I discuss a difficulty concerning the justification of the Axiom of Choice in terms of such informal notions such as that of iterative set. A recent attempt to solve the difficulty is by S. Lavine, who claims in his Understanding the Infinite that the axioms of set theory receive intuitive justification from their being self-evidently true in Fin(ZFC), a finite counterpart of set theory. I argue that Lavine's explanatory attempt fails when it comes to AC: in this respect Fin(ZFC) is no better off than the iterative notion.

You do not currently have access to this article.