0·7 to 1·7 5·0 to 9·0 −4·6 to 2·4 
Approx. strike (deg.) 062 010 079 017 
Approx. age (Ma) 191 178 191 178 

Petrographic characteristics

Group 1 rocks are characterized by cracked and altered olivine phenocrysts, typically <0·5 mm, whereas the smaller olivine grains tend to be more altered and are often ophitically enclosed by clinopyroxene. Plagioclase laths are a major phenocryst and groundmass phase and are typically sericitized.

Group 2

Group 2 rocks are characterized by low to moderate TiO2 (2·17–2·62 wt %) and Zr (150–177 ppm) contents (Fig. 7a) and overlap with many of the samples analysed by Harris et al. (1991) from the Ahlmannryggen. MgO contents (5·18–6·10 wt %; Fig. 6) and mg-numbers (39·5–45·9) are very homogeneous. All samples are LREE enriched with (La/Yb)N of 2·6–2·8, La contents ∼20 times chondrite and have fairly smooth REE patterns (Fig. 8b). The MORB-normalized multi-element patterns for Group 2 rocks (Fig. 9b) are also very smooth. Group 2 samples exhibit a small range in 87Sr/86Sri (0·7034–0·7046) and εNdi (0·7–1·7) at 180 Ma (Fig. 10). A summary of the key characteristics of Group 2 rocks is provided in Table 3.

Petrographic characteristics

The Group 2 rocks show some variation, but are typically feldspar–clinopyroxene-phyric with a groundmass of feldspar microphenocrysts and Fe–Ti oxides. The feldspar phenocrysts are euhedral and are occasionally ophitically enclosed by clinopyroxene. Olivine is absent.

Group 3

Fifteen samples have been identified in the Group 3 magma type and they are characterized by low SiO2 (45·22–48·55 wt %), high TiO2 (3·25–4·85 wt %), high Ti/Y (291–777) and high MgO (7·63–21·61 wt %). Several of the samples can be classified as picrites, using the classification scheme of Le Bas (2000), and three samples are ferropicrites (Fig. 11a), following the broad criteria (FeO > MgO >12 wt %; Al2O3 <10 wt %) used by Gibson et al. (2000). Harris et al. (1991) first identified the presence of picrites in western Dronning Maud Land and demonstrated that they were genuine high-MgO liquids. The ferropicrites are characterized by high contents of both MgO (12·00–13·45 wt %) and FeO (12·6–13·1 wt %), with mg-numbers in the range 63–65. The ferropicrites have low to moderate SiO2 contents (45·22–46·54 wt %), low Al2O3 (8·15–10·22 wt %) and low total alkalis (1·51–1·97 wt %). As would be anticipated given their high MgO contents, all Group 3 rocks have high concentrations of compatible trace elements (Cr 397–1006 ppm and Ni 251–769 ppm), with the ferropicrites having the highest values (Cr 683–1006 ppm and Ni 578–619 ppm).

Fig. 11.

Variation in Fe2O3(T) vs (a) MgO and (b) SiO2 for Groups 1–4 from the Ahlmannryggen. (a) highlights the fields for ferropicrites (•) [MgO >12 wt % and Fe2O3 >13·8 wt % (>12 wt % FeO); Gibson et al., 2000] and picrites (MgO >12 wt %; Le Bas, 2000); (b) shows a general trend of decreasing Fe2O3 with increasing SiO2 for all four dyke groups.

Fig. 11.

Variation in Fe2O3(T) vs (a) MgO and (b) SiO2 for Groups 1–4 from the Ahlmannryggen. (a) highlights the fields for ferropicrites (•) [MgO >12 wt % and Fe2O3 >13·8 wt % (>12 wt % FeO); Gibson et al., 2000] and picrites (MgO >12 wt %; Le Bas, 2000); (b) shows a general trend of decreasing Fe2O3 with increasing SiO2 for all four dyke groups.

The REE patterns of Group 3 rocks are distinct from all other magma groups. They are characterized by ‘saddleback’ patterns (Fig. 8c) with (La/Sm)N <1, (La/Yb)N in the range 1·6–4·3, and a marked depletion in the HREE. The multi-element plots (normalized to N-MORB) are characterized by almost flat patterns with some variation in the more mobile elements (Rb, Ba, Th) between samples (Fig. 9c). Otherwise there is little variation from Nb to Ti.

Group 3 samples also have distinct isotope signatures (Fig. 10) with 87Sr/86Sri 0·7035–0·7062 and high εNdi (5·0–9·0). There appear to be two distinct sub-groups within Group 3, one with lower εNdi (5·0–5·5) and more radiogenic 87Sr/86Sri (0·7054–0·7062), and the other with higher εNdi (7·0–9·0) and less radiogenic 87Sr/86Sri (0·7035–0·7041). The three ferropicrites all fall into the high-εNd, low-87Sr/86Sr sub-group. The Sr–Nd isotope compositions of the more unradiogenic Sr sub-group compare closely with that of a single sample from Vestfjella (P27-AVL; Luttinen & Furnes, 2000), which was previously identified as the most ‘depleted’ rock type from the entire Karoo (South Africa and Antarctica) province. A summary of the key characteristics of Group 3 rocks is provided in Table 3.

Petrographic characteristics

Group 3 rocks are more porphyritic than any of the other magma groups. Olivine is the main phenocryst phase and is often up to 3–4 mm in diameter. It occurs in all samples, but is rarely unaltered and is typically replaced along cracks by green or yellow serpentine. Olivine compositions are Mg-rich (Fo70–86) and clinopyroxene is also present as a phenocryst phase, but is not as abundant as olivine. Plagioclase is not present as a phenocryst phase. The groundmass is dominated by clinopyroxene, plagioclase and Fe–Ti oxides.

Group 4

Nine samples from the Ahlmannryggen are identified as Group 4. Their defining characteristic is their very high TiO2 (3·87–5·28 wt %), high Zr (343–568 ppm) and very high Ti/Y (664–694). Five of the group are picrites (Fig. 11a), with MgO >12 wt % and Na2O + K2O <3 wt % (Fig. 5) and are characterized by high Cr (834–965 ppm) and Ni (666–885 ppm) contents. The REE patterns are the most enriched of the four geochemical groups with (La/Yb)N values of 7·2–19·3 and La contents 81–204 times chondrite (Fig. 8d). The MORB-normalized multi-element patterns are characterized by a shallow trough at Ta–Nb and a minor negative anomaly at Ti, but generally exhibit a smooth pattern (Fig. 9d). Samples from Group 4 show a range in 87Sr/86Sri of 0·7048–0·7059, and εNdi varies considerably from −4·6 to 2·4 (Fig. 10). A summary of the key characteristics of Group 4 rocks is provided in Table 3.

Petrographic characteristics

Group 4 rocks are the least altered of the four chemical groups. Olivine phenocrysts are typically euhedral and show only a minor amount of alteration along cracks. Some of the olivine phenocrysts occur in clusters of up to five grains; these typically have rounded grain boundaries. The Group 4 rocks are ∼30% porphyritic and the groundmass is very fine grained; feldspar phenocrysts are discernible only at the chilled margins of the dykes.

COMPARISON WITH OTHER KAROO–ANTARCTIC MAGMA GROUPS

The Mesozoic intrusions of the Ahlmannryggen overlap with the main phase of volcanic and intrusive activity of the Karoo magmatic province of southern Africa and East Antarctica. Geochemical data from East Antarctica (Kirwanveggen and Vestfjella: Fig. 1) and southern Africa are plotted in Fig. 12 [Zr vs TiO2 plots for (a) Antarctica and (b) South Africa]. Figure 12a also includes the four geochemical groups of the Ahlmannryggen dykes for comparison.

Fig. 12.

Variation in TiO2 vs Zr for Early Jurassic basic igneous rocks from (a) Antarctica: Vestfjella and Kirwanveggen (Furnes et al., 1982, 1987; Harris et al., 1990; Luttinen et al., 1998; Luttinen & Furnes, 2000); (b) Karoo, South Africa (Sweeney et al., 1994; Mitchell et al., 1996, 1999; Reid et al., 1997; Harmer et al., 1998; Marsh & Mndaweni, 1998; De Bruiyn et al., 2000; Elburg & Goldberg, 2000). Also shown are the fields for Groups 1–4 from the Ahlmannryggen (this study).

Fig. 12.

Variation in TiO2 vs Zr for Early Jurassic basic igneous rocks from (a) Antarctica: Vestfjella and Kirwanveggen (Furnes et al., 1982, 1987; Harris et al., 1990; Luttinen et al., 1998; Luttinen & Furnes, 2000); (b) Karoo, South Africa (Sweeney et al., 1994; Mitchell et al., 1996, 1999; Reid et al., 1997; Harmer et al., 1998; Marsh & Mndaweni, 1998; De Bruiyn et al., 2000; Elburg & Goldberg, 2000). Also shown are the fields for Groups 1–4 from the Ahlmannryggen (this study).

Data for the lavas of Vestfjella and the Kirwanveggen (Fig. 12a) form a much more restricted range relative to the Ahlmannryggen intrusions. The majority of the Vestfjella–Kirwanveggen samples fall into a low TiO2 (<2 wt %) and Zr <200 ppm group. One group of Vestfjella lavas, CT2 of Luttinen et al. (1998), has higher TiO2 (2·4–3·8 wt %), but these still have low Zr (<200 ppm).

The Karoo data from South Africa (sources in figure caption; Fig. 12b) also form a cluster at very low TiO2 (<1·5 wt %) and Zr (<120 ppm), although a significant number of samples extend to higher TiO2 and Zr values. The high TiO2–Zr (HTZ) samples are from the HTZ (low-Fe) and HTZ (high-Fe) groups of Sweeney et al. (1994) from the central Lebombo, and the Letaba Formation picrites of the Lebombo (Duncan et al., 1984). The Rooi Rand dyke swarm (RRDS) forms a broad spread and overlaps with the Ahlmannryggen Group 2. Group 4 overlap, in part, with the HTZ (high Fe) field of Sweeney et al. (1994) from the Lebombo part of the Karoo Province (Fig. 12b).

STRUCTURAL GEOLOGY

Geometry and distribution of Ahlmannryggen dykes

Mafic dykes are widely distributed within the central Ahlmannryggen region, although they are found in greatest concentrations along the ridges of the Flårjuven and Grunehogna nunatak groups (Fig. 2). The vast majority of the dykes have intruded thick dioritic sills of the Borgmassivet intrusive suite, where they were emplaced along a pervasive suite of pre-existing, sub-vertical joints within the sills. The total dyke population displays a wide variety of orientations, although a frequency distribution plot of total dyke and joint population data reveals a dominant NNE–SSW trend to both datasets (Fig. 13). Subordinate joint sets oblique to the predominant dyke trend were also exploited during dyke emplacement, resulting in offsetting segments and en echelon geometries. Where limited lateral exposure of an offset segmented dyke prevented simple identification of the main dyke trend, the orientation of the widest dyke segment was taken as a proxy for the overall dyke trend.

Fig. 13.

Frequency orientation plots for total dyke segments (left) and joints (right) within the Ahlmannryggen study area. The dominant trend of the dyke segments is parallel to regional joint orientation.

Fig. 13.

Frequency orientation plots for total dyke segments (left) and joints (right) within the Ahlmannryggen study area. The dominant trend of the dyke segments is parallel to regional joint orientation.

The geochemical characterization of the central Ahlmannryggen dyke suite has identified four distinct geochemical groups, each of which has a consistent orientation and/or a distinct geographical distribution (Fig. 2). Group 1 dykes display a fairly uniform ENE–WSW strike (062° mean) and vary from 0·1 to 1·9 m in width. They occur at Grunehogna and west of Flårjuven, as well as at Neumayerskarvet, northern Kirwanveggen (Fig. 2). Group 2 dykes are distributed throughout the nunataks in the west of the Ahlmannryggen (Fig. 2). Dyke trends range from north–south to NE–SW (010° mean), sub-parallel to the Jutulstraumen ice stream and subglacial trough. Group 2 dykes are notable for their extreme range of widths, up to 80 m wide, with four dykes in excess of 5 m wide. Dykes with a thickness >5 m were sampled close to the wall rock margin. Group 3 dykes strike predominantly east–west to ENE–WSW (079° mean) and vary from 0·20 to 3·58 m in width, with a mean of 1·17 m. Group 3 dykes are geographically restricted to the Grunehogna nunataks group (east side of Kullen) and two localities along the general strike direction of the dykes to the west (Fig. 2). Group 3 dykes are oblique to the Jutulstraumen glacial trough (Fig. 2), but are broadly parallel to the Pencksökket ice stream and glacial trough and to Group 1 dykes (Fig. 2). Group 4 dykes form a NNE–SSW-trending swarm (017° mean); they vary in thickness from 0·14 to 4·49 m. Their distribution is restricted to the Flårjuven nunatak group in the NW of the study area (Fig. 2). They are broadly parallel to the Group 2 dykes, which are sub-parallel to the Jutulstraumen subglacial trough.

Dilation direction

The orientation of dyke segments emplaced into pre-existing fractures is controlled by the ability of the fractures to dilate, which is the product of their orientation with respect to the minimum principal stress and the magma pressure at the time of emplacement (Delaney et al., 1986). Therefore, where pre-existing fractures exhibit a control over dyke segment orientation it is unlikely that the strike of the dykes will be a simple reflection of the original extension direction. Dykes following pre-existing fractures oriented obliquely to the direction of maximum extension will side-step, resulting in the development of bridges or a dyke offset. Application of simple stereographic analytical techniques to these dyke offsets (Bussell, 1989; Kretz, 1991) allows estimates to be made for the stress field acting on the fracture during dilation. The method of Bussell (1989) is employed here, which combines the line of intersection between the dyke wall and the offset dyke segment with the apparent extension direction to define the dilation plane for a particular dyke. The dilation plane contains the true dilation direction for an individual dyke, and the true dilation direction for the dyke swarm can be obtained from the best-fit great circle to the poles of the individual dilation planes derived from a number of dykes.

Unfortunately, given the generally restricted nature of dyke exposure encountered (e.g. cliff faces or escarpment edges), only a small number of dykes displaying the required structural characteristics were encountered. Only seven well-exposed dyke offsets were recorded in the four Mesozoic dyke groups, including examples from Groups 1, 2, and 4. Plotting the poles to the reconstructed dilation planes for the dyke offsets reveals two distinct orientations (Fig. 14). Five poles from dyke Groups 2 and 4 are distributed along an approximate NE–SW-trending girdle, while the remaining two poles from Group 1 dykes plot along an east–west girdle. We have calculated the mean girdles for both sets of data, the poles to which approximate the dilation direction for the dyke groups. Data from dykes of Groups 2 and 4 suggest that they were emplaced about a mean trend of 012° in response to an applied true dilation direction trending 307–127°. The best-fit girdle to the poles to dilation planes for Group 1 dykes, although limited, suggests that the dykes were emplaced in a stress field where the minimum principal stress direction was oriented ∼004–184°. Given the sub-parallel trend of the dykes within Groups 1 and 3 (mean trend 072°), we interpret them have all been emplaced in response to the same north–south-trending minimum principal stress direction. The calculated dilation direction is not perpendicular to the mean trend of the dykes, suggesting that dykes were probably emplaced along pre-existing planes of structural weakness (i.e. regional jointing) and exhibited oblique dilation.

Fig. 14.

Stereograms showing the poles to constructed dilation planes for dykes representing Groups 1, 2 and 4, using the method of Bussell (1989). Star represents the pole to the best-fit girdle to the poles of dilation planes, and an approximation for the dilation vector of the dyke populations. The frequency orientation plots at the centre of the stereograms represent Mesozoic dykes of the relevant geochemical groups that make up the dyke populations related to two distinct dilation directions (see text for details).

Fig. 14.

Stereograms showing the poles to constructed dilation planes for dykes representing Groups 1, 2 and 4, using the method of Bussell (1989). Star represents the pole to the best-fit girdle to the poles of dilation planes, and an approximation for the dilation vector of the dyke populations. The frequency orientation plots at the centre of the stereograms represent Mesozoic dykes of the relevant geochemical groups that make up the dyke populations related to two distinct dilation directions (see text for details).

PETROGENESIS OF THE MAGMAS AND MANTLE SOURCES

In the following section we examine each geochemical dyke group and attempt to identify the mantle source of the magmas and make correlations with other Karoo magma types.

Interpretation

Group 1 (low Ti–Zr)

Group 1 rocks are all low-Ti tholeiites, which is the predominant rock type throughout the Karoo–Dronning Maud Land flood basalt province. Lava successions in Lesotho, Lebombo, Vestfjella and Kirwanveggen (Fig. 1) are all dominated by low-Ti basalts (Fig. 12). Luttinen et al. (1998) have made comparisons between the CT1, low-εNd basalts of Vestfjella and the low-εNd Sabie River Basalt Formation of southern Lebombo.

The Group 1 rocks have low MgO contents, with only two samples having MgO >8 wt % (but <9 wt %). In terms of their Sr–Nd isotope characteristics the Group 1 rocks are distinct from any other group of the Karoo–Antarctica volcanic province (Fig. 10). They are intermediate between the central Lebombo lavas and rocks of the broadly contemporaneous Ferrar magmatic province (Fig. 10). The Ahlmannryggen Group 1 dykes all have a characteristic Ta–Nb negative anomaly (Fig. 9a), suggesting crustal contamination. Evidence of crustal contamination is also well illustrated in Figs 15 and 16, where the Group 1 dykes have high values of Th/Ta and low values of Nb/Nb*, both reliable proxies for the involvement of crustal material. Although there is only a small sample set for Group 1, the variation in 87Sr/86Sr with SiO2 and mg-number (Fig. 17) could also suggest that magma chemistry was influenced by assimilation combined with fractional crystallization (AFC). To model AFC processes, a Group 3 sample (Z.1816.1) was used as the parent magma and the crustal contaminant was assumed to be local Archaean crust, as the Ahlmannryggen dykes were intruded into the Grunehogna Archaean craton. The Nd–Sr isotope composition of the Archaean crust is assumed to be 87Sr/86Sr = 0·710, Sr 500 ppm, εNd −52, Nd 11 ppm (Fig. 10), based on Luttinen & Furnes (2000), who used data from the Kaapvaal craton to model the potential crustal contaminant, as well as two granitic xenoliths from Vestfjella, all of which have εNd of ∼−50. AFC at moderate rates of assimilation (r = 0·4) could account for the isotopic character of Group 1 rocks derived from a Group 3 parent magma. Both Group 1 and Group 3 dykes were intruded at ∼190 Ma and occupy the same structural trend.

Fig. 15.

Variation in Th/Ta vs Ti/Zr for Ahlmannryggen minor intrusions, Groups 1–4. The field for MORB is from the GERM website (http://www.earthref.org/GERM); average lamproite is from Rock (1991); lower crust is from Rudnick & Fountain (1995); the Ferrar province is from Fleming et al. (1995).

Fig. 15.

Variation in Th/Ta vs Ti/Zr for Ahlmannryggen minor intrusions, Groups 1–4. The field for MORB is from the GERM website (http://www.earthref.org/GERM); average lamproite is from Rock (1991); lower crust is from Rudnick & Fountain (1995); the Ferrar province is from Fleming et al. (1995).

Fig. 16.

Magnitude of the Nb anomaly, measured as Nb/Nb* [=NbN/√(ThN × LaN); normalized to primitive mantle] vs 87Sr/86Sr. The size of the Nb anomaly is used as a proxy for the extent of crustal contamination in mantle-derived magmas. Binary mixing curves are shown between a depleted end-member basalt (Z.1816.2; Group 3) and upper continental crust (Borgmassivet Intrusives) and SCLM partial melt (lamproite). The depleted end-member is a Group 3 basalt from the Ahlmannryggen; 87Sr/86Sr = 0·7035, Sr 300 ppm, Nb/Nb* = 1·65. The local upper crust is represented by Borgmassivet Intrusions: 87Sr/86Sr = 0·7240, Sr 130 ppm, Nb/Nb* = 0·19; the enriched subcontinental lithospheric mantle proxy partial melt is Gaussberg lamproite (Bergman, 1987): 87Sr/86Sr = 0·7096, Sr 1830 ppm, Nb/Nb* = 0·5. Fields for CT1, CT2 and CT4 lavas from Vestfjella are from Luttinen et al. (1998). Field of average Ferrar dolerite is taken from Molzahn et al. (1996).

Fig. 16.

Magnitude of the Nb anomaly, measured as Nb/Nb* [=NbN/√(ThN × LaN); normalized to primitive mantle] vs 87Sr/86Sr. The size of the Nb anomaly is used as a proxy for the extent of crustal contamination in mantle-derived magmas. Binary mixing curves are shown between a depleted end-member basalt (Z.1816.2; Group 3) and upper continental crust (Borgmassivet Intrusives) and SCLM partial melt (lamproite). The depleted end-member is a Group 3 basalt from the Ahlmannryggen; 87Sr/86Sr = 0·7035, Sr 300 ppm, Nb/Nb* = 1·65. The local upper crust is represented by Borgmassivet Intrusions: 87Sr/86Sr = 0·7240, Sr 130 ppm, Nb/Nb* = 0·19; the enriched subcontinental lithospheric mantle proxy partial melt is Gaussberg lamproite (Bergman, 1987): 87Sr/86Sr = 0·7096, Sr 1830 ppm, Nb/Nb* = 0·5. Fields for CT1, CT2 and CT4 lavas from Vestfjella are from Luttinen et al. (1998). Field of average Ferrar dolerite is taken from Molzahn et al. (1996).

Fig. 17.

Variations in SiO2 vs (a) mg-number and (b) 87Sr/86Sri for Group 1 dykes from the Ahlmannryggen. The trend is suggestive, in part, of AFC proceeses.

Fig. 17.

Variations in SiO2 vs (a) mg-number and (b) 87Sr/86Sri for Group 1 dykes from the Ahlmannryggen. The trend is suggestive, in part, of AFC proceeses.

Although the dataset is small (only four samples with isotope data; Fig. 10) an alternative explanation for isotope characteristics of the Group 1 dykes is that some of the variation in 87Sr/86Sr (0·7064–0·7085) at fairly constant εNd (∼−6) might have been caused by post-magmatic alteration. If the lowest 87Sr/86Sr value is used (0·7064), this lies close to a mixing curve between Group 3 dykes and partial melts of the subcontinental lithospheric mantle (SCLM) at ∼12% (Fig. 10), which is explained in the following section, where the petrogenesis of Group 2 and 4 dykes are discussed. Therefore the magmas of the Group 1 dykes could also represent mixtures of Group 3 melts plus ∼12% partial melts of the SCLM; any subsequent variation in their Sr isotope characteristics is probably the result of post-magmatic processes.

Group 2 (low Ti–Zr)

The Group 2 rocks of western Dronning Maud Land are all low to moderate Ti rock types and overlap, in part, with the chemical type 2 (CT2) of Luttinen et al. (1998) and also with the Rooi Rand dolerite dykes of South Africa (TiO2 2·20 wt %; Zr 156 ppm; Armstrong et al., 1984). They are all low-Mg rocks (mg-number <46), with accompanying low Cr and Ni. Isotopically, they are also relatively homogeneous (0·7034–0·7046; Fig. 10) and include a fairly depleted sub-group (87Sr/86Sri <0·7040 and εNd ∼1·5–2).

Dykes of Group 2 are all evolved, with an average mg-number of ∼42, but they show little evidence of crustal contamination. They all have low Ba/Zr ratios (typically <1), indicating minimal crustal contamination (e.g. Kent & Fitton, 2000) and also have moderate Nb/Nb* (∼1·0; Fig. 16). The absence of any significant interaction with continental crust is reinforced by a plot of Th/Ta vs Ti/Zr (Fig. 15), in which Group 2 rocks cluster close to the MORB field, suggesting that there was no significant interaction between the parent magmas and crust or lithospheric mantle. Crustal and lithospheric mantle values of Th/Ta are high and Ti/Zr very low, and are therefore distinct to those of MORB. Luttinen et al. (1998) also noted that his CT2 dykes and sills showed little evidence of crustal contamination, although the CT2 lavas were variably contaminated by lower crust.

Binary mixing curves are shown in Figs 10 and 16 between the most isotopically depleted group of rocks (Group 3) and a partial melt of enriched SCLM. The Gaussberg lamproites of Antarctica (Bergman, 1987) were used as a proxy for the partial melt of a hypothetical, enriched component in the SCLM, as they are chemically homogeneous and show very little evidence for crustal contamination (Ewart et al., 2004). The mixing curves indicate that the Group 2 rocks could be interpreted as mixes of Group 3 magmas with <3% of an enriched component, akin to the partial melt of SCLM.

The Group 2 dykes are the only group from the Ahlmannryggen with consistently positive ΔNb (Fig. 18), which is a function used to express the excess or deficiency in Nb relative to the lower limits of the Iceland basalt array (Fitton et al., 1997) in a plot of Nb/Y vs Zr/Y. Samples with positive ΔNb plot above the lower line in Fig. 18, which implies derivation from an enriched mantle source, whereas those with negative ΔNb plot below the lower line, indicating a source in the depleted upper mantle. Assimilation of continental crust has little effect on the value of ΔNb because crustal rocks plot on or below the lower line of the Iceland array, therefore contamination will only lower ΔNb and cannot make a sample appear to be ‘Icelandic’ (Chambers & Fitton, 2000). ΔNb is also insensitive to the effects of variable degrees of mantle melting and source depletion following partial melting, and is, therefore, a characteristic of the mantle source (Fitton et al., 2003). The Group 2 dykes plot in a tight cluster and fall within the ‘Iceland array’ of Fitton et al. (1997). They overlap, in part, with the field of Vestfjella lavas and intrusions (Luttinen & Furnes, 2000). The Group 2 rocks have positive ΔNb and are clearly distinguishable from N-MORB magmas (Fig. 18), which have negative ΔNb and cannot have been derived from the same mantle source as Group 2.

Fig. 18.

Nb/Y vs Zr/Y for Groups 1–4 from the Ahlmannryggen. The parallel lines represent the Iceland array of Fitton et al. (1997). PM, primitive mantle. Samples that plot below the lower line have negative ΔNb whereas those above this line have positive ΔNb [ΔNb = 1·74 + log (Nb/Y) − 1·92 log (Zr/Y); Fitton et al., 1997]. The high Zr/Y samples represent small degree partial melts (Groups 3 and 4) and those at low Zr/Y are larger degree partial melts.

Fig. 18.

Nb/Y vs Zr/Y for Groups 1–4 from the Ahlmannryggen. The parallel lines represent the Iceland array of Fitton et al. (1997). PM, primitive mantle. Samples that plot below the lower line have negative ΔNb whereas those above this line have positive ΔNb [ΔNb = 1·74 + log (Nb/Y) − 1·92 log (Zr/Y); Fitton et al., 1997]. The high Zr/Y samples represent small degree partial melts (Groups 3 and 4) and those at low Zr/Y are larger degree partial melts.

Similarities between the Group 2 dykes, the CT2 Vestfjella dykes of Luttinen & Furnes (2000) and the Rooi Rand Dyke Swarm of Duncan et al. (1990) are apparent based on both geochemical and isotopic criteria, as well as their post-Karoo (182 Ma) age. Luttinen et al. (1998) noted the compositional similarity to recent South West Indian Ridge (SWIR) MORB associated with the Marion hotspot.

Group 3 (high Ti–Zr)

The Group 3 rocks of the Ahlmannryggen are all high-Ti, high-Zr rocks types (Fig. 7a) and relative to the other three groups from the Ahlmannryggen, Group 3 are notably depleted in the LILE. They have ‘humpbacked’ REE (Fig. 8c) and N-MORB normalized multi-element patterns (Fig. 9c). They are characterized by high εNdi, and low 87Sr/86Sri (Fig. 10), consistent with derivation from a depleted mantle source. The Group 3 rocks form two distinct sub-groups, which are particularly evident on the Nd–Sr isotope diagram (3a and 3b in Fig. 10), but also on the multi-element diagram (Fig. 9c), where the low-εNd sub-group shows greater enrichment in Th. Superficially, the Group 3 rocks have many similarities to MORB (high εNd, low 87Sr/86Sr, LREE-depleted patterns) but their TiO2 contents are far too high (∼4 wt %) for them to derived from MORB-source mantle. The depth of melting is constrained by the Dy/Yb ratios (∼3: Fig. 19) and also by the shape of the multi-element patterns (Fig. 9c), which show that the HREE are being retained, presumably by garnet. Several workers (e.g. Fitton et al., 1997) have used the abundance of Nb relative to Zr and Y (ΔNb) to distinguish between mantle sources. Group 3 rocks all have negative ΔNb (Fig. 18), with the more depleted group of rocks (Group 3a) having ΔNb values of −0·57 and Group 3b having values of −0·43. Although they are more enriched than N-MORB (Fig. 18) the Group 3 rocks could contain a component from MORB-mantle, but at lower degrees of partial melting. The Group 3 rocks include two distinct sub-groups in the Nd–Sr isotope diagram (Fig. 10), which can be explained by the addition of ∼20% upper crust to the uncontaminated melts. A mixing curve is plotted in Fig. 10 between a Group 3 magma and one of the Borgmassivet Intrusions (T. R. Riley, unpublished data), which represents the local upper crust at the time of intrusion. The model curve can reproduce the Nd–Sr isotope composition of the Group 3 dykes by bulk mixing, although realistically the actual process would involve assimilation plus fractional crystallization. The Group 3 samples with the lowest εNd (∼5) values also typically have lower Nb/Nb* values (∼0·9 with one sample at ∼1·3; Fig. 16), which reflects the amount of crustal contamination relative to the uncontaminated dykes, which have Nb/Nb* values of 1·6–1·7 (close to depleted mantle, Nb/Nb* ∼1·45; Hofmann, 1988). The mixing curves plotted on the Nb/Nb* vs 87Sr/86Sr diagram (Fig. 16) illustrate the bulk addition of local upper crust (Borgmassivet Intrusions) to an ‘uncontaminated’ Group 3 magma composition. The three samples that plot at higher 87Sr/86Sr, lower Nb/Nb* and lower εNd (∼5) can be explained by the addition of ∼20% of upper crust (akin to the mixing curve in Fig. 10). A separate subset of five samples (Fig. 16) that plot at slightly lower Nb/Nb* than the most primitive magmas at similar 87Sr/86Sr values could reflect mixing of a small (2–3%) lithospheric mantle partial melt component with the Group 3 uncontaminated end-member (Z.1816.2: 87Sr/86Sr = 0·7035; εNd = 8·8; Nb/Nb* = 1·65).

Fig. 19.

Variation in La/Yb vs Dy/Yb for Groups 1–4 from the Ahlmannryggen. The increase in Dy/Yb reflects the increased depth of melting and decreasing La/Yb reflects an increase in the amount of partial melting.

Fig. 19.

Variation in La/Yb vs Dy/Yb for Groups 1–4 from the Ahlmannryggen. The increase in Dy/Yb reflects the increased depth of melting and decreasing La/Yb reflects an increase in the amount of partial melting.

The Group 3 dykes are clearly an unusual group of rocks, which were intruded at ∼190 Ma, have a strike direction parallel to the Pencksokket glacial trough, the future continental margin and the Explora escarpment (Fig. 1). They are E-MORB-like in many respects and include ferropicrites as well as picrites. However, the Ti contents are high (3–4 wt %) and in this respect they differ from E-MORB and more closely resemble ocean-island basalts (OIB), although they are more depleted in incompatible elements than OIB. The depleted source component in mantle plumes is interpreted to be distinct from the MORB-source mantle component beneath present-day mid-ocean ridges (Kerr et al., 1995). The MORB-like rocks associated with mantle plumes are believed to have been generated from a depleted source component that forms an intrinsic component of the plumes (e.g. Fitton et al., 1997).

Within Group 3, three samples are termed ferropicrites (Fig. 11); these have MgO and FeO contents >12 wt % (with FeO > MgO). Ferropicrites are rare worldwide, but have been identified from the Permo-Triassic Siberian Traps continental flood basalt (CFB) province by Wooden et al. (1993) and the Early Cretaceous Etendeka CFB province of Namibia by Gibson et al. (2000). These workers interpreted the ferropicrites as partial melts of Fe-rich streaks in mantle plume starting heads, combined with a significant melt contribution from the convecting mantle. It is predicted that such melts would be erupted early in the history of flood basalt provinces and generated at high pressure (35–45 kbar) and high temperature (Tp ∼ 1550°C). This is significant, as the available geochronology data for Group 3 ferropicrites indicate an age of ∼190 Ma, which reinforces the prediction of Gibson et al. (2000) that ferropicrites would be amongst the first-formed melts from a plume head.

Group 4 (very high Ti–Zr)

Group 4 rocks are characterized by very high TiO2 (3·87–5·28 wt %) and Zr (343–568 ppm) contents and are the most enriched of the four magma groups. Half of the Group 4 dykes are low-K picrites and overlap (Fig. 12b) the picritic HTZ group of Sweeney et al. (1994) and, in part, the CT4 picrites of Luttinen et al. (1998). Luttinen et al. (1998) emphasized the OIB-like geochemistry of their CT4 subgroup and suggested that this may represent melts derived from a plume component in the Karoo volcanic province. The CT4 dykes have lower TiO2 than the Group 4 dykes of the Ahlmannryggen.

Sweeney et al. (1994) discussed the origins of the HTZ Karoo picrites and interpreted them as the likely parent of the abundant low-MgO, HTZ magmas. They also invoked a plume component in the petrogenesis of the HTZ group, which was supported by Ellam et al. (1992) using Re–Os isotopes.

Group 4 dykes have a narrow range in strike direction (∼020°), which is parallel to the Jutulstraumen subglacial trough and also corresponds to the mean strike direction of the Group 2 dykes (Fig. 2). Both dyke groups were interpreted to have been emplaced at ∼178 Ma. This age is confirmed by the recent work of Zhang et al. (2003) who reported an age of 176·6 ± 0·6 Ma for a dyke (A309) from the southern Kirwanveggen (Fig. 1). The geochemistry of this dyke is reported in Table 2 (A. V. Luttinen, unpublished data); it corresponds closely to the Group 4 geochemical group (high Ti–Zr) and may actually be part of the same dyke as sample Z.1653.2 (Table 2), also from Petrel Peak (Fig. 1). The Zhang et al. (2003) age (177 Ma) for dyke A309 is in close agreement with the 178 Ma age for another Group 4 dyke dated as part of this study (Z.1804·3: 178·3 ± 3·7 Ma; Fig. 3b).

Group 4 dykes are chemically unusual in the context of the Karoo volcanic province. They are the highest TiO2–Zr rocks of the Karoo, and with the exception of localized alkali–mafic intrusions and lavas, they also form some of the most incompatible element enriched rocks. Seven of the 10 samples identified in Group 4 have MgO contents >11·2 wt %, with mg-numbers up to 72, and are, therefore, picritic. Unlike the other three geochemical groups of the Ahlmannryggen, the Group 4 rocks display a wide range in εNd, varying from 2·4 to −4·6 (Fig. 10), which suggest a contribution from partial melts of enriched SCLM or contamination by continental crust. All Group 4 dykes shown in Fig. 9d have at least a minor negative Nb–Ta anomaly. The dykes with the weakest Nb–Ta anomalies are the samples with the highest εNd values (∼1·5), whereas those with lower εNd values (∼−4·5) have the most pronounced Nb–Ta anomaly. Using average lamproite as a proxy for a small degree partial melt of subcontinental lithospheric mantle, Group 4 magmas could represent mixes of a partial melt of a MORB source with significant (∼20–30%) partial melt of the lithospheric mantle (Fig. 16). The Th/Ta vs Ti/Zr plot (Fig. 15) also suggests involvement of an enriched component in the petrogenesis of the Group 4 magmas, which trend away from the MORB field toward a crustal or lithospheric mantle component. Dy/Yb values (3–3·5; Fig. 19) support melting in the presence of garnet. The steep slopes of the multi-element plots (Fig. 9d) also indicate that the HREE are being retained in the mantle source. The Group 4 dykes have negative ΔNb values, but are characterized by very high Zr/Y values (Fig. 18).

CONCLUSIONS

Emplacement history and tectonics

Our new geochemical groupings, together with structural and stratigraphical observations and geochronology, allow us to reconstruct the emplacement history of the Mesozoic dykes of the central Ahlmannryggenn range. Available 40Ar/39Ar ages indicate that the picrites and ferropicrites of Group 3 are the oldest of the Mesozoic dyke suites, emplaced at ∼190 Ma. Group 3 dykes trend ∼N 70 E and are restricted to a narrow, ∼8 km wide corridor, extending from the Grunehogna nunatak area to two isolated exposures along strike to the WSW (Fig. 2). Group 4 and Group 2 dykes represent the youngest, with an age peak at ∼178 Ma.

Dykes of Group 1 are sub-parallel to the Group 3 picrites and ferropicrites. Group 2 and Group 4 dykes are dominantly NNE–SSW striking. The parallel relationship between dykes from Groups 1 and 3 suggests that they were probably all emplaced in response to the same applied stress field, which, based on our geochronology, existed at ∼190 Ma. Although the exposures of Group 3 dykes did not yield data conducive for dyke swarm dilation estimates, limited data from Group 1 dykes suggest an approximately north–south dilation direction (004–184°), and, by association, a parallel oriented minimum principal stress. In contrast, the overwhelming majority of dykes in Groups 2 and 4 are almost exclusively north–south to NNE–SSW trending (Jutulstraumen parallel) and were emplaced in response to NW–SE (307–127°) oriented dilation (minimum principal stress).

A large number of dykes are present on the eastern flank of the Jutulstraumen ice stream, exposed at Straumsvola nunatak and in other nunataks within a 30 km radius (Harris & Grantham, 1993). Here two main dyke trends can be recognized, one NE–SW trending (Harris & Grantham, 1993), and a second more dominant trend of NNW–SSE, although no data regarding the relative or absolute chronology of these dykes are currently available, other than that some dykes postdate the Straumsvola nepheline syenite, which is dated between 180·9 ± 2·8 Ma (Grantham, 1996) and 178 ± 2 Ma (Grantham et al., 2001), nor are there any palaeostress or dilation direction data. It is possible that NE–SW-oriented dykes in the Straumsvola area were emplaced synchronously with similarly oriented dykes in the Ahlmannryggen. If such a correlation is correct the emplacement of these dykes implies the existence of a regional NW–SE-oriented minimum principal stress direction that was perpendicular to the crustal boundary between the Archaean Grunehogna craton and the 1 Ga mobile belt of the Maudheim Province (Fig. 1 inset).

The giant Okavango dyke swarm (ODS; Fig. 1) of southern Africa forms one arm of a giant radiating dyke swarm, which also includes the Sabie River (SRBF; Fig. 1) and Rooi Rand dyke swarms (RRDS; Fig. 1). Like the Groups 2 and 4 dykes of the Ahlmannryggen, the Okavango dyke swarm exploits a major crustal boundary. This swarm has recently been dated and shown to contain a significant component of 178 Ma dykes (Elburg & Goldberg, 2000; Le Gall et al., 2003; Jourdan et al., 2004a). It therefore seems likely that the NNE–SSW-oriented dykes of the Ahlmannryggen may have been a component of a similar radiating dyke swarm, although the small average width of the Ahlmannryggen dykes (∼1 m), which is considerably less than the mean width of the Okavango dykes (18 m), suggests that the potential Jutulstraumen arm of the radiating dyke swarm was subject to significantly reduced magmatism.

It is tempting to correlate the ENE–WSW-trending dykes (Groups 1 and 3) of the Ahlmannryggen with the Rooi Rand dyke swarm (RRDS) of southern Africa, based on their sub-parallel alignment in Gondwana reconstructions. However, both 40Ar/39Ar geochronology (RRDS is 173·9 ± 3·8 Ma; Jourdan et al., 2004b) and geochemistry suggest that the RRDS and Group 3 dykes were not emplaced as part of the same event.

Magma types

The minor intrusions of the Ahlmannryggen region of western Dronning Maud Land can be grouped into four distinct geochemical types (Groups 1–4) based on immobile incompatible elements (Ti, Zr, Y), LILE and Sr–Nd isotope composition. 40Ar/39Ar geochronology demonstrates two emplacement events at ∼190 Ma (Groups 1 and 3) and ∼178 Ma (Groups 2 and 4), which bracket the main Karoo volcanic event at ∼182 Ma.

The Group 1 dykes were emplaced at ∼190 Ma, parallel to the Group 3 dykes (Fig. 2) and to the Pencksökket subglacial trough, which may represent a major graben-like structure that extends to the SW (Hungeling & Thyssen, 1991), parallel to the Heimefrontfjella (Fig. 1). The petrogenesis of the Group 1 dykes is uncertain. They could be generated by mixing of ∼12% melt fraction of an enriched SCLM component with a partial melt of a depleted source. In this case the variation in 87Sr/86Sr at constant εNd might be the result of post-magmatic alteration. However, the variation in 87Sr/86Sr also correlates with SiO2 and mg-number, and an alternative interpretation is that the Group 1 dykes are the result of AFC processes from a Group 3 parental magma involving lower Archaean crust as the contaminant.

The Group 2 rocks show little or no chemical evidence of crustal contamination. However, trace element ratios and Nd–Sr isotopic data suggest the involvement of an enriched lithospheric mantle source component in their petrogenesis. If the primary mantle-derived magmas were similar in composition to the low-87Sr/86Sr Group 3 magmas then the Group 2 compositions could be generated by mixing of <10% melt fraction of an enriched SCLM component with a partial melt of a depleted source. The Group 2 rocks were intruded at ∼178 Ma, broadly parallel to the Jutulstraumen subglacial trough, which is interpreted as a continental rift and may be continuous with the Pencksökket trough (Fig. 1). The Jutulstraumen rift has associated alkaline magmatism along its eastern margin (Harris & Grantham, 1993). Group 2 rocks are also geochemically similar to the Rooi Rand dykes of the Lebombo rift, which were also emplaced late in the history of the province.

The Group 3 rocks of the Ahlmannryggen form the most unusual geochemical group of the entire Karoo–Antarctic magmatic province. They include high Ti–Zr picrites and ferropicrites, which have isotopic characteristics (εNd ∼8, 87Sr/86Sr ∼0·7035) consistent with derivation from a depleted mantle source. Their high TiO2 and Zr contents and MORB-normalized trace element patterns suggest that they are derived by small degrees of partial melting of a MORB-like source. The Group 3 dykes were intruded at ∼190 Ma, parallel to the Pencksökket glacial trough, and represent the first magmas of the Karoo–Antarctic province. They show evidence, in part, of both derivation from enriched mantle and crustal contamination. A subgroup with less depleted isotope ratios (εNd ∼5, 87Sr/86Sr ∼0·7055) is considered to be the result of ∼10% upper crustal contamination, whereas a secondary subgroup (Fig. 16) is the product of small amounts of mixing with partial melts of enriched lithospheric mantle. The ‘uncontaminated’ Group 3 (εNd ∼9; 87Sr/86Sr ∼0·7035) samples are considered to represent the closest composition to the primitive sub-lithospheric magmas in the Ahlmannryggen.

The rocks of Group 4 are high Ti–Zr, low-K picrites, which overlap, in part, with the high Ti–Zr basalts of the central Lebombo (Sweeney et al., 1994) and the high-Ti CT4 Group from Vestfjella (Luttinen et al., 1998). They were intruded at ∼177–178 Ma and extend from the Ahlmannryggen to the southern Kirwanveggen (Fig. 1). They have a strike direction parallel to the Jutulstraumen glacial trough and to the 178 Ma Group 2 intrusions. They appear to be small-volume partial melts generated at depths similar to or greater than the Group 3 magmas. The Group 4 rocks fall into two subtypes: those with a clear contribution from subduction-modified lithospheric mantle (strongly negative εNd, Nb–Ta negative anomaly) and those with positive εNd and flatter multi-element patterns (Fig. 9d). Sweeney et al. (1994) suggested a key role for subcontinental lithospheric mantle and an asthenospheric plume in the generation of the Lebombo low-K picrites.

Role of a mantle plume

The geochemical characteristics of the Ahlmannryggen intrusions suggest complex mixing relationships between Ti-rich, small volume partial melts (Group 3) of a depleted mantle source and partial melts of enriched lithospheric mantle plus assimilation of local continental crust. The isotopically depleted end-member has both MORB- and OIB-like characteristics. It is tempting to invoke an asthenospheric mantle plume origin for the Group 3 magmas and, given their intrusion age (∼190 Ma), this lends support to the incubating asthenospheric plume model of Sweeney et al. (1994).

Where mantle plumes have been interpreted as being responsible for the magmatism of flood basalt provinces there is often continued debate as to whether the plume arrival at the base of the lithosphere and large volume melting occurred during a short time period (a few million years) or whether plume arrival was followed by a prolonged period (∼10 Myr) prior to the main episode of magmatism.

40Ar/39Ar geochronology by Duncan et al. (1997) on basic lavas from southern Africa and the Kirwanveggen suggests that the duration of magmatism was very short (1–2 Myr). However, the Duncan et al. (1997) study did not include any data on minor intrusions of the Karoo. The new 40Ar/39Ar geochronology data presented here indicate a long-lived magmatic event of >10 Myr (178–190 Ma). This extended time period is associated with diverse magma chemistry, in contrast to the dominantly low-Ti tholeiites associated with the 182–183 Ma flood basalt event. The style and chronology of the magmatism observed in the Karoo–Dronning Maud Land is akin to that described from the Etendeka province of NW Namibia (Thompson et al., 2001), although the Karoo event is considerably more prolonged and is associated with craton boundaries. The evidence presented here strongly suggests that a plume incubation model may be applicable for the Early Jurassic magmatism of the Karoo–Dronning Maud Land province.

The field and air operations staff at Halley Base are thanked for their support. Graham Pearson (University of Durham) supplied the ICP-MS analyses, and Dave Emley (University of Keele) carried out the XRF analyses. This work has benefited greatly from the thorough and thoughtful reviews of Chris Harris, Andrew Kerr, Arto Luttinen and Marjorie Wilson. Adela Fazel acknowledges the receipt of an Antarctic Funding Initiative studentship.

REFERENCES

Armstrong, R. A., Bristow, J. W. & Cox, K. G. (
1984
). The Rooi Rand dyke swarm, southern Lebombo. In: Erlank, A. J. (ed.) Petrogenesis of the Volcanic Rocks of the Karoo Province. Geological Society of South Africa, Special Publications 13, 77–86.
Bergman, S. C. (
1987
). Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. In: Fitton, J. G. & Upton, B. G. J. (eds) Alkaline Igneous Rocks. Geological Society, London, Special Publications 30, 103–190.
Brewer, T. S., Rex, D., Guise, P. G. & Hawkesworth, C. J. (
1996
). Geochronology of Mesozoic tholeiitic magmatism in Antarctica: implications for the development of the failed Weddell Sea rift system. In: Storey, B. C., King, E. C. & Livermore, R. A. (eds) Weddell Sea Tectonics and Gondwana Break-up. Geological Society, London, Special Publications 108, 45–61.
Bussell, M. A. (
1989
). A simple method for the determination of the dilation direction of intrusive sheets.
Journal of Structural Geology
 
11
,
679
–687.
Chambers, L. M. & Fitton, J. G. (
2000
). Geochemical transitions in the ancestral Iceland plume: evidence from the Isle of Mull Tertiary volcano, Scotland.
Journal of the Geological Society, London
 
157
,
261
–263.
Cox, K. G. (
1989
). The role of mantle plumes in the development of continental drainage patterns.
Nature
 
342
,
873
–877.
Cox, K. G. (
1992
). Karoo igneous activity, and the early stages of the break-up of Gondwanaland. In: Storey, B. C., Alabaster, T. & Pankhurst, R. J. (eds) Magmatism and the Causes of Continental Break-up. Geological Society, London, Special Publications 68, 137–148.
Curtis, M. L. & Riley, T. R. (
2003
). Mobilization of fluidised sediment during sill emplacement, western Dronning Maud Land, East Antarctica.
Antarctic Science
 
15
,
393
–398.
De Bruiyn, H., Schoch, A. E., van der Westhuizen, W. A. & Myburgh, C. A. (
2000
). Picrite from the Katse area, Lesotho: evidence for flow differentiation.
Journal of African Earth Sciences
 ,
31
,
657
–668.
Delaney, P. T., Pollard, D. D., Ziony, J. I. & McKee, E. H. (
1986
). Field relations between dikes and joints: emplacement processes and palaeostress analysis.
Journal of Geophysical Research
 
91
,
4920
–4938.
Duncan, A. R., Erlank, A. J. & Marsh, J. S. (
1984
). Geochemistry of the Karoo igneous province. In: Erlank, A. J. (ed.) Petrogenesis of the Volcanic Rocks of the Karoo Province. Geological Society of South Africa, Special Publications 13, 355–388.
Duncan, A. R., Armstrong, R. A., Erlank, A. J., Marsh, J. S. & Watkins, R. T. (
1990
). MORB-related dolerites associated with the final phases of Karoo flood basalt volcanism in southern Africa. In: Parker, A. J., Rickwood, P. C. & Tucker, D. H. (eds) Mafic Dykes and Emplacement Mechanisms. Rotterdam: Balkema, pp. 119–129.
Duncan, R. A., Hooper, P. R., Rehacek, J., Marsh, J. S. & Duncan, A. R. (
1997
). The timing and duration of the Karoo igneous event, southern Gondwana.
Journal of Geophysical Research
 
102
,
18127
–18138.
Elburg, M. & Goldberg, A. (
2000
). Age and geochemistry of Karoo dolerite dykes from northeast Botswana.
Journal of African Earth Sciences
 
31
,
539
–554.
Ellam, R. M. & Cox, K. G. (
1991
). An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and the mantle lithosphere.
Earth and Planetary Science Letters
 
105
,
330
–342.
Ellam, R. M., Carlson, R. W. & Shirley, S. B. (
1992
). Evidence from Re–Os isotopes for plume–lithosphere mixing in Karoo flood basalt genesis.
Nature
 
359
,
718
–721.
Elliot, D. H., Fleming, T. H., Kyle, P. R. & Foland, K. A. (
1999
). Long-distance transportation of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica.
Earth and Planetary Science Letters
 
167
,
89
–104.
Erlank, A. J. (ed.) (
1984
). Petrogenesis of the Volcanic Rocks of the Karoo Province. Geological Society of South Africa, Special Publications 13.
Ernst, R. E. & Buchan, K. L. (
2001
). The use of mafic dyke swarms in identifying and locating mantle plumes. In: Ernst, R. E. & Buchan, K. L. (eds) Mantle Plumes: their Identification through Time. Geological Society of America, Special Papers 352, 247–265.
Ewart, A., Marsh, J. S., Milner, S. C., Duncan, A. R., Kamber, B. S. & Armstrong, R. A. (
2004
). Petrology and geochemistry of Early Cretaceous bimodal continental flood volcanism of the NW Etendeka, Namibia. Part 1: Introduction, mafic lavas and re-evaluation of mantle source components.
Journal of Petrology
 
45
,
59
–105.
Fitton, J. G., Saunders, A. D., Norry, M. J., Hardarson, B. S. & Taylor, R. N. (
1997
). Thermal and chemical structure of the Iceland plume.
Earth and Planetary Science Letters
 
153
,
197
–208.
Fitton, J. G., Saunders, A. D., Kempton, P. D. & Hardarson, B. S. (
2003
). Does depleted mantle form an intrinsic part of the Iceland plume?
Geochemistry, Geophysics, Geosystems
 
4
, 1029/2002GC000424.
Fleming, T. H., Foland, K. A. & Elliot, D. H. (
1995
). Isotopic and chemical constraints on the crustal evolution and source signature of Ferrar magmas, north Victoria Land, Antarctica.
Contributions to Mineralogy and Petrology
 
121
,
217
–236.
Floyd, P. A. (
1985
). Petrology and geochemistry of intraplate sheet-flow basalts, Nauru Basin, Deep Sea Drilling Project leg 89. In: Moberley, R. & Schlanger, S. O. (eds) Initial Reports of the Deep Sea Drilling Project, 89. Washington, DC: US Government Printing Office, pp. 471–497.
Foulger, G. R. (
2002
). Plumes, or plate tectonic processes?
Astronomy and Geophysics
 
43
,
6·19
–6·23.
Furnes, H., Neumann, E.-R. & Sundvoll, B. (
1982
). Petrology and geochemistry of Jurassic basalt dikes from Vestfjella, Dronning Maud Land, Antarctica.
Lithos
 
15
,
295
–304.
Furnes, H., Vad, E., Austrheim, H., Mitchell, J. G. & Garmann, L. B. (
1987
). Geochemistry of basalt lavas from Vestfjella and adjacent areas, Dronning Maud Land, Antarctica.
Lithos
 
20
,
337
–356.
Gibson, S. A., Thompson, R. N. & Dickin, A. P. (
2000
). Ferropicrites: geochemical evidence for Fe-rich streaks in upwelling mantle plumes.
Earth and Planetary Science Letters
 
174
,
355
–374.
Grantham, G. H. (
1996
). Aspects of Jurassic magmatism and faulting in western Dronning Maud Land, Antarctica: implications for Gondwana break-up. In: Storey, B. C., King, E. C. & Livermore, R. A. (eds) Weddell Sea Tectonics and Gondwana Break-up. Geological Society, London, Special Publications 108, 63–73.
Grantham, G. H. & Hunter, D. R. (
1991
). The timing and nature of faulting and jointing adjacent to the Pencksökket, western Dronning Maud Land, Antarctica. In: Thomson, M. R. A., Crame, J. A. & Thomson, J. W. (eds) Geological Evolution of Antarctica. Cambridge: Cambridge University Press, pp. 47–51.
Grantham, G. H., Guise, P. G., Spell, T., Eglington, B. M. & Kruger, F. J. (
2001
). The age, chemistry and structure of Jurassic intrusions in H. U. Svedrupfjella, western Dronning Maud Land. International Dyke Conference, Ithala, South Africa, 27 (abstract).
Groenewald, P. M., Moyes, A. B., Grantham, G. H. & Krynauw, J. R. (
1995
). East Antarctic crustal evolution: geological constraints and modelling in western Dronning Maud Land.
Precambrian Research
 
75
,
231
–250.
Hanson, R. E., Martin, M. W., Bowring, S. A. & Munyanyiwa, H. (
1998
). U–Pb zircon age for the Umkondo dolerites, eastern Zimbabwe: 1·1 Ga large igneous province in southern Africa—East Antarctica and possible Rodinia correlations.
Geology
 
26
,
1143
–1146.
Harmer, R. E., Lee, C. A. & Eglington, B. M. (
1998
). A deep mantle source for carbonatite magmatism: evidence from the nephelinites and carbonatites of the Buhera district, SE Zimbabwe.
Earth and Planetary Science Letters
 
158
,
131
–142.
Harris, C. & Grantham, G. H. (
1993
). Geology and petrogenesis of the Straumsvola nepheline syenite complex, Dronning Maud Land, Antarctica. Geological
Magazine
 
130
,
513
–532.
Harris, C., Marsh, J. S., Duncan, A. R. & Erlank, A. J. (
1990
). The petrogenesis of the Kirwan Basalts of Dronning Maud Land, Antarctica.
Journal of Petrology
 
31
,
341
–369.
Harris, C., Watters, B. R. & Groenewald, P. B. (
1991
). Geochemistry of the Mesozoic regional basic dykes of western Dronning Maud Land, Antarctica.
Contributions to Mineralogy and Petrology
 
107
,
100
–111.
Harris, C., Johnstone, W. P. & Phillips, D. (
2002
). Petrogenesis of the Mesozoic Sistefjell syenite intrusion, Dronning Maud Land, Antarctica and surrounding low-δ18O lavas.
South African Journal of Geology
 
105
,
205
–226.
Hawkesworth, C. J., Kelley, S. P., Turner, S., le Roex, A. P. & Storey, B. C. (
1999
). Mantle processes during Gondwana break-up and dispersal.
Journal of African Earth Sciences
 
28
,
239
–261.
Hergt, J. M., Peate, D. W. & Hawkesworth, C. J. (
1991
). The petrogenesis of Mesozoic Gondwana low-Ti flood basalts.
Earth and Planetary Science Letters
 
105
,
134
–148.
Hofmann, A. W. (
1988
). Chemical differentation of the Earth: the relationship between mantle, continental crust and oceanic crust.
Earth and Planetary Science Letters
 
90
,
297
–314.
Hungeling, A. & Thyssen, F. (
1991
). Reflection seismic measurements in western Neuschwabenland. In: Thomson, M. R. A., Crame, J. A. & Thomson, J. W. (eds) Geological Evolution of Antarctica. Cambridge: Cambridge University Press, pp. 549–555.
Jacobs, J., Thomas, R. J. & Weber, K. (
1993
). Accretion and indentation tectonics at the southern edge of the Kaapvaal craton during Kibaran (Grenville) orogeny.
Geology
 
21
,
203
–206.
Jourdan, F., Féraud, G., Bertrand, H., Kampunzu, A. B., Tshoso, G., Le Gall, B., Tiercelin, J. J. & Capiez, P. (
2004
). The Karoo triple junction questioned: evidence from Jurassic and Proterozoic 40Ar/39Ar ages and geochemistry of the Okavango dyke swarm (Botswana).
Earth and Planetary Science Letters
 
222
,
989
–1006.
Jourdan, F., Féraud, G., Bertrand, H., Kampunzu, A. B., Watkeys, M. K., Le Gall, B. & Tshoso, G. (
2004
). New age constraints on the Karoo large igneous province: triple junction and brevity questioned. Goldschmidt Geochemistry Conference, Copenhagen, Program with Abstracts, A575.
Kent, R. W. & Fitton, J. G. (
2000
). Mantle sources and melting dynamics in the British Palaeogene igneous province.
Journal of Petrology
 
41
,
1023
–1040.
Kerr, A. C., Saunders, A. D., Tarney, J., Berry, N. H. & Hards, V. L. (
1995
). Depleted mantle-plume geochemical signatures: no paradox for plume theories.
Geology
 
23
,
843
–846.
Koppers, A. A. P. (
2002
). ArArCALC—software for Ar-40/Ar-39 age calculations.
Computers and Geosciences
 
28
,
605
–619.
Kretz, R. (
1991
). The dilation direction of intrusive sheets.
Journal of Structural Geology
 
13
,
97
–99.
Krynauw, J. R., Hunter, D. R. & Wilson, A. H. (
1988
). Emplacement of sills into wet sediments at Grunehogna, western Dronning Maud Land, Antarctica.
Journal of the Geological Society, London
 
145
,
1019
–1032.
Le Bas, M. J. (
2000
). IUGS reclassification of the high-Mg and picritic volcanic rocks.
Journal of Petrology
 
41
,
1467
–1470.
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. (
1986
). A chemical classification of volcanic rocks based on the total alkali–silica diagram.
Journal of Petrology
 
27
,
745
–750.
Le Gall, B., Tshoso, G., Jourdan, F., Féraud, G., Bertrand, H., Tiercelin, J. J., Kampunzu, A. B., Modisi, M. P., Dyment, J. & Maia, M. (
2002
). 40Ar/39Ar geochronology and structural data from the giant Okavango and related mafic dyke swarms, Karoo igneous province, northern Botswana.
Earth and Planetary Science Letters
 
202
,
595
–606.
le Roex, A. P. & Lanyon, R. (
1998
). Isotope and trace element geochemistry of Cretaceous Damaraland lamprophyres and carbonatites, northwestern Namibia: evidence for plume–lithosphere interactions.
Journal of Petrology
 
39
,
1117
–1146.
Luttinen, A. V. & Furnes, H. (
2000
). Flood basalts of Vestfjella: Jurassic magmatism across an Archaean Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica.
Journal of Petrology
 
41
,
1271
–1305.
Luttinen, A. V., Rämö, O. T. & Huhma, H. (
1998
). Nd and Sr isotopic and trace element composition of a Mesozoic CFB suite from Dronning Maud Land, Antarctica: implications for lithosphere and asthenosphere contributions to Karoo magmatism.
Geochimica et Cosmochimica Acta
 
62
,
2701
–2714.
Marsh, J. S. & Mndaweni, M. J. (
1998
). Geochemical variations in a long Karoo dyke, eastern Cape.
South African Journal of Geology
 
101
,
119
–122.
Mitchell, A. A., Rmaluckan, V. R., Dunlevey, J. N. & Eglington, B. M. (
1996
). The basalt stratigraphy of the Sani Pass, Kwazulu/Natal Drakensberg.
South African Journal of Geology
 
99
,
251
–262.
Mitchell, C., Ellam, R. M. & Cox, K. G. (
1999
). Mesozoic dolerite dykes of the Falkland Islands: petrology, petrogenesis and implications for geochemical provinciality in Gondwanaland low-Ti basaltic rocks.
Journal of the Geological Society, London
 
156
,
901
–916.
Molzahn, M., Reisberg, L. & Wörner, G. (
1996
). Os, Sr, Nd, Pb and O isotope and trace element data from the Ferrar flood basalts, Antarctica: evidence for an enriched subcontinental lithospheric source.
Earth and Planetary Science Letters
 
144
,
529
–546.
Moyes, A. B., Krynauw, J. R. & Barton, J. M. (
1995
). The age of the Ritscherflya Supergroup and Borgmassivet Intrusions, Dronning Maud Land, Antarctica.
Antarctic Science
 
7
,
87
–97.
Nakamura, N. (
1974
). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites.
Geochimica et Cosmochimica Acta
 
38
,
757
–773.
Ottley, C. J., Pearson, D. G & Irvine, G. J. (
2003
). A routine method for the dissolution of geological samples for the analysis of REE and trace elements via ICP-MS. In: Plasma Source Mass Spectrometry. Special Publication, Royal Society of Chemistry 221–230.
Pankhurst, R. J. & Rapela, C. R. (
1995
). Production of Jurassic rhyolites by anatexis of the lower crust of Patagonia.
Earth and Planetary Science Letters
 
134
,
23
–36.
Peate, D.W. (
1997
). The Paraná–Etendeka Province. In: Mahoney, J. & Coffin, M. (eds) Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph, American Geophysical Union 100, 217–245.
Peters, M., Haverkamp, B., Emmermann, R., Kohnen, H. & Weber, K. (
1991
). Palaeomagnetism, K–Ar dating and geodynamic setting of igneous rocks in western and central Neuschwabenland, Antarctica. In: Thomson, M. R. A., Crame, J. A. & Thomson, J. W. (eds) Geological Evolution of Antarctica. Cambridge: Cambridge University Press, pp. 549–555.
Reid, D. L., Rex, D. C. & Brandl, G. (
1997
). Karoo basalts in the Ellisras sub-basin, northern Province.
South African Journal of Geology
 
100
,
151
–156.
Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L. & DePaolo, D. J. (
1998
). Intercalibration of standards, absolute ages and uncertainties in Ar–Ar dating.
Chemical Geology
 
145
,
117
–152.
Riley, T. R. & Knight, K. B. (
2001
). Age of pre-break-up Gondwana magmatism: a review.
Antarctic Science
 
13
,
99
–110.
Rock, N. M. S. (
1991
). Lamprophyres. Glasgow: Blackie.
Rollinson, H. (
1993
). Using Geochemical Data: Evaluation, Presentation, Interpretation. Harlow: Longman, 352 pp.
Rudnick, R. L. & Fountain, D. M. (
1995
). Nature and composition of the continental crust: a lower crustal perspective.
Reviews of Geophysics
 
33
,
267
–309.
Sun, S. S. & McDonough, W. F. (
1989
). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D. & Norry, M. J. (eds) Magmatism in Ocean Basins. Geological Society, London, Special Publications 42, 313–345.
Sweeney, R. J., Duncan, A. R. & Erlank, A. J. (
1994
). Geochemistry and petrogenesis of Central Lebombo basalts of the Karoo Igneous Province.
Journal of Petrology
 
35
,
95
–125.
Thompson, R. N., Gibson, S. A., Dickin, A. P. & Smith, P. M. (
2001
). Early Cretaceous basalt and picrite dykes of the southern Etendeka region, NW Namibia: windows into the role of the Tristan mantle plume in Paraná–Etendeka magmatism.
Journal of Petrology
 
42
,
2049
–2081.
Vuori, S. K. & Luttinen, A. V. (
2003
). The Jurassic gabbroic intrusions of Utpostane and Muren: insights into Karoo-related plutonism in Dronning Maud Land, Antarctica.
Antarctic Science
 
15
,
283
–301.
Wolmarans, L. G. & Kent, L. E. (
1982
). Geological investigations in western Dronning Maud Land, Antarctica—a synthesis. South African Journal of Antarctic Research Supplement 2.
Wooden, J. L., Czamanske, G. K., Federenko, V. A., Arndt, N. T., Chauvel, C., Bouse, R. M., King, B. W., Knight, R. J. & Siems, D. F. (
1993
). Isotopic and trace element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia.
Geochimica et Cosmochimica Acta
 
57
,
3677
–3704.
Yoder, H. S. & Tilley, C. E. (
1962
). Origin of basalt magmas: an experimental study of natural and synthetic rock systems.
Journal of Petrology
 
3
,
342
–532.
Zhang, X., Luttinen, A. V., Elliot, D. H., Larsson, K. & Foland, K. A. (
2003
). Early stages of Gondwana breakup: the 40Ar/39Ar geochronology of Jurassic basaltic rocks from western Dronning Maud Land, Antarctica, and implications for the timing of magmatic and hydrothermal events.
Journal of Geophysical Research
 
108
,
2249
.