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Small polystyrene particles were used to represent aquatic micro-organisms on millimeter scales,

assuming small or negligible self-induced motions. A large number of such particles were released in

turbulent flows that were generated in a controlled laboratory experiment, where the turbulence

parameters were reproducible and could be kept constant over extended times. These polystyrene

particles are tracked by video techniques. The available database allows estimates of the equivalents

of planktonic contact rates in the turbulent flow. The results are expressed in terms of average prey

fluxes. Scaling laws for the average contact rates for different turbulence intensities and for varying

ranges of interception of the predators and also for different forms of the fields of view were analyzed,

using two models for the orientation with respect to the flow. Irrespective of orientation and shape of

the volume of interception, the scaling with the turbulence intensity is weak, while the variations with

the range of perception are significant. The scaling laws obtained by this procedure have universal

validity, and they are applicable also for conditions in nature. The sole restriction is that the range of

predator perception is within the universal subrange.

INTRODUCTION

The rate of encounter between predators and prey is

considered to be a key determinant of vital rates of

many planktonic organisms. In particular, turbulent mix-

ing is found to be important for the feeding process of such

aquatic micro-organisms by controlling the contact rate

between predators and prey (Rothschild and Osborn,

1988; Mauchline, 1998). The observation has found ana-

lytic (Gerritsen and Strickler, 1977; Muelbert et al. 1994;

Osborn, 1996) as well as experimental support by obser-

vations of micro-organisms in turbulent environments

(Sundby and Fossum, 1990; Kiørboe and MacKenzie,

1995). The effect depends on the turbulence level and

the food concentration, which is related to the local envir-

onment, and to the perceptive field of the predator. The

latter may vary in geometry both in size and shape

between species, and for one species there may also be

ontogeny effects (i.e. age/size-dependent effects). Many

previous studies model predator–prey encounters by

assuming that the former possesses isotropic perception

capabilities and consequently that their field of view can

be modeled by a sphere, with a given radius R determined

by the predators sensory system (see Fig. 1a). With this

ideal symmetry, some results can be obtained analytically

(Gerritsen and Strickler, 1977; Osborn, 1996), and also by

simple dimensional arguments (Mann et al., 2005). For this

case, it can thus be demonstrated that the average asymp-

totic prey flux to a predator embedded in homogeneous

isotropic three-dimensional turbulence scales as n0"
1/3R7/3,

apart from a numerical constant, which was experimentally

found to be in the range 5–10 (Mann et al., 2005).

The average energy dissipated per unit mass fluid is here

given as ", while n0 is the reference prey concentration, see

also list of symbols in Table I.
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There are, however, a number of experimental studies

which indicate that the assumption of a spherical field of

view is in error, e.g. copepods perception capabilities can

be strongly aligned with the orientation of their anten-

nae, while visual predators such as fish larvae tend to see

more forward and above, rather than behind. One could

still argue for a spherical view as in Fig. 1b, which

appears ‘natural’, but in this case the center of the sphere

does not correspond to a position of a predator, which in

our experiment is represented by a polystyrene particle.

In cases where the perceptive field is not spherical, the

direction of orientation (e.g. angle of vision) relative to

the local velocity field may affect the encounter rate.

Small-scale turbulence has an isotropic chaotic nature,

with no preferred velocity direction. It is not obvious

what the consequences are for an organism with non-

spherical perceptive fields. Does the orientation angle in

such cases affect the encounter rate? Or do the chaotic

turbulent motions average out the effect, so that the

geometric shape of the field of view is irrelevant?

In this article we have investigated these problems in a

laboratory experiment. Turbulent flows were generated

in a tank by two moving grids, ensuring a homogeneous

distribution of small-scale turbulence throughout the

tank. The motion of small neutrally buoyant polystyrene

particles, which represent passively moving plankton,

was recorded by video. The chaotic orbit of individual

‘plankton’ particles could then be traced. We can con-

sider one such particle as a predator. Other particles that

come within a given ‘perceptive field’ associated with

that predator can then take the role of prey. The encoun-

ter rate was then investigated for different radii, shapes

and orientations of the perceptive field. The system

allows for tracking of a large amount of particles simul-

taneously. Each of the particles can take the role of both

predator and prey, allowing many realizations of the

experiment, and thereby lower the uncertainty of the

estimated average values.

We have previously studied the case with spherical

capture volumes (Mann et al., 2002, 2005). In the present

study we attempt to relax some of the idealizations, by

assuming conical fields of view, as illustrated in Fig. 1c,

and consider different opening angles, �, in the cone, and

also different radii, R. Models have been suggested for

the perception field of calanoid copepods where the field-

of-view consists of two cones directed oppositely in the

sidewise direction (Bundy et al., 1998; Lewis, 2003). In

such cases, our model can apply to one of these cones.

Relaxing the simplifying assumption of spherical

volumes, the problem has two new variables, the angle

� and the orientation of the cone with respect to the local

flow velocity. Two limiting cases for the orientations of

the cones were considered: one where the cone axis is

prescribed with respect to a local frame of reference for

the flow and one where it is prescribed in the laboratory

frame. Evidently, by letting �!1808, we recover the

spherical case analyzed before (Mann et al., 2002,

2005). The results summarized in the following can be

seen as covering representative variations of the orienta-

tions of micro-organisms in turbulent velocity fields. The

model for the field of view illustrated in Fig. 1c is of

course also idealized (Browman, 1996; Bundy et al.,

1998), but has nonetheless been applied in several analy-

tical studies (Lewis, 2003). The effects of non-spherical

perception fields as related to fish larvae have been dis-

cussed explicitly by, for instance, Browman (Browman,

1996) and by a net energy gain (NEG) model also by

Galbraith et al. (Galbraith et al., 2004). The conical model

adopted here remains an idealization, but it is more

relevant for aquatic micro-organisms than the simple

spherical model, and with the new free parameters intro-

duced, it also requires a significantly more complicated

data analysis.

When relating our results to average prey fluxes for

aquatic micro-organisms in a turbulent environment, it is

here implicitly assumed that prey is captured with cer-

tainty. More realistic conditions, with a finite capture

probability (MacKenzie et al., 1994), have been discussed

Fig. 1. Schematic presentation of fields of view for small aquatic
micro-organisms.

Table I: List of the most important symbols

Quantity Symbol Unit

Energy dissipation per gram fluid " mm2s–3

Taylor micro scale � mm

Kolmogorov length scale � mm

Kolmogorov time scale t� s

Eddy turnover time tF s

Mean-square fluctuating velocity Æu2æ mm2 s–2

Root-mean-square of one velocity component � =
p

Æu2/3æ mm s–1

Kinematic viscosity n mm2 s–1

Prey concentration n mm–3
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elsewhere for the special case of a spherical field of view

(Mann et al., 2003; Jørgensen et al., 2005).

Our main results are obtained in the form of scaling

laws, which are expected to have general validity for

length scales within the universal subrange of the turbu-

lence. The results can be seen as representative also in

cases where the organisms possess a self-induced motion,

as long as their velocities with respect to the surrounding

flow are much smaller than a root-mean-square velocity,p
Æu2æ � �

p
3, of the turbulent motions, see also the list

of symbols given in Table I. To be precise, our analysis

refers to an initial value problem, where a predator is

released in a statistically homogeneous distribution of

prey with given concentration n0, which is our reference

concentration. During the subsequent capture of prey,

the average concentration is depleted in the vicinity of

the predator, until finally a steady state situation devel-

ops, where the captured prey is, on average, substituted

(or compensated) by the turbulent mixing in the flow.

Even though the flow conditions in the present experi-

ment, as summarized in Table II, are rarely met in

nature, the scaling laws obtained are assumed to have

universal validity thus being applicable also for condi-

tions in nature, within the parameter ranges of applic-

ability. The restriction is that the turbulence is fully

developed so that a universal subrange exists, and that

the scale lengths R are within this subrange.

METHODS

The present study is based on experimental results

obtained in a controlled laboratory experiment, where

a turbulent flow with reproducible bulk parameters, such

as the dissipated energy per gram fluid ", could be

obtained (Ott and Mann, 2000). As long as we may

consider small predators and their prey to be passively

moving with the flow, we can let them be represented by

small neutrally buoyant polystyrene spheres, which are

passively carried by the turbulent motions. Similarly, we

let their prey be represented by similar polystyrene par-

ticles. The basic features of the present experiment are

described elsewhere (Ott and Mann, 2000), with a

detailed description given by Mann et al. (Mann et al.,

1999). A short summary will suffice here. The turbulence

is generated by the motion of two plastic grids, in the top

and bottom of a tank with 320 � 320 � 450 mm3 inner

dimensions, see Fig. 2 for a schematic illustration. Typical

Taylor micro-scale Reynolds numbers (Tennekes and

Lumley, 1972; Hinze, 1975), R� = �2/(�2p15), are

�100 for the present conditions, using the Taylor micro-

scale � = (15n�2/")1/2, where n < 0.89 mm2 s–1 is the

kinematic viscosity of the water, " is the specific energy

dissipation rate, and �2 is the variance of one velocity

component. The Kolmogorov length scale � � (n3/")1/4

is less than 1/2 mm for the present conditions, while

Kolmogorov time scales t� � (n/")1/2 are in the range

0.05–0.12 s. The ‘micro-scale’ � represents the length-

scales, where the viscous effects become important, see

also the summary given by Tennekes and Lumley

(Tennekes and Lumley, 1972) concerning the physical

meaning of the symbols. With the given size of the poly-

styrene particles, we are not able to resolve scales compar-

able to or smaller than �. A characteristic Eulerian length

scale (‘outer’ scale), LE as well as ", are determined by

fitting a von Kármán type wavenumber spectrum (Mann

et al., 1999; Ott and Mann, 2000) to experimentally

obtained results. LE is found to be in the range 20–25

mm. This outer scale determines the maximum separation

between two points within the universal Kolmogorov sub-

range of the turbulence, while the Komogorov scale, �,

sets the lower limit. Separations smaller than � fall within

the dissipation subrange. An integral length scale can be

defined by the integral of the parallel velocity component

correlation function R||(r) as Lint =
Ð

R||(r)dr. A summary of

Table II: Summary of the parameters derived from the second-order structure function and the spectra
obtained from it, based on measurements in the restricted volume shown in Fig. 2

LE (mm) � (mm s–1) Lint (mm) " (mm2 s–3) t� (s) � (mm) � (mm) R�

27 12 20 65 0.117 0.32 5.6 78

29 12 22 62 0.120 0.33 5.8 81

27 16 20 140 0.080 0.27 4.9 88

28 17 21 160 0.075 0.26 4.9 91

29 16 22 135 0.081 0.27 5.1 93

28 19 21 225 0.063 0.24 4.6 97

31 18 23 160 0.075 0.26 5.1 100

29 21 22 279 0.056 0.22 4.5 104
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parameters for eight different conditions used in the pre-

sent work is given in Table II. The ‘slippage’ between

spheres and the local flow is considered negligible (Mann

et al., 2005) for the present value of the Stokes number

<<0.05.

The motions of small polystyrene particles of diameter

a = 0.5–0.6 mm are followed with four video-cameras,

and the simultaneous positions of typically 500–1000

particles recorded at time intervals of 1/25 s. For a

very low density of test particles two cameras might

suffice, but for the given density we found four cameras

to give the best positioning (Mann et al., 1999). The size of

the effective measuring volume is approximately 140 �
140 � 120 mm3. It is ensured that the particles used in

the experiment are approximately neutrally buoyant, as

described by Mann et al. (Mann et al., 1999). By a tracking

procedure it is possible to link the positions of particles

(Mann et al., 1999), and thus follow their individual

motions in 3 spatial dimensions. In particular also their

time varying local velocity can be deduced (Ott and

Mann, 2000; Mann et al., 2005). The longest observed

track had duration of 40 s, but this is exceptional: usually

the tracks can be followed for 1–2 s only. For two of the

experiments (those with R� = 88 and 100, see Table II)

we followed approximately 600 particles, for the rest approxi-

mately 1100 particles in the reference volume. These num-

bers correspond to particle densities of 2.5 � 10–4 particles

mm–3 and 4.7 � 10–4 particles mm–3, respectively. Such

densities are too low to make the particles alter the general

flow characteristics. We demonstrated before (Mann et al.,

2005) that theparticlesareuniformlydistributedinastatistical

sense, to a good approximation.

Experiments are carried out for different intensities of

the turbulent velocity fluctuations, Æu2æ. With the poly-

styrene particles acting as markers for the local flow

velocities, experimental estimates can be obtained, for

instance, for the second order structure function,

�2 rð Þ � ur 0; tð Þ � ur r; tð Þð Þ2
D E

� CK " rð Þ2=3; ð1Þ

with ur here being the velocity component along the

direction of r, with CK being the Kolmogorov constant.

We have C2(r) being independent of t for time stationary

conditions. We demonstrated (Ott and Mann, 2000;

Mann et al., 2005) the existence of a universal range up

to separations close to LE, defined before.

A large-scale mean flow can be observed in the experi-

ment with a velocity up to 5.3 mm s–1 in the vertical

direction and 2.8–4.5 mm s–1 in the two other directions.

These values depend somewhat on the frequency of the

grid oscillations (Mann et al., 1999). Other methods for

forcing the turbulence (Hwang and Eaton, 2004; Webster

et al., 2004) may give smaller mean flows, but the resulting

turbulence levels are often smaller as well, and a universal

subrange may not fully develop. For the ensuing

Lagrangian analysis, this large-scale motion is immaterial,

since both predator and prey are convected similarly by

the large-scale motions. The present mean flow values

should be compared to noticeably larger fluctuating velo-

cities, see Table II. The uncertainty on the estimate of ",
in particular, is discussed by Mann et al. (Mann et al.,

1999); see also Mann et al. (Mann et al., 2005).

The parameter values attained for the present experi-

mental conditions are only marginally relevant for con-

ditions in nature. Thus we have approximate values: for

the open ocean {"�10–4 – 1 mm2 s–2; ��10–1 mm}, the

shelf {"� 10–1 – 1 mm2 s–2; � � 2 – 1 mm}, the coastal

zone {"� 10–1 – 102 mm2 s–2; �� 2 – 0.2 mm}, and for

the tidal front {"� 10 mm2 s–2; � � 0.5 mm} (Granata

and Dickey, 1991; Kiørboe and Saiz, 1995). Energy

dissipation rates " and Kolmogorov length scales � as

those found in our experiment occur in nature only

under strongly disturbed conditions. The turbulent

time scales are also generally shorter in the experiment

than in nature. The proposed scaling laws can, however,

be tested under our conditions, and given the good

agreement, these laws can then be safely applied to

conditions which cannot be achieved in the experiment,

provided the restrictions of relevant length scales being

in the universal subrange is satisfied. For the previous

list, the largest values of the Kolmogorov length can be

larger than the relevant characteristic size of a region of

interception. The range of radii R that we use is realistic:

for herring larvae we have an estimated contact radius

�3 mm (for instance Blaxter and Staines, 1971; Lewis

and Pedley, 2000). Within the applicability of a univer-

sal scaling-law, our results can be extrapolated to arbi-

trary contact radii.

50
cm

Fig. 2. Schematic illustration of the experimental set up, showing the
movable grids and the four video cameras. A restricted measuring
volume of 140 � 140 � 120 mm3 is shown by thin lines.
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R ESULTS AND DISC USSIO N

Particle fluxes into a moving volume

With the records for simultaneous particle trajectories

being available, we can select one of them to represent

the ‘predator’ and label all the others as ‘prey’. We then

select a radius R and opening angle � in the volume of

interception, and then remove all the particles which

happen to be inside this volume at the initial time.

During the subsequent Lagrangian motion of the refer-

ence ‘predator’, we count the number of prey entering its

co-moving volume of interception between successive

time steps. Each time a particle enters, it is ‘eaten’ in

the sense that it is removed from the database. Physically,

it is of course still there, but it is just not counted any-

more. If the data analysis is carried out for very long

times, all particles representing prey will eventually be

removed. Here we are only interested in the time evolu-

tion of the prey flux for times up to an eddy turnover

time. As long as R is much smaller than the size of the

measuring volume, we can with negligible error assume

the prey concentration to be constant at large distances,

corresponding to an ideally infinite system. By choosing a

large number of realizations, we can give an estimate for

the ensemble averaged Lagrangian prey flux as a func-

tion of time after release.

We consider two cases for the angle between the local

flow velocity and the direction specified by the cone-of-

view. It turns out that some interesting (and maybe even

counter-intuitive) results are found by letting this angle

be zero. Another case is realized by letting the angle be

randomly varying; this may be the case that is most

relevant for phenomena in nature.

First we consider the case where the angle between the

local flow vector and the symmetry line defined by the

cone is constant, here taken to be zero. In the data

analysis this is simple, since the local flow vector of the

polystyrene particles is known at each sampling time. In

Fig. 3 we show, with solid lines, examples of the time

varying particle flux to a moving volume with a given

radius R and opening angle � = 908. This flux is the result

of a competition between, on one hand, the depletion of

the density of polystyrene particles in the near vicinity of

the reference volume as they are ‘absorbed’ and, on the

other hand, inward flux of such particles, due to mixing

by the turbulent motions in the flow. In each realization,

we divide the flux by the initial particle density for that

particular realization. The result thus represents the par-

ticle flux for unit particle density, i.e. 1 particle per mm3.

For radii much smaller than the length scale of the

turbulence, R << LE, we find that the flux level varies

only weakly with time. A decreasing trend becomes more

conspicuous as the radius is increased, and for R > LE we

find a significant flux reduction for increasing times. The

flux is largest initially, when the concentration of ‘prey’ in

the surrounding is largest. At later times there will be a

possibility for encountering fluid elements which have

already been emptied, and the prey flux becomes smal-

ler. The flux depletion due to this effect increases for

increasing radii in the reference volume. In order to have

a moderate uncertainty on our estimators, we restrict the

analysis to time intervals smaller than 2 s. A single pre-

dator with a small range, R, has only few possibilities for

encountering prey in this time interval. We here present

averages over many realizations and can therefore give

accurate estimates nonetheless.

The ‘fixed angle’ case analyzed before may not be

directly relevant for aquatic micro-organisms. In some

cases arguments for varying orientation with respect to

the flow vector can be given (Visser and Jonsson, 2000),

this variation being either random or systematic. In the

latter case, means are required for the organisms to

sample the local flow velocity direction, and adjust to it

almost instantaneously. Evidence can be found of rapid

sensing of local flow conditions (Fields and Weissburg,

2005), although it is uncertain how rapidly micro-organ-

isms are able to reorient in the flow.

In order to present results more general than those

given in the previous section, we let here the angle

between the local flow vector and the cone axis be

Time (s)

F
lu

x 
(a

rb
itr

ar
y 

un
its

)

Fig. 3. Time variation of the flux to a moving conical volume, for
different radii R = 10, 15 and 20 mm, a fixed opening angle � = 908, the
cone axis being parallel to the local flow vector. Fluxes are in arbitrary
units, but by multiplying the fluxes given by a factor 105, here and in the
following, we obtain the flux that would be obtained if the density was 1
particle per mm3. We have E = 225 mm2 s–3. For this condition we have
the time (R2/E)1/3 = 1 s for R = 15 mm. The irregularities of the
individual curves represent the statistical uncertainty of the flux
estimate.
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varying. The simplest means for this in the analysis is to

let the symmetry axis of the cone be fixed in space. This

would correspond, for instance, to a micro-organism

facing a fixed light-source at all times. With the turbu-

lence being homogeneous and isotropic to a good

approximation, we will subsequently have the relevant

angle be uniformly distributed over a unit sphere. We

obtain results which resemble those in Fig. 3, but with

somewhat different numerical values.

Dimensional reasoning

The problem of turbulent particle flux to a perfect absor-

ber moving with the flow can be studied analytically by

allowing for some simplifying assumptions. We can rely

on simple dimensional arguments, or alternatively derive

a dynamic model equation for the problem. This is

usually possible only for some simple geometries. Here,

we consider the case where an absorbing spherical sur-

face is assumed to have its center defined by a particle,

which is moving with the flow.

The present problem is characterized by a few dimen-

sional quantities. With the viscosity n being immaterial

for the flow dynamics for scale lengths larger than the

Kolmogorov length scale � � (n3/")1/4, we only have one

quantity characterizing the flow, namely the specific

energy dissipation " with dimension length2 time–3, and

the length scale R < Lint characteristic for the particular

problem, here a moving conical volume, including a

sphere for � = 1808. Out of these quantities the only

combination giving a quantity with dimension time is

R2/3/"1/3, while "1/3R7/3 gives length3 time–1. We consider

here " as a deterministic quantity, and thereby ignore

intermittency effects. The physical dimension of the aver-

aged normalized particle flux ÆJ æ/n0 is length3 time–1, with

n0 being a constant. We have n0 being the initial concen-

tration, which for times up to 1–2 s is also the concentra-

tion at large distances from the reference volume of

interception. Note that n0 is different for the different

realizations summarized in Table II. For the discussions

in the present study the concentration (i.e. prey concen-

tration) is trivial: a doubling of prey concentration gives

here a doubling of the prey flux.

Quite generally it can then be argued, by purely dimen-

sional reasoning (Buckingham, 1914), that the turbulent

flux for given reference density n0 must have the form

Jh i
n0

¼ "1=3R7=3f
t"1=3

R2=3

� �
; ð2Þ

with f being a dimensionless function of a dimensionless

variable. The actual form of f can only be determined by

a more detailed model analysis, and will also depend on

the value for �, here assumed constant. We can argue

that we, in Fig. 3, have determined f experimentally,

without reference to any explicit model equations.

The arguments do not depend on any specific shape of the

reference volume, and assumeonly that it scales self-similarly

with one length scale, R. The functional dependence f in

equation (2) will, of course, be different for different shapes

of the volume. Note that for t > R2/3/"1/3, see Fig. 3, the

variation of f(t) is rather slow for parameters relevant here.

The observations summarized in Fig. 3 indicate that f

approaches a constant value for large times. The constant is

assumed to beuniversal, and for large �, we find it to be in the

range 5–10, as discussed in more detail later.

The scaling laws are most readily illustrated by con-

sidering compensated fluxes, i.e. the flux from Fig. 3

divided by "1/3R7/3. With this normalization the ideal

case will give a horizontal line for varying R or varying ".
The term ‘compensated flux’ is standard, but for the

present case it can be interpreted as f(t0), with reference

to equation (2). In Fig. 4a we show the compensated

fluxes obtained at a fixed time t0 � 0.9 tF for varying

R, and different angles �, all for the same " -value. The

‘eddy turnover time’ (R2/")1/3 appropriate for the scale

R is denoted tF. By this choice of t0 we have that all

relevant times fall within the 2 s long time tracks where

we have acceptable statistics.

In Fig. 4 we have results for compensated fluxes for the

two orientations mentioned before. For the spherical case

there should be no difference between the two cases, and

indeed the two corresponding curves are identical. For

the smallest angles, for instance � = 308 i.e. bottom

curves in Fig. 4a and b, we find a nontrivial difference,

( ) ( )

Fig. 4. Compensated flux to a moving conical volume, for varying
radii R and opening angles � = 308, 458, 608, 758, 908, 1358 and a full
sphere � = 1808. The smallest �-value corresponds to the lowest curves
and increases successively. The difference between the curves for � =
1358 and � = 1808 is negligible. In panel (a) we have the axis of the cone
being parallel to the local velocity vector at all times and in panel (b) the
cone axis is fixed with respect to the laboratory frame. Fluxes are
obtained systematically at a time corresponding to t0 = 0.9 tF, where
the appropriate eddy turnover time is given as tF = (R2/")1/3. We have
E = 225 mm2 s–3. The irregularities of the individual curves represent
the statistical uncertainties.
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the flux in Fig. 4b being only �1/2 of the corre-

sponding flux in Fig. 4a. This feature will be discussed

in more detail later on. For small R-values we note

some irregularities in the curves in Fig. 4; these are

due to statistical uncertainties caused by the reduced

number of particles entering the averages when the

test-volumes become small. Also we note that even

though R is larger than the Kolmogorov scale, we

might have the transverse dimension of the cone to

be small when the opening angle � in the cone is

small. In particular we might have cases where a

particle representing prey enters and then leaves the

cone within one sampling time, 1/25 s, in which case

it is not counted.

In Fig. 5 we show the compensated flux variation for a

fixed angle � = 608, and varying radii R. In Fig. 5a we

have the cone axis being parallel to the local flow velocity

vector. Here we use the results for all eight realizations

summarized in Table II. The six values of " = 62, 65,

135, 140, and the two realizations of 160 mm2 s–3 cluster

in the middle of the figure, the two largest values " = 225

and 279 mm2 s–3 are the two top ones. We have analyzed

several other values of � as well, and find results like those

shown in Fig. 5, although the statistical scatter increases

with small �, as expected. Within the uncertainty on the

value for the specific energy dissipation rate ", we find

that the proposed "1/3R7/3 scaling of the flux is well

satisfied for all �.
In Fig. 5b we show the compensated flux variation for

a fixed angle � = 608, and varying radii R, with the cone

axis being fixed in space. We use again the results for all

eight realizations summarized in Table II. Note that the

two Fig. 5a and b are close to identical, apart from a

difference in the magnitude of the flux, as consistent with

Fig. 4a and b. The factor 105 mentioned with Fig. 3 is

now included in the numbering on the vertical axis. If the

scaling law "1/3R7/3 implied in equation (2) was ideally

satisfied, the lines should be identical and horizontal in

Fig. 5a and b. It is close to be so, and the deviations from

the ideal case are within our experimental uncertainties,

here mainly on ".
As a consequence of results summarized in Fig. 5,

we can state that a given predator, here defined by

constant R and �, is experiencing a variation of the

prey flux as "1/3 when exposed to different turbulence

levels. Since the physical conditions (and the local

flow symmetry conditions in particular) for the data

analysis in Fig. 5a and b are different, we had antici-

pated that slight differences could be found between

the proposed scalings, apart from the difference in the

numerical constant, as observed. Should such a differ-

ence exist, it is below the accuracy of our measure-

ments, where we again expect the uncertainty on " to

be most important. Numerical simulations may help

to resolve this question.

To make the difference between the two limiting

cases of cone-orientations more clear, we show in Fig. 6

the flux variation for fixed R and varying �. The two

symbols, open and filled circles, show the cases with

directions being fixed with respect to the flow vector

and the laboratory frame, respectively. In this represen-

tation it is quite evident that for the orientation being

fixed with respect to the local flow the fluxes are con-

sistently above those for the other case, with orienta-

tions varying randomly with respect to the local velocity

vector of the flow. The trivial exception is the spherical

case, � = 1808.

( ) ( )

Fig. 5. Compensated fluxes, Æ J æ/(n0 "
1/3R7/3), to a moving conical

volume, for varying radii R and a fixed opening angle � = 608, and eight
realizations of turbulence conditions. The fluxes are sampled at the
same times �� as in Fig. 4. In panel (a), the cone axis is aligned with the
local flow velocity vector at all times, whereas in panel (b) the direction
is fixed in the laboratory frame.

( )

Fig. 6. Compensated asymptotic fluxes into a cone for R = 15 mm, for
varying �. The case where the direction of the cone axis is at all times
aligned with the local flow velocity vector is marked by open circles; the
case where the direction of the cone axis is fixed in the laboratory frame
has filled circles. We have " = 225 mm2 s–3.
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A model diffusion equation

The particle flux to a perfectly absorbing spherical

volume, which is moving with the flow, has been mod-

eled by, for instance, a simple diffusion equation with a

properly chosen diffusion coefficient which depends on

the simultaneous mean square velocity differences

obtained at given spatial separations, but independent

of time (Osborn, 1996). Essentially, the argument is

based on the second order structure function [equation

(1)], with the approximation being valid for separations r

smaller than the length scale of the turbulence. A dimen-

sionally correct diffusion coefficient was constructed by

multiplying a characteristic velocity and a characteristic

length, see also Table I. The velocity was taken to bep
C2(r). For the limiting form expressed in equation (1),

the only length characterizing the two particles is their

separation r. The resulting diffusion coefficient is conse-

quently K(r) � r4/3"1/3. The proposed diffusion equation

for the density n is actually identical to the one suggested

by Richardson in his study of distance-neighbor func-

tions (Richardson, 1926)

@

@t
nðr; tÞ ¼ C

"1=3

r2

@

@r
r10=3 @

@r
nðr; tÞ: ð3Þ

The result is written for the assumed spherically sym-

metric geometry, with r being the radial coordinate,

measured from the position of the center of the reference

sphere, and C is a numerical constant, assumed to be

universal. While equation (3) was here argued in part by

dimensional reasoning, it has also an analytical deriva-

tion (Roberts, 1961). As expected, the solutions to equa-

tion (3) follow the dimensional scaling obtained by

equation (2).

The model equation (3) assumes, as stated, spherical

symmetry, and the flux to a spherical absorber obtained

by solving equation (3) has been compared with experi-

mental results (Mann et al., 2005). The time-asymptotic

evolution showed reasonable agreement qualitatively as

well as quantitatively. If we consider surfaces without the

spherical symmetry, equation (3) becomes inapplicable,

and it is not easy to allow for arbitrary shapes. As far as

the dimensionally argued result [equation (2)] is con-

cerned, each new surface implies that a new function f

has to be found with a new asymptotic limit, but the

scaling with R and " remains applicable, where it is

implicitly assumed that the scaling with R is carried out

in a way that preserves the shape of the volume, and only

vary its scale size.

Again, we note that the results from the previous

section have a wider range of applicability, and need

not refer explicitly to spherical forms. A change in

shape of the reference volume will only imply a change

in the numerical constant. Thus, the scaling law implied

in equation (2) is expected to apply, for instance, to the

prey flux for any predator, independent of the shape of

the interception volume, when it is exposed to different

turbulence intensities as given by ".
Given the experimental uncertainties, the scaling rela-

tions obtained by dimensional reasoning are found to be

well satisfied when analyzing the data from our experi-

ment. The more specific diffusion equation model [equa-

tion (3)] for the spherically symmetric case, is only giving

qualitative agreement for the measured Lagrangian fluxes.

It seems, however, that the asymptotic limit is reasonably

well accounted for by the model, in particular also the

numerical coefficient obtained by use of the most recent

experimentally obtained value of the Richardson constant

(Ott and Mann, 2000), see also numerical results by

Boffetta and Sokolov (Boffetta and Sokolov, 2002).

Space-time variation of particle
concentrations

As particles are absorbed by the surface, the particle

density will be depleted in the flow surrounding the

moving reference volume. Inside the volume we find

trivially a vanishing particle concentration for t > 0. We

can analyze the radial variation of the average particle

density as a function of time, with results shown in Fig. 7a.

The radius R is chosen to be in the universal subrange.

The first curve is shown at the first sampling time, i.e.

t = 1/25 s. Variations with distance are obtained in ‘bins’

of 1 mm, and the second bin from the center is the

first one shown. To reduce the noise level, we normalized

also here the curves with the radial density variation found

at t = 0. Results corresponding to those in Fig. 7a, but now

(
)

(

)

(

)

(
)

Fig. 7. Space-time evolution of the normalized density around an
absorbing conical surface moving with the flow, here for � = 908 and
R = 20 mm. The cone axis is along the local flow vector at all times in
panel (a) and fixed in the laboratory frame in panel (b). The spatial
variation is averaged over all the spherical angles, to give a representa-
tion in terms of r only. By this construction, we evidently have the
normalized concentration to be 1/2 for r < R at t = 0, for the present
case with � = 908.
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with varying angles between cone axis and flow vector are

shown in Fig. 7b for comparison. These results also serve

to demonstrate that a predator affects the local average

prey density up to distances 2–3 R. At larger distances, the

turbulent mixing is effective in replenish the prey being

captured. (In one or two spatial dimensions this may be

different (Mann et al., 2003))

Experimental results for the variation of
particle fluxes over the surface

With the available information, we are in a position to

analyze the distribution of the particle fluxes over the

absorbing surfaces. It is, for instance, simple to distin-

guish particles entering the spherical parts and the con-

ical parts, see for instance Fig. 1c. The observations are

summarized in Fig. 8. The results for the present case are

somewhat counterintuitive by demonstrating that just as

much of the particle flux is into the spherical part [with

surface Ss = 2pR2 (1 – cos �)], as to the conical part (with

surface Sc = pR2 sin �). The ratio of the two surfaces is

Ss/Sc = 2 (1 – cos �)/ sin �. For small � we have Ss/Sc <
�, while Ss/Sc = 1 for � < 608. In Fig. 8 we have � = 308,
and consequently Ss/Sc = 2(2 –

p
3) < 0.54 < 1, i.e. the

spherical part has the smallest area, but after a short

transient time interval it carries as much flux as the

conical part. The implications are that with the cone

axis along the local velocity vector, it is the size of the

surface in the field of view facing the flow that is most

important for determining the prey flux to the surface. As

far as the accessible prey flux is concerned, this result

implies that a micro-organism has an optimum orienta-

tion with respect to the local velocity vector in a turbu-

lent flow. To take advantage of this, it is, however,

necessary that it possesses an ability to change and main-

tain orientations with respect to the local turbulent velo-

city field. The gain by such an ability is, however,

relatively modest and can for given � be estimated by

the difference between the ordinates for the filled and

open circles in Fig. 6, where the open circles corresponds

to the limiting case with an organism constantly aligned

with the local flow vector, while filled symbols refer to an

organism ‘tumbling’ randomly in the flow. The observa-

tion seems to be in variance with the given homogeneity

and isotropy of the flow. This objection is in error, how-

ever, because we consider here a conditionally selected

flow, with the cone axis pointing along the local flow

velocity at all times. If we instead, as in Fig. 4b, let the

angle between the velocity vector and the cone axis vary,

we find results as in Fig. 9. In this case, the axis of the

cone is ‘tumbling’ with respect to the local velocity vec-

tor, and we have no simple analytical expressions for

comparison. For this case the spherical part of the surface

is facing the flow just as often as the conical part. When

the cone is facing the flow ‘sidewise’ it is the conical part

that receives the largest flux, the projection of the sphe-

rical part of the surface being generally small, in this case.

We note that in Fig. 9 the ratio between the fluxes to the

spherical and conical parts of the surface has an approxi-

mately constant ratio of � 0.5. The present discussion

also explains the difference between the results of Fig. 4a

and b for the smallest opening angles, �.
The results of Fig. 7a illustrate how the particle density

in the wake of a cone with 908 opening angle (a half

sphere) is depleted with time, for the case where the

cone-axis is aligned with the local flow vector. We find

a decay time in excess of 1 s. If the angle between the

cone axis and the local flow velocity vector is allowed to

vary as in Fig. 7b, we find the particle density in the wake

of the half-sphere to be larger for r < R, because particles

are continuously ‘mixed-in’ from the surroundings. The

case where the predators field-of-view has an opening

( )

( )

( )

Fig. 8. Time variations of the fluxes into the spherical (full lines) and
the conical (dashed lines) parts of the reference volume, for R = 10, 15
and 20 mm, here for the case with � = 308. For this case, we have the
direction of the cone axis to be aligned at all times with the velocity
vector at the reference particle.
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angle of � = 908 has received particular attention in other

studies (Lewis and Pedley, 2001).

The full space-time variation of the flow field and

corresponding particle flux densities in the spatial region

surrounding the reference particle is evidently not avail-

able, only the statistical average. We can however, obtain

related information which turns out to explain the essen-

tial parts of the observations summarized in Figs 8 and 9.

We can thus find an analytical expression for the con-

ditionally averaged flow field in a volume surrounding a

reference particle, subject to the condition that the par-

ticle velocity vector is U. The essential parts of the

analysis are given by Adrian (Adrian, 1979). The idea is

to express the estimate for the conditionally averaged

velocity field as a series expansion of the velocity compo-

nents, wi = SjAi,jUj + Sj,kBi,j,kUjUk + ..., where the

conditioned vector U is taken from the realizations of

the flow, and will therefore have the same statistical

distributions as the fluid velocity u. The space-time

varying coefficients Ai,j, Bi,j,k, etc., are subsequently

determined by minimizing the mean square error ei �
Æ(wi – ui)

2æ by standard methods (Adrian, 1979, 1994). In

order to obtain a closed set of equations, it is necessary to

truncate the series expansion implied in wi. If we truncate

the series after the second term, the results are expressed

in terms of the velocity correlation functions and the

triple correlation function, as

Ai; j r; tð Þ ¼ 1

�2
uj x; t0ð Þui xþ r; t0 þ tð Þ
� �

ð4Þ

and

Bi;j;k r; tð Þ ¼ 3

2K�4
uk x; t0ð Þuj x; t0ð Þui xþ r; t0 þ tð Þ
� �

ð5Þ

assuming homogeneous and isotropic turbulence, with

�2 = 1/3Æu2æ and K being the kurtosis (Adrian, 1979;

Tung and Adrian, 1980). The present inclusion of space

as well as time variation of the coefficients Ai,j, Bi,j,k

implies a slight generalization (Guezennec, 1989) of the

results by Adrian (Adrian, 1979). It can be demonstrated

that Ai,j can be expressed in terms of f(r, t) = Æu||(x, t0) u||(x
+ r, t0 + t)æ/�2, where the subscript || indicates compo-

nents || r. Similarly, it can be shown that Bi,j,k can be

expressed in terms of k(r, t) = Æu||2(x, t0) u||(x + r, t0 + t) æ /

�3 (Batchelor, 1953). For t = 0, we can use the

Kolmogorov–Oubokhov law f(r, 0) < 1 – CK("r)2/3/�2.

Similarly, for small r, we can approximate k(r, 0) <
– a"r/�3, using the value a < 0.1 as obtained from

experimental observations (Van Atta and Chen, 1970)

rather than the 4/5 Kolmogorov law, which is supposed

to be exact only in the limit of infinite Reynolds numbers.

The results of this method of estimation have been

tested also for significantly non-Gaussian signals, show-

ing good agreement even with relatively few terms

retained in the series expansion for the estimator

(Pécseli and Trulsen, 1989, 1991). It turns out that the

method reproduces exact results for Gaussian random

processes (Papoulis, 1991).

In Fig. 10 we show results for the conditionally aver-

aged flow in the rest frame, while in Fig. 11, it is trans-

formed into the frame of reference following the selected

particle. For the case given here we have U = 2�. It turns

out that the contribution from k(r) is insignificant unless

we have very large values for the imposed condition, U >
5�. In other words: for the most probable velocities the

linear estimate will suffice, as based on equation (4). In

Fig. 12 we show selected particle trajectories obtained by

following particles released in the conditionally averaged

flow field shown in Fig. 11. For illustrative purposes, we

assumed a time variation of f(r, t) and k(r, t) by simply

( )

( )

( )

Fig. 9. Time variations of the fluxes into the spherical and the conical
parts of the reference volume, for R = 10, 15 and 20 mm, for the case
with � = 308 as in Fig. 8. For the present case, we have the direction of
the cone axis to be fixed in space, so that the angle between this axis and
the local flow vector is randomly varying over all angles. Full line gives
the flux to the spherical part and the dashed lines to the cone.
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introducing a multiplying exponential factor with a

decay time given by the correlation time. This approx-

imation will be too simplistic for a quantitative analysis,

but serves here for illustration.

By inspection of Fig. 11 as well as Fig. 12 we readily

find that given a conical surface having its axis aligned

with the flow in these model flows, the particles will on

average enter this surface through the part facing the

flow vectors, i.e. the spherical segment in this case. In

actual realizations of the flow, we of course have

fluctuations in addition to this conditional average, and

some particles will enter through the conical back surface

as well, as found in Fig. 8.

CONCLUSIONS

We have analyzed turbulent particle fluxes to moving

conical surfaces using data from a laboratory experi-

ment, letting such surfaces represent the ‘surface of inter-

ception’ of aquatic micro-organisms. Several flow

conditions were analyzed and the results compared. It

was demonstrated that the asymptotic normalized flux to

a surface, ÆJ æ/n0, scales with "1/3R7/3, in terms of the

radius in the cone R and the turbulence level as mea-

sured in terms of the energy dissipated per unit mass of

fluid, ", see Fig. 5. The most important new result of the

present study is an experimental verification of this uni-

versal scaling, demonstrating in particular that it remains

valid also for general shapes and orientations of the field

of vision of the predator. The scaling with turbulence

intensity, as measured by " is weak: it requires an eight

times increase in " to double the prey flux. On the other

hand, the flux increases with R faster than the surface of

the volume of interception.

The dimensionless function f(t) entering equation (2)

can be determined empirically from results like those

shown in Fig. 3, as illustrated, for instance, by Mann

et al. (Mann et al., 2005) for spherical search volumes.

The only essential distinction between the various surface

forms, as far as the scaling law is concerned, lies in

different numerical factors, which consequently depend

on �, where empirical results can be derived from Fig. 6.

For a sphere the numerical factor CF� f(t!1) is in the
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Fig. 10. Conditionally averaged velocity field around a moving refer-
ence particle at t = 0, here shown for the condition U = 2�. The figure
is shown in the laboratory rest-frame. The length of the arrow at the
origin gives the scale as determined by the imposed condition, U.
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Fig. 11. Conditionally averaged velocity field around a moving refer-
ence particle at t = 0, here shown for the condition U = 2�. The figure is
shown in the frame following the reference particle and represents the
average flow field observed by the predator. A small cone is inserted with
dashed lines, to illustrate the predator field of view, here with � = 458 and
R = 4 mm. Note that the figure frame is vertically asymmetric, in order to
make space for the arrows.
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Fig. 12. Particle trajectories calculated for the conditionally averaged
velocity field shown in Fig. 11. The particles are released in the top of
the figure.

J. MANN ETAL. j LABORATORY SIMULATIONS OF PLANKTONIC CONTACT RATES

519

D
ow

nloaded from
 https://academ

ic.oup.com
/plankt/article/28/5/509/1457534 by guest on 23 April 2024



range 4–9, and for a cone the corresponding number is

obtained by multiplying CF with the ratio of the com-

pensated flux for the corresponding � in Fig. 6, and the

corresponding flux for the sphere, i.e. � = 1808. As an

approximation for 208 � � � 1008, we can use the

empirical correction factor (� – 108)/1208, with �
inserted in degrees, obtained by inspection of Fig. 6

using the filled circles. The proposed "1/3R7/3 scaling

was previously predicted and then demonstrated for

spherical surfaces, but it is evidently not restricted to

this simple geometry. Formally, the suggested scaling

can be obtained as a product of a reference area and a

velocity, as also discussed before. As long as we are

concerned with spherical geometries, the relevant area

is easily determined, but as soon as the assumption of

simple geometry is relaxed, the relevant effective area is

no longer evident. Similar comments apply to the char-

acteristic velocity. The results of Fig. 6 support also the

observations by Galbraith et al. (Galbraith et al., 2004)

who compared a ‘wedge-shaped’ field of view with a

hemispherical model (� = 908 in our model) in their net

energy gain model, and found an increase in prey cap-

ture rate by approximately a factor three.

The previous dimensional analysis assumed the dissi-

pated energy per mass fluid to be a deterministic quan-

tity, thereby ignoring intermittency corrections (Boffetta

and Sokolov, 2002). With " being statistically varying

with spatial as well as temporal variables, we have

Æ"1/3æ 6¼ Æ"æ1/3, for instance, and it is not obvious how

to interpret the proposed scaling law in equation (2). We

here identified " by the value found by fitting the uni-

versal Kolmogorov–Oubokhov law [equation (1)] to the

experimentally obtained second order structure function.

We note a nontrivial uncertainty in the estimate, and also

that other methods of definition could be used as well

(Mann et al., 1999). The average value Æ"æ is the most

obvious choice in equation (2): this quantity is easy to

define, but unfortunately difficult to determine experi-

mentally. Numerical simulations have a significant

advantage in this respect. It is in principle possible to

obtain Æ"æ by the third order structure function (Van Atta

and Chen, 1970). This result is exact only in the limit of

infinite Reynolds numbers, and no existing controlled

laboratory experiments reach a parameter regime

where this expression can be used, not even as an

approximation.

Self-induced motion of predators will be important for

quiet environments, i.e. small ". The dataset does not

allow a modeling of predator motion, and this problem

will presumably best be studied by numerical flow simu-

lations. We have implicitly assumed prey to be captured

with certainty, which also represents an approximation.

This question can be more easily studied within the

available database, as illustrated by Mann et al. (Mann

et al., 2003), but requires some a priori model for capture

probability in terms of, say, the transit time of prey

through the capture region. For the spherical reference

case, we have empirical models for the probability den-

sities of these transit times, and a model can be formu-

lated in terms of these (Mann et al., 2003; Jørgensen et al.,

2005). By this, we believe that it is possible to model

changes in behavior of the micro-organisms caused by

the turbulence level in the environment.

The universal normalized flux function f(t) in equation

(2), has a constant asymptotic value for R in the universal

subrange, for the spherical case f (1) < 4–9, as stated

before (Mann et al., 2005). The initial value, f(0), is

approximately twice this value, although this estimate

has a nontrivial uncertainty. (Note that R for the top

curve in Fig. 3 is outside the universal subrange.) The

physical reason for the reduction in flux from f(0) to f(1)

is that initially the predator is immersed in the maximal

prey concentration. At later times this concentration is

depleted in its near environment as seen from, for

instance, Fig. 7, and the asymptotic flux f(t!1) = CF

is determined by the balance of captured prey, and the

transport of ‘fresh prey’ into the search volume due to the

turbulent mixing in the flow. A ‘jump-pause’ predator

can move into a fresh fluid volume, which has not been

searched for prey previously, by jumping a distance l.

Inspection of Fig. 7 indicates that l/R � 3–4 suffices for

this. In the ‘pause’ phase the predator is moving with the

flow, and captures a prey-flux as the one illustrated in

Fig. 3, starting at a value n0 "
1/3R7/3f(0). The ratio f(0)/

f(1) (where the dimensional coefficient n0 "
1/3R7/3 can-

cels), is a measure for the maximum gain by this strategy.

The precise numerical value for this gain is presumably

found best by numerical simulations.

We find a noticeable difference between the two limit-

ing cases for the orientation of the predator considered

here, i.e. the one with cone axis parallel to the local flow

vector in Fig. 6 (open circles) and the other where the

direction with respect to the local flow changes randomly

(filled circles in Fig. 6). The variation has been analyzed

for all available realizations summarized in Table II, and

found to be consistent. In a general sense, the results

illustrate the effect of the orientation of micro-organisms

with respect to the flow field. We found that the gain in

changing from a random orientation to the optimum

case can be at most 30 % for small angles in the reference

cone. This can be seen as the maximum gain a micro-

organism could obtain if given the capability of orienting

itself (at least somewhat) with respect to the local flow

velocity vector. From a physical point of view, we find

the difference between the two orientations analyzed

here to be interesting, and also somewhat
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counterintuitive. The difference was explained by intro-

ducing the conditionally averaged flows, see Figs 10 and

11, and it is plausible that such models can be useful in

other contexts as well.
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