This obituary may be quite surprising to many, if not most, readers of the Journal of Plankton Research as both the man himself and the word “fractal” he created to describe the complexity of forms and shapes occurring in nature might still be quite unfamiliar to most plankton biologists and ecologists. The Web of Science (accessed 3 January 2011) returns 17202 and 39 855 papers including the word “fractal” in their title and topic, respectively. Fractals are indeed a prolific topic, and have found applications in nearly all scientific fields, including plankton research.

BENOîT B. MANDELBROT, THE FATHER OF FRACTALS

The man behind the word “fractal”, Benoît B. Mandelbrot (Fig. 1), a Polish-born French mathematician, often referred to as the father of fractals, died on 14 October 2010 at the age of 85. He dedicated his life to study the complexity of patterns and processes arising in fields as diverse as geology, medicine, cosmology, engineering and finance. B. B. Mandelbrot wrote more than 200 publications, reaching nearly 13 000 citations and an H-index of 47; a list of publications selected for their potential interest to a wide audience is given in Table I.

Table I:

B. B. Mandelbrot, selected list of publications

Mandelbrot, B. B. (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156, 636–638 
Mandelbrot, B. B. and van Ness, J. W. (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10, 422–437 
Mandelbrot, B. B. and Wallis, J. R. (1969) Some long run properties of geophysical records. Water Resour. Res., 5, 321–340 
Mandelbrot, B. B. (1975) Les Objects Fractals: Forme, Hasard et Dimension. Flammarion 
Mandelbrot, B. B. (1977) Fractals. Form, Chance, and Dimension. Freeman 
Mandelbrot, B. B. (1983) The Fractal Geometry of Nature. Freeman 
Mandelbrot, B. B. (1985) Self-affine fractals and fractal dimension. Phys. Scripta, 32, 257–260 
Mandelbrot, B. B. (1986) Self-affine fractal sets. In: Pietronero, L. and Tosatti, E. (eds.), Fractals in Physics. North-Holland 
Mandelbrot, B. B. (1988) An introduction to multifractal distribution functions. In: Stanley, H. E. and Ostrowsky, N. (eds), Fluctuations and Pattern Formation. Kluwer, 345–360 
Mandelbrot, B. B. (1989) Multifractal measures, especially for the geophysicist. Pure Appl. Geophys., 131, 5–42 
Mandelbrot, B. B. (2001) Gaussian Self-Affinity and Fractals. Springer 
Frame, M. and Mandelbrot, B. B. (2002) Fractals, Graphics, and Mathematics Education. The Mathematical Foundation of America 
Mandelbrot, B. B. (2004) Fractals and Chaos: The Mandelbrot Set and Beyond. Springer 
Mandelbrot, B. B. and Hudson, R. L. (2006) The Misbehavior of Markets: A Fractal View of Financial Turbulence. Basic Books 
Mandelbrot, B. B. (2010) Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Springer 
Mandelbrot, B. B. (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156, 636–638 
Mandelbrot, B. B. and van Ness, J. W. (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10, 422–437 
Mandelbrot, B. B. and Wallis, J. R. (1969) Some long run properties of geophysical records. Water Resour. Res., 5, 321–340 
Mandelbrot, B. B. (1975) Les Objects Fractals: Forme, Hasard et Dimension. Flammarion 
Mandelbrot, B. B. (1977) Fractals. Form, Chance, and Dimension. Freeman 
Mandelbrot, B. B. (1983) The Fractal Geometry of Nature. Freeman 
Mandelbrot, B. B. (1985) Self-affine fractals and fractal dimension. Phys. Scripta, 32, 257–260 
Mandelbrot, B. B. (1986) Self-affine fractal sets. In: Pietronero, L. and Tosatti, E. (eds.), Fractals in Physics. North-Holland 
Mandelbrot, B. B. (1988) An introduction to multifractal distribution functions. In: Stanley, H. E. and Ostrowsky, N. (eds), Fluctuations and Pattern Formation. Kluwer, 345–360 
Mandelbrot, B. B. (1989) Multifractal measures, especially for the geophysicist. Pure Appl. Geophys., 131, 5–42 
Mandelbrot, B. B. (2001) Gaussian Self-Affinity and Fractals. Springer 
Frame, M. and Mandelbrot, B. B. (2002) Fractals, Graphics, and Mathematics Education. The Mathematical Foundation of America 
Mandelbrot, B. B. (2004) Fractals and Chaos: The Mandelbrot Set and Beyond. Springer 
Mandelbrot, B. B. and Hudson, R. L. (2006) The Misbehavior of Markets: A Fractal View of Financial Turbulence. Basic Books 
Mandelbrot, B. B. (2010) Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Springer 
Table I:

B. B. Mandelbrot, selected list of publications

Mandelbrot, B. B. (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156, 636–638 
Mandelbrot, B. B. and van Ness, J. W. (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10, 422–437 
Mandelbrot, B. B. and Wallis, J. R. (1969) Some long run properties of geophysical records. Water Resour. Res., 5, 321–340 
Mandelbrot, B. B. (1975) Les Objects Fractals: Forme, Hasard et Dimension. Flammarion 
Mandelbrot, B. B. (1977) Fractals. Form, Chance, and Dimension. Freeman 
Mandelbrot, B. B. (1983) The Fractal Geometry of Nature. Freeman 
Mandelbrot, B. B. (1985) Self-affine fractals and fractal dimension. Phys. Scripta, 32, 257–260 
Mandelbrot, B. B. (1986) Self-affine fractal sets. In: Pietronero, L. and Tosatti, E. (eds.), Fractals in Physics. North-Holland 
Mandelbrot, B. B. (1988) An introduction to multifractal distribution functions. In: Stanley, H. E. and Ostrowsky, N. (eds), Fluctuations and Pattern Formation. Kluwer, 345–360 
Mandelbrot, B. B. (1989) Multifractal measures, especially for the geophysicist. Pure Appl. Geophys., 131, 5–42 
Mandelbrot, B. B. (2001) Gaussian Self-Affinity and Fractals. Springer 
Frame, M. and Mandelbrot, B. B. (2002) Fractals, Graphics, and Mathematics Education. The Mathematical Foundation of America 
Mandelbrot, B. B. (2004) Fractals and Chaos: The Mandelbrot Set and Beyond. Springer 
Mandelbrot, B. B. and Hudson, R. L. (2006) The Misbehavior of Markets: A Fractal View of Financial Turbulence. Basic Books 
Mandelbrot, B. B. (2010) Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Springer 
Mandelbrot, B. B. (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156, 636–638 
Mandelbrot, B. B. and van Ness, J. W. (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10, 422–437 
Mandelbrot, B. B. and Wallis, J. R. (1969) Some long run properties of geophysical records. Water Resour. Res., 5, 321–340 
Mandelbrot, B. B. (1975) Les Objects Fractals: Forme, Hasard et Dimension. Flammarion 
Mandelbrot, B. B. (1977) Fractals. Form, Chance, and Dimension. Freeman 
Mandelbrot, B. B. (1983) The Fractal Geometry of Nature. Freeman 
Mandelbrot, B. B. (1985) Self-affine fractals and fractal dimension. Phys. Scripta, 32, 257–260 
Mandelbrot, B. B. (1986) Self-affine fractal sets. In: Pietronero, L. and Tosatti, E. (eds.), Fractals in Physics. North-Holland 
Mandelbrot, B. B. (1988) An introduction to multifractal distribution functions. In: Stanley, H. E. and Ostrowsky, N. (eds), Fluctuations and Pattern Formation. Kluwer, 345–360 
Mandelbrot, B. B. (1989) Multifractal measures, especially for the geophysicist. Pure Appl. Geophys., 131, 5–42 
Mandelbrot, B. B. (2001) Gaussian Self-Affinity and Fractals. Springer 
Frame, M. and Mandelbrot, B. B. (2002) Fractals, Graphics, and Mathematics Education. The Mathematical Foundation of America 
Mandelbrot, B. B. (2004) Fractals and Chaos: The Mandelbrot Set and Beyond. Springer 
Mandelbrot, B. B. and Hudson, R. L. (2006) The Misbehavior of Markets: A Fractal View of Financial Turbulence. Basic Books 
Mandelbrot, B. B. (2010) Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Springer 
Fig. 1.

Benoît B. Mandelbrot in 1997 (Source: http://www.math.yale.edu/mandelbrot/). A colour version of this figure is available online.

Fig. 1.

Benoît B. Mandelbrot in 1997 (Source: http://www.math.yale.edu/mandelbrot/). A colour version of this figure is available online.

After graduating from the prestigious Ecole Polytechnique then in Paris (1947), B. B. Mandelbrot received a Master in Science (1948) and an engineering degree (1949) from the California Institute of Technology. He later earned a doctorate in Mathematical Sciences from the University of Paris (1952), before receiving a prestigious scholarship from the Rockefeller Foundation to work with John von Neumann (a pioneering mathematician in game theory, economics, computer science, hydromechanics and quantum mechanics) as a post-doctoral fellow in the School of Mathematics of the Institute for Advanced Study at Princeton. He subsequently held positions in a range of prestigious institutions, including The Centre National de la Recherche Scientifique in Paris, IBM Research in New York, Harvard University, the Massachusetts Institute of Technology, and Yale University where he retired in 2005.

Mandelbrot never published on plankton nor on any marine-related topic. However, with a little bit of bad faith, his seminal work, entitled “How long is the coast of Britain? Statistical self-similarity and fractional dimensions” (Mandelbrot, 1967), might be thought as a marine contribution. In late annotations to this stepping-stone paper, Mandelbrot stated that this paper “was intended to be a Trojan horse allowing a bit of mathematical esoteric to infiltrate surreptitiously, hence near-painlessly, the investigation of the messiness of raw nature”. He was right, as this work planted the fractal seed and after more than a decade of self-proclaimed “immature aimlessness” with work published on information and game theories, linguistic, thermodynamics, noise and econometrics, Mandelbrot subsequently considered his work as an “increasingly acute single-mindedness” which gave rise to a few “Fractal Bibles” such as Fractals: Form, Chance, and Dimension (1977) and the self-explanatory The Fractal Geometry of Nature (1983), both translated into countless languages. His work inspired generations of scientists, helped both by its nearly universal fundamental importance and by the mesmerizing beauty of the pictures generated by fractal algorithms, such as the Mandelbrot and the Julia sets (e.g. Peitgen and Richter, 1986; Peitgen and Saupe, 1988; Briggs, 1992; Pickover, 1995, 2001; Lu, 1997; Frame and Mandelbrot, 2002; Peitgen et al., 2004; Stevens, 2005; Lesmoir-Gordon, 2010).

In 1967, Mandelbrot defined the basis of what will be formally coined “fractal geometry” a decade later (Mandelbrot, 1977, 1983), and introduced a new concept that has rapidly provided a unifying and cross-disciplinary basis for the description of nature's complexity. Many natural phenomena have a nested irregularity and may look similarly complex under different resolution (e.g. turbulent water flow or clouds; Fig. 2). While this nested structure, referred to as scale-invariant or self-similar (i.e. each portion can be considered a reduced-scale image of the whole) could be thought of as an additional source of complexity, it becomes a source of simplicity in the framework of fractal geometry. Hence, the degree of complexity of a given pattern or process can be described by a dimension DF, the so-called fractal dimension. In contrast to conventional (Euclidean) dimensions, a fractal dimension is fractional, hence describing the degree of complexity and tortuosity of an object. For instance, the dimensions of a straight line, a circle and a cube are, respectively, D= 1, D= 2 and D= 3. However, what is the dimension of the meandering trajectory of a ciliate, a copepod or a fish larvae? And what is the dimension of marine snow particles? These a priori naïve questions would not have found an answer without the help of fractal geometry (Logan and Wilkinson, 1990; Coughlin et al., 1992; Bundy et al., 1993; Kilps et al., 1994; Li et al., 1998; Jonsson and Johansson, 1997; Dowling et al., 2000; Uttieri et al., 2005, 2007, 2008; Seuront et al., 2004a, b, c; Seuront, 2006, 2010, 2011). Eleven papers directly related to fractals, however, have been published in the Journal of Plankton Research (Table II).

Table II:

Publications using fractals that appeared in the Journal of Plankton Research

Ascioti, F. A., Beltrami, E., Carroll, T. O. and Wirick, C. (1993) Is there chaos in plankton dynamics? J. Plankton Res., 15, 603–617. 
Dur, G., Souissi, S., Schmitt, F., Cheng, S.-H. and Hwang, J.-S. (2010) The different aspects in motion of the three reproductive stages of Pseudodiaptomus annandalei (Copepoda: Calanoida). J. Plankton Res., 32, 423–440. 
Lovejoy, S., Currie, W. J. S., Claereboudt, M. R., Bourget, E., Roff, J.-C. and Schertzer, D. (2001) Universal multifractals and ocean patchiness: phytoplankton, physical fields and coastal heterogeneity. J. Plankton Res., 23, 117–141. 
Ludovisi, A., Todini, C., Pandolfi, P. and Toticchi, M. I. (2008) Scale patterns of diel distribution of the copepod Cyclops abyssorum Sars in a regulated lake: the importance of physical and biological factors. J. Plankton Res., 30, 495–509. 
Pascual, M., Ascioti, F. A. and Caswell, H. (1995) Intermittency in the plankton: a multifractal analysis of zooplankton biomass variability. J. Plankton Res., 17, 1209–1232. 
Popova, E. E., Fasham, M. J. R., Osipov, A. V. and Ryabchenko, V. A. (1997) Chaotic behavior of an ocean ecosystem model under seasonal external forcing. J. Plankton Res., 19, 1495–1515. 
Seuront, L. (2006) Effect of salinity on the swimming behavior of the estuarine calanoid copepod Eurytemora affinis. J. Plankton Res., 28, 805–813. 
Seuront, L. and Lagadeuc, Y. (1998) Spatio-temporal structure of tidally mixed coastal waters: variability and heterogeneity. J. Plankton Res., 20, 1387–1401. 
Seuront, L. and Lagadeuc, Y. (2001) Multiscale patchiness of the calanoid copepod Temora longicornis in a turbulent coastal sea. J. Plankton Res., 23, 1137–1145. 
Seuront, L., Schmitt, F., Lagadeuc, Y., Schertzer, D. and Lovejoy, S. (1999) Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: example of phytoplankton distribution in turbulent coastal waters. J. Plankton Res., 21, 877–922. 
Uttieri, M., Nihongi, A., Mazzocchi, M. G., Strickler, J. R. and Zambianchi, E. (2007) Pre-copulatory swimming behaviour of Leptodiaptomus ashlandi (Copepoda: Calanoida): a fractal approach. J. Plankton Res., 29(Suppl. I), i17–i26. 
Ascioti, F. A., Beltrami, E., Carroll, T. O. and Wirick, C. (1993) Is there chaos in plankton dynamics? J. Plankton Res., 15, 603–617. 
Dur, G., Souissi, S., Schmitt, F., Cheng, S.-H. and Hwang, J.-S. (2010) The different aspects in motion of the three reproductive stages of Pseudodiaptomus annandalei (Copepoda: Calanoida). J. Plankton Res., 32, 423–440. 
Lovejoy, S., Currie, W. J. S., Claereboudt, M. R., Bourget, E., Roff, J.-C. and Schertzer, D. (2001) Universal multifractals and ocean patchiness: phytoplankton, physical fields and coastal heterogeneity. J. Plankton Res., 23, 117–141. 
Ludovisi, A., Todini, C., Pandolfi, P. and Toticchi, M. I. (2008) Scale patterns of diel distribution of the copepod Cyclops abyssorum Sars in a regulated lake: the importance of physical and biological factors. J. Plankton Res., 30, 495–509. 
Pascual, M., Ascioti, F. A. and Caswell, H. (1995) Intermittency in the plankton: a multifractal analysis of zooplankton biomass variability. J. Plankton Res., 17, 1209–1232. 
Popova, E. E., Fasham, M. J. R., Osipov, A. V. and Ryabchenko, V. A. (1997) Chaotic behavior of an ocean ecosystem model under seasonal external forcing. J. Plankton Res., 19, 1495–1515. 
Seuront, L. (2006) Effect of salinity on the swimming behavior of the estuarine calanoid copepod Eurytemora affinis. J. Plankton Res., 28, 805–813. 
Seuront, L. and Lagadeuc, Y. (1998) Spatio-temporal structure of tidally mixed coastal waters: variability and heterogeneity. J. Plankton Res., 20, 1387–1401. 
Seuront, L. and Lagadeuc, Y. (2001) Multiscale patchiness of the calanoid copepod Temora longicornis in a turbulent coastal sea. J. Plankton Res., 23, 1137–1145. 
Seuront, L., Schmitt, F., Lagadeuc, Y., Schertzer, D. and Lovejoy, S. (1999) Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: example of phytoplankton distribution in turbulent coastal waters. J. Plankton Res., 21, 877–922. 
Uttieri, M., Nihongi, A., Mazzocchi, M. G., Strickler, J. R. and Zambianchi, E. (2007) Pre-copulatory swimming behaviour of Leptodiaptomus ashlandi (Copepoda: Calanoida): a fractal approach. J. Plankton Res., 29(Suppl. I), i17–i26. 
Table II:

Publications using fractals that appeared in the Journal of Plankton Research

Ascioti, F. A., Beltrami, E., Carroll, T. O. and Wirick, C. (1993) Is there chaos in plankton dynamics? J. Plankton Res., 15, 603–617. 
Dur, G., Souissi, S., Schmitt, F., Cheng, S.-H. and Hwang, J.-S. (2010) The different aspects in motion of the three reproductive stages of Pseudodiaptomus annandalei (Copepoda: Calanoida). J. Plankton Res., 32, 423–440. 
Lovejoy, S., Currie, W. J. S., Claereboudt, M. R., Bourget, E., Roff, J.-C. and Schertzer, D. (2001) Universal multifractals and ocean patchiness: phytoplankton, physical fields and coastal heterogeneity. J. Plankton Res., 23, 117–141. 
Ludovisi, A., Todini, C., Pandolfi, P. and Toticchi, M. I. (2008) Scale patterns of diel distribution of the copepod Cyclops abyssorum Sars in a regulated lake: the importance of physical and biological factors. J. Plankton Res., 30, 495–509. 
Pascual, M., Ascioti, F. A. and Caswell, H. (1995) Intermittency in the plankton: a multifractal analysis of zooplankton biomass variability. J. Plankton Res., 17, 1209–1232. 
Popova, E. E., Fasham, M. J. R., Osipov, A. V. and Ryabchenko, V. A. (1997) Chaotic behavior of an ocean ecosystem model under seasonal external forcing. J. Plankton Res., 19, 1495–1515. 
Seuront, L. (2006) Effect of salinity on the swimming behavior of the estuarine calanoid copepod Eurytemora affinis. J. Plankton Res., 28, 805–813. 
Seuront, L. and Lagadeuc, Y. (1998) Spatio-temporal structure of tidally mixed coastal waters: variability and heterogeneity. J. Plankton Res., 20, 1387–1401. 
Seuront, L. and Lagadeuc, Y. (2001) Multiscale patchiness of the calanoid copepod Temora longicornis in a turbulent coastal sea. J. Plankton Res., 23, 1137–1145. 
Seuront, L., Schmitt, F., Lagadeuc, Y., Schertzer, D. and Lovejoy, S. (1999) Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: example of phytoplankton distribution in turbulent coastal waters. J. Plankton Res., 21, 877–922. 
Uttieri, M., Nihongi, A., Mazzocchi, M. G., Strickler, J. R. and Zambianchi, E. (2007) Pre-copulatory swimming behaviour of Leptodiaptomus ashlandi (Copepoda: Calanoida): a fractal approach. J. Plankton Res., 29(Suppl. I), i17–i26. 
Ascioti, F. A., Beltrami, E., Carroll, T. O. and Wirick, C. (1993) Is there chaos in plankton dynamics? J. Plankton Res., 15, 603–617. 
Dur, G., Souissi, S., Schmitt, F., Cheng, S.-H. and Hwang, J.-S. (2010) The different aspects in motion of the three reproductive stages of Pseudodiaptomus annandalei (Copepoda: Calanoida). J. Plankton Res., 32, 423–440. 
Lovejoy, S., Currie, W. J. S., Claereboudt, M. R., Bourget, E., Roff, J.-C. and Schertzer, D. (2001) Universal multifractals and ocean patchiness: phytoplankton, physical fields and coastal heterogeneity. J. Plankton Res., 23, 117–141. 
Ludovisi, A., Todini, C., Pandolfi, P. and Toticchi, M. I. (2008) Scale patterns of diel distribution of the copepod Cyclops abyssorum Sars in a regulated lake: the importance of physical and biological factors. J. Plankton Res., 30, 495–509. 
Pascual, M., Ascioti, F. A. and Caswell, H. (1995) Intermittency in the plankton: a multifractal analysis of zooplankton biomass variability. J. Plankton Res., 17, 1209–1232. 
Popova, E. E., Fasham, M. J. R., Osipov, A. V. and Ryabchenko, V. A. (1997) Chaotic behavior of an ocean ecosystem model under seasonal external forcing. J. Plankton Res., 19, 1495–1515. 
Seuront, L. (2006) Effect of salinity on the swimming behavior of the estuarine calanoid copepod Eurytemora affinis. J. Plankton Res., 28, 805–813. 
Seuront, L. and Lagadeuc, Y. (1998) Spatio-temporal structure of tidally mixed coastal waters: variability and heterogeneity. J. Plankton Res., 20, 1387–1401. 
Seuront, L. and Lagadeuc, Y. (2001) Multiscale patchiness of the calanoid copepod Temora longicornis in a turbulent coastal sea. J. Plankton Res., 23, 1137–1145. 
Seuront, L., Schmitt, F., Lagadeuc, Y., Schertzer, D. and Lovejoy, S. (1999) Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: example of phytoplankton distribution in turbulent coastal waters. J. Plankton Res., 21, 877–922. 
Uttieri, M., Nihongi, A., Mazzocchi, M. G., Strickler, J. R. and Zambianchi, E. (2007) Pre-copulatory swimming behaviour of Leptodiaptomus ashlandi (Copepoda: Calanoida): a fractal approach. J. Plankton Res., 29(Suppl. I), i17–i26. 
Fig. 2.

Illustration of the nested structure perceptible in the geometry of clouds (A) and the geometry of two theoretical fractal objects, the Sierpinskin carpet (B) and the Sierpinski gasket (C); modified from Seuront (Seuront, 2009). A colour version of this figure is available online.

Fig. 2.

Illustration of the nested structure perceptible in the geometry of clouds (A) and the geometry of two theoretical fractal objects, the Sierpinskin carpet (B) and the Sierpinski gasket (C); modified from Seuront (Seuront, 2009). A colour version of this figure is available online.

FRACTALS AND PLANKTON RESEARCH

Papers including fractals, and related concepts such as chaos theory, have been published in the Journal of Plankton Research (Table II) to describe (i) the predictability of phytoplankton and zooplankton biomass times series (Ascioti et al., 1993), (ii) the distribution of passive scalars (i.e. temperature, salinity), phytoplankton and zooplankton biomass (Pascual et al., 1995; Seuront and Lagadeuc, 1997, 1998, 2001; Seuront et al., 1999; Lovejoy et al., 2001; Ludovisi et al., 2008), (iii) the emerging properties of an ocean ecosystem model (Popova et al., 1997) and (iv) the complexity of zooplankton swimming behaviour (Seuront, 2006; Uttieri et al., 2007; Dur et al., 2010).

The first fractal paper published in the Journal of Plankton Research, entitled “Intermittency in the plankton: a multifractal analysis of zooplankton biomass variability” (Pascual et al., 1995), went well beyond the concept of fractal itself. Multifractals can indeed be considered as a generalization of fractal geometry initially introduced to describe the relationship between a given quantity and the scale at which it is measured. While fractal geometry describes the structure of a given pattern with the help of only one parameter (the fractal dimension DF), multifractals characterize its detailed variability by an infinite number of sets, each with its own fractal dimensions. An intuitive approach specifically intended to demystify the complexity of multifractality and make it readily usable by ecologists has been introduced on the basis of the spatial structure of modern cities (Seuront, 2010). Consider a city viewed from above, it can be considered as a succession of black and white objects: in black are buildings and in white are streets and parks. The only information one can get is the distribution of the built and the unbuilt areas. This is the geometric support of the city. Now, change the angle of vision by taking a position not directly above the city, but from the side. The black and white city is now a set of buildings with different heights. This is the measure we are now interested in. It could also have been the colour, the width or the age of the building. It is now possible to estimate the distribution of a wide range of building heights. Each height will (eventually) be characterized by a fractal dimension, thus the concept of multifractals. Multifractals were subsequently used, in a more general form, to describe the intermittency in time series and transects of passive scalars, phytoplankton and zooplankton biomass (Seuront et al., 1999; Lovejoy et al., 2001; Seuront and Lagadeuc, 2001), and to characterize the stochastic properties of the successive displacements of the calanoid copepod Pseudodiaptomus annandalei (Dur et al., 2010). Specifically, in plankton behavioural ecology, multifractals uniquely provide a direct, objective and quantitative tool to thoroughly identify models of motion behaviour, such as Brownian motion (i.e. normal diffusion), fractional Brownian motion, ballistic motion, Lévy flight/walk and multifractal random walk (Fig. 3). Fractals have also been used to describe the space–time patterns of phytoplankton and zooplankton communities (Seuront and Lagadeuc, 1998; Ludovisi et al., 2008), and more recently to provide new insights into the behavioural ecology of copepods, through investigations of the fractal properties of two- and three-dimensional swimming paths (Seuront, 2006, 2011; Uttieri et al., 2007).

Fig. 3.

Illustration of the fundamental strength of the multifractal function ζ(q) in the identification of a model of movement from empirical behavioural data, typically (x, y) or (x, y, z) coordinates. ζ(q) is a continuous function of the statistical order of moment q (q = 1 and q = 2 correspond to the mean and the variance). The function ζ(q) is linear for fractional Brownian motion [ζ(q) = qH], with the limits ζ(q) = 0 and ζ(q) = 1 corresponding, respectively, to confinement and localization and ballistic motion. For Brownian motion (i.e. normal diffusion; dotted line), ζ(q) = q/2. When H>1/2, the motion is superdiffusive, whereas when H<1/2, it is subdiffusive. For a Lévy flight (black dots), ζ(q) = q/μ and ζ(q) = 1 for q < μ and q = μ respectively; μ (1 < μ ≤3) is an exponent characterizing the tail of the probability distribution function of successive displacements, with μ = 2 characterizing optimal Lévy flights for the location of stationary targets that are randomly and sparsely distributed, and once visited are not depleted but instead remain targets for future searches (Viswanathan et al., 1999). For a multifractal random walk, the function ζ(q) is non-linear and convex (continuous line); see Seuront (Seuront, 2010) and Viswanathan et al. (Viswanathan et al., 2011) for further details.

Fig. 3.

Illustration of the fundamental strength of the multifractal function ζ(q) in the identification of a model of movement from empirical behavioural data, typically (x, y) or (x, y, z) coordinates. ζ(q) is a continuous function of the statistical order of moment q (q = 1 and q = 2 correspond to the mean and the variance). The function ζ(q) is linear for fractional Brownian motion [ζ(q) = qH], with the limits ζ(q) = 0 and ζ(q) = 1 corresponding, respectively, to confinement and localization and ballistic motion. For Brownian motion (i.e. normal diffusion; dotted line), ζ(q) = q/2. When H>1/2, the motion is superdiffusive, whereas when H<1/2, it is subdiffusive. For a Lévy flight (black dots), ζ(q) = q/μ and ζ(q) = 1 for q < μ and q = μ respectively; μ (1 < μ ≤3) is an exponent characterizing the tail of the probability distribution function of successive displacements, with μ = 2 characterizing optimal Lévy flights for the location of stationary targets that are randomly and sparsely distributed, and once visited are not depleted but instead remain targets for future searches (Viswanathan et al., 1999). For a multifractal random walk, the function ζ(q) is non-linear and convex (continuous line); see Seuront (Seuront, 2010) and Viswanathan et al. (Viswanathan et al., 2011) for further details.

TOWARDS A MORE FRACTAL PLANKTON WORLD?

Despite demonstrations that fractal dimensions, and more generally fractal metrics, are much more sensitive descriptors than conventional ones to describe both plankton distribution patterns (Seuront et al., 2002; Seuront, 2004, 2005) and zooplankton behavioural properties (Seuront et al., 2004a, c; Seuront, 2006, 2010, 2011), the Web of Science (accessed 3 January 2011) returns only 31 papers including the words “fractal” and “plankton” in their topic. This indicates that plankton research is still poorly fractally coloured, hence the potential for fractally inspired approaches is significant as fractals have been successfully applied to the structure of coral reefs (Bradbury et al., 1984) and rocky reefs (Frost et al., 2005; Kostylev et al., 2005; Warfe et al., 2008), marine snow dynamics (Logan and Wilkinson, 1990; Grout et al., 2001; Ploug et al., 2008), the structural complexity of mussel beds (Snover and Commito, 1998; Commito and Rusignuolo, 2000; Kostylev and Erlandson, 2001), the spatial distribution of intertidal benthic communities (Azovsky et al., 2000), the behaviour of freshwater invertebrates (Seuront et al., 2004a; Uttieri et al., 2007), marine invertebrates (Erlandson and Kostylev, 1995; Seuront et al., 2004b, 2007) and marine vertebrates (Dowling et al., 2000; Mouillot and Viale, 2001; Seuront, 2011), species diversity (Frontier, 1987, 1994), size spectra (Vidondo et al., 1997), zooplankton patchiness (Tsuda, 1995), phytoplankton patchiness (Seuront and Lagadeuc, 1997; Waters and Mitchell, 2002; Waters et al., 2003) and microphytobenthos patchiness (Seuront and Spilmont, 2002). The interested reader is referred to, for example, Barnsley (Barnsley, 1993, 2000), Falconer (Falconer, 1985, 1993), Feder (Feder, 1988), Hastings and Sugihara (Hastings and Sugihara, 1993), Tricot (Tricot, 1995), Gouyet (Gouyet, 1996), Schroeder (Schroeder, 1991, 2009), Seuront and Strutton (Seuront and Strutton, 2004), Seuront (Seuront, 2010) and Viswanathan et al. (Viswanathan et al., 2011) for further reading on fractals, multifractals and related topics.

Turbulence, one of the most relevant processes for planktonic life, is known to have fractal and multifractal properties (Meneveau and Sreenivasan, 1991; Frish, 1996; Wijesekera, 1996). As such, patterns and processes directly related to turbulence are likely to exhibit a fractal/multifractal behaviour. In addition, fractals and multifractals have the desirable properties of (i) being independent of measurement scale and (ii) describing in simple terms the extreme complexity of nature. Hence they challenge the long standing and widely held belief that turbulence-related processes are extremely difficult to describe, due to their intrinsic complexity, many degrees of freedom and the chaotic nature of turbulent flows. In this context, it is believed and hoped that our journey to understand the zooplankton ecosystem from a fractally coloured angle is still at its early stage, and will add a plankton component to the unique legacy of Benoît B. Mandelbrot, the father of fractals.

REFERENCES

Ascioti
F. A.
Beltrami
E.
Carroll
T. O.
, et al. 
Is there chaos in plankton dynamics?
J. Plankton Res.
 , 
1993
, vol. 
15
 (pg. 
603
-
617
)
Azovsky
A. I.
Chertropod
M. V.
Kucheruk
N. V.
, et al. 
Fractal properties of spatial distribution of intertidal benthic communities
Mar. Biol.
 , 
2000
, vol. 
136
 (pg. 
581
-
590
)
Barnsley
M. F.
Fractals Everywhere
 , 
1993
Morgan Kauffmann, New York
Bradbury
R. H.
Reichelt
R. E.
Green
D. G.
Fractals in ecology: methods and interpretation
Mar. Ecol. Prog. Ser.
 , 
1984
, vol. 
14
 (pg. 
295
-
296
)
Briggs
J.
Fractals: The Patterns of Chaos: Discovering a New Aesthetic of Art, Science, and Nature
 , 
1992
Simon & Schuster, New York
Bundy
M. H.
Gross
T. F.
Coughlin
D. J.
, et al. 
Quantifying copepod searching efficiency using swimming pattern and perceptive ability
Bull. Mar. Sci.
 , 
1993
, vol. 
53
 (pg. 
15
-
28
)
Commito
J. A.
Rusignuolo
B. R.
Structural complexity in mussel beds: the fractal geometry of surface topography
J. Exp. Mar. Biol. Ecol.
 , 
2000
, vol. 
255
 (pg. 
133
-
152
)
Coughlin
D. J.
Strickler
J. R.
Sanderson
B.
Swimming and search behaviour in clownfish, Amphiprion perideraion, larvae
Anim. Behav.
 , 
1992
, vol. 
44
 (pg. 
427
-
440
)
Dowling
N. A.
Hall
S. J.
Mitchell
J. G.
Foraging kinematics of barramundi during early stages of development
J. Fish Biol.
 , 
2000
, vol. 
57
 (pg. 
337
-
353
)
Dur
G.
Souissi
S.
Schmitt
F.
, et al. 
The different aspects in motion of the three reproductive stages of Pseudodiaptomus annandalei (Copepoda: Calanoida)
J. Plankton Res.
 , 
2010
, vol. 
32
 (pg. 
423
-
440
)
Erlandson
J.
Kostylev
V.
Trail following, speed and the fractal dimension of movement in a marine prosobranch, Littorina littorea, during a mating and a non-mating season
Mar. Biol.
 , 
1995
, vol. 
122
 (pg. 
87
-
94
)
Falconer
K. J.
The Geometry of Fractal Sets
 , 
1985
Cambridge University Press, Cambridge
Falconer
K. J.
Fractal Geometry. Mathematical Foundations and Applications
 , 
1993
Wiley, Chichester
Feder
J.
Fractals
 , 
1988
Plenum Press, New York
Frame
M.
Mandelbrot
B. B.
Fractals, Graphics, and Mathematics Education
 , 
2002
The Mathematical Association of America, Washington DC
Frish
U.
Turbulence: The Legacy of A.N. Kolmogorov
 , 
1996
Cambridge University Press, Cambridge
Frontier
S.
Legendre
P.
Legendre
L.
Applications of fractal theory to ecology
Developments in Numerical Ecology
 , 
1987
Springer, New York
(pg. 
335
-
378
)
Frontier
S.
Nowak
M. M.
Species diversity as a fractal properties of biomass
Fractals in the Natural and Applied Sciences (A-41)
 , 
1994
North-Holland
Elsevier
(pg. 
119
-
127
)
Frost
N.
Burrows
M. T.
Johnson
M. P.
, et al. 
Measuring surface complexity in ecological studies
Limnol. Oceanogr.: Methods
 , 
2005
, vol. 
3
 (pg. 
203
-
210
)
Gouyet
J. F.
Physics of Fractal Structures
 , 
1996
Springer, New York
Grout
H.
Sempere
R.
Thill
A.
, et al. 
Morphological and chemical variability in the Almeria-Oran Front in the eastern Alboran Sea (SW Mediterranean Sea)
Limnol. Oceanogr.
 , 
2001
, vol. 
46
 (pg. 
1347
-
1357
)
Hastings
H. M.
Sugihara
G.
Fractals. A User's Guide for the Natural Sciences
 , 
1993
Oxford University Press, Oxford
Jonsson
P. R.
Johansson
M.
Swimming behaviour, patch exploitation and dispersal capacity of a marine benthic ciliate in flume flow
J. Exp. Mar. Biol. Ecol.
 , 
1997
, vol. 
215
 (pg. 
135
-
153
)
Kilps
J. R.
Logan
B. E.
Alldredge
A. L.
Fractal dimensions of marine smow aggregates determined from image analysis of in situ photographs
Deep-Sea Res.
 , 
1994
, vol. 
41
 (pg. 
1159
-
1169
)
Kostylev
V.
Erlandson
J.
A fractal approach for detecting spatial hierarchy and structure on mussel beds
Mar. Biol.
 , 
2001
, vol. 
139
 (pg. 
497
-
506
)
Kostylev
V. E.
Erlandsson
J.
Ming
M. Y.
, et al. 
The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores
Ecol. Complex.
 , 
2005
, vol. 
2
 (pg. 
272
-
286
)
Lesmoir-Gordon
N.
The Colours of Infinity: The Beauty and Power of Fractals
 , 
2010
Springer, New York
Li
X.
Passow
U.
Logan
B. E.
Fractal dimension of small (15–200 µm) particles in Eastern Pacific coastal waters
Deep-Sea Res. I
 , 
1998
, vol. 
45
 (pg. 
115
-
131
)
Logan
B. E.
Wilkinson
D. B.
Fractal geometry of marine snow and other biological aggregates
Limnol. Oceanogr.
 , 
1990
, vol. 
35
 (pg. 
130
-
136
)
Lovejoy
S.
Currie
W. J. S.
Claereboudt
M. R.
, et al. 
Universal multifractals and ocean patchiness: phytoplankton, physical fields and coastal heterogeneity
J. Plankton Res.
 , 
2001
, vol. 
23
 (pg. 
117
-
141
)
Lu
N.
Fractal Imaging
 , 
1997
Academic Press, New York
Ludovisi
A.
Todini
C.
Pandolfi
P.
, et al. 
Scale patterns of diel distribution of the copepod Cyclops abyssorum Sars in a regulated lake: the importance of physical and biological factors
J. Plankton Res.
 , 
2008
, vol. 
30
 (pg. 
495
-
509
)
Mandelbrot
B. B.
How long is the coast of Britain? Statistical self-similarity and fractional dimension
Science
 , 
1967
, vol. 
156
 (pg. 
636
-
638
)
Mandelbrot
B. B.
Fractals, Form, Chance, and Dimension
 , 
1977
Freeman, San Francisco
Mandelbrot
B. B.
The Fractal Geometry of Nature
 , 
1983
Freeman, San Francisco
Meneveau
C.
Sreenivasan
K. R.
The multifractal nature of turbulent energy dissipation
J. Fluid Mech.
 , 
1991
, vol. 
224
 (pg. 
429
-
484
)
Mouillot
D.
Viale
D.
Satellite tracking of a fin whale (Balaenoptera physalus) in the north-western Mediterranean Sea and fractal analysis of its trajectory
Hydrobiologia
 , 
2001
, vol. 
452
 (pg. 
163
-
171
)
Pascual
M.
Ascioti
F. A.
Caswell
H.
Intermittency in the plankton: a multifractal analysis of zooplankton biomass variability
J. Plankton Res.
 , 
1995
, vol. 
17
 (pg. 
1209
-
1232
)
Peitgen
H. O.
Richter
P. H.
The Beauty of Fractals: Images of Complex Dynamical Systems
 , 
1986
Springer, New York
Peitgen
H. O.
Saupe
D.
The Science of Fractal Images
 , 
1988
Springer, New York
Peitgen
H. O.
Jürgens
H.
Saupe
D.
Chaos and Fractals: New Frontiers of Science
 , 
2004
Springer, New York
Pickover
C. A.
The Pattern Book: Fractals, Art, and Nature
 , 
1995
World Scientific, London
Pickover
C. A.
Computers, Pattern, Chaos and Beauty
 , 
2001
Dover Publications, Mineola
Ploug
H.
Iversen
M. H.
Fischer
G.
Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria
Limnol. Oceanogr.
 , 
2008
, vol. 
53
 (pg. 
1878
-
1886
)
Popova
E. E.
Fasham
M. J. R.
Osipov
A. V.
, et al. 
Chaotic behavior of an ocean ecosystem model under seasonal external forcing
J. Plankton Res.
 , 
1997
, vol. 
19
 (pg. 
1495
-
1515
)
Schroeder
M.
Fractals, Chaos, Power Laws: Minutes from the Infinite Paradise
 , 
1991
Dover Publications, Mineola
Seuront
L.
Small-scale turbulence in the plankton: low-order deterministic chaos or high-order stochasticity?
Physica A
 , 
2004
, vol. 
341
 (pg. 
495
-
525
)
Seuront
L.
Hydrodynamical and tidal controls of small-scale phytoplankton patchiness
Mar. Ecol. Prog. Ser.
 , 
2005
, vol. 
302
 (pg. 
93
-
101
)
Seuront
L.
Effect of salinity on the swimming behavior of the estuarine calanoid copepod Eurytemora affinis
J. Plankton Res.
 , 
2006
, vol. 
28
 (pg. 
805
-
813
)
Seuront
L.
Fractals and Multifractals in Ecology and Aquatic Sciences
 , 
2010
Boca Raton
CRC Press
Seuront
L.
Behavioral fractality in marine copepods: endogenous rhythms vs. exogenous stressors
Physica A
 , 
2011
, vol. 
309
 (pg. 
250
-
256
)
Seuront
L.
Lagadeuc
Y.
Characterisation of space-time variability in stratified and mixed coastal waters (Baie des Chaleurs, Québec, Canada): application of fractal theory
Mar. Ecol. Prog. Ser.
 , 
1997
, vol. 
159
 (pg. 
81
-
95
)
Seuront
L.
Lagadeuc
Y.
Spatio-temporal structure of tidally mixed coastal waters: variability and heterogeneity
J. Plankton Res.
 , 
1998
, vol. 
20
 (pg. 
1387
-
1401
)
Seuront
L.
Lagadeuc
Y.
Multiscale patchiness of the calanoid copepod Temora longicornis in a turbulent coastal sea
J. Plankton Res.
 , 
2001
, vol. 
23
 (pg. 
1137
-
1145
)
Seuront
L.
Spilmont
N.
Self-organized criticality in intertidal microphytobenthos patch patterns
Physica A
 , 
2002
, vol. 
313
 (pg. 
513
-
539
)
Seuront
L.
Strutton
P. G.
Handbook of Scaling Methods in Aquatic Ecology: Measurements, Analysis, Simulation
 , 
2004
CRC Press, Boca Raton
Seuront
L.
Gentilhomme
V.
Lagadeuc
Y.
Small-scale nutrient patches in tidally mixed coastal waters
Mar. Ecol. Prog. Ser.
 , 
2002
, vol. 
232
 (pg. 
29
-
44
)
Seuront
L.
Brewer
M.
Strickler
J. R.
Seuront
L.
Strutton
P.G.
Quantifying zooplankton swimming behavior: the question of scale
Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation
 , 
2004
Boca Raton
CRC Press
(pg. 
333
-
359
)
Seuront
L.
Yamazaki
H.
Souissi
S.
Hydrodynamic disturbance and zooplankton swimming behavior
Zool. Stud.
 , 
2004
, vol. 
43
 (pg. 
376
-
387
)
Seuront
L.
Hwang
J. S.
Tseng
L. C.
, et al. 
Individual variability in the swimming behavior of the tropical copepod Oncaea venusta (Copepoda: Poecilostomatoida)
Mar. Ecol. Prog. Ser.
 , 
2004
, vol. 
283
 (pg. 
199
-
217
)
Seuront
L.
Schmitt
F.
Lagadeuc
Y.
, et al. 
Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: example of phytoplankton distribution in turbulent coastal waters
J. Plankton Res.
 , 
1999
, vol. 
21
 (pg. 
877
-
922
)
Seuront
L.
Duponchel
A. C.
Chapperon
C.
Heavy-tailed distributions in the intermittent motion behaviour of the intertidal gastropod Littorina littorea
Physica A
 , 
2007
, vol. 
385
 (pg. 
573
-
582
)
Snover
M. L.
Commito
J. A.
The fractal geometry of Mytilus edulis L. spatial distribution in a soft-bottom system
J. Exp. Mar. Biol. Ecol.
 , 
1998
, vol. 
223
 (pg. 
53
-
64
)
Stevens
R.
Creating Fractals
 , 
2005
Charles River Media, Clifton Park
Tricot
C.
Curves and Fractal Dimension
 , 
1995
Springer, New York
Tsuda
A.
Fractal distribution of the oceanic copepod Neocalanus cristatus in the subarctic Pacific
J. Oceanogr.
 , 
1995
, vol. 
51
 (pg. 
261
-
266
)
Uttieri
M.
Paffenhöfer
G. A.
Mazzocchi
M. G.
Prey capture in Clausocalanus (Copepoda: Calanoida). The role of swimming behaviour
Mar. Biol.
 , 
2008
, vol. 
153
 (pg. 
925
-
935
)
Uttieri
M.
Zambianchi
E.
Strickler
J. R.
, et al. 
Fractal characterization of three-dimensional zooplankton swimming trajectories
Ecol. Model.
 , 
2005
, vol. 
185
 (pg. 
51
-
63
)
Uttieri
M.
Nihongi
A.
Mazzocchi
M. G.
, et al. 
Pre-copulatory swimming behaviour of Leptodiaptomus ashlandi (Copepoda : Calanoida): a fractal approach
J. Plankton Res.
 , 
2007
, vol. 
29
 
Suppl. I
(pg. 
i17
-
i26
)
Vidondo
B.
Prairie
Y. T.
Blanco
J. M.
, et al. 
Some aspects of the analysis of size spectra in aquatic ecology
Limnol. Oceanogr.
 , 
1997
, vol. 
42
 (pg. 
184
-
192
)
Viswanathan
G. M.
Buldyrev
S. V.
Havlin
S.
, et al. 
Optimizing the success of random searches
Nature
 , 
1999
, vol. 
401
 (pg. 
911
-
914
)
Viswanathan
G. M.
da Luz
M. G. E.
Raposo
E. P.
The Physics of Foraging: An Introduction to Random Searches and Biological Encounters
 , 
2011
Cambridge University Press, Cambridge
Warfe
D. M.
Barmuta
L. A.
Wotherspoon
S.
Quantifying habitat structure: surface convolution and living space for species in complex environments
Oikos
 , 
2008
, vol. 
117
 (pg. 
1764
-
1773
)
Waters
R. L.
Mitchell
J. G.
Centimeter-scale spatial structure of estuarine in vivo fluorescence profiles
Mar. Ecol. Prog. Ser.
 , 
2002
, vol. 
237
 (pg. 
51
-
63
)
Waters
R. L.
Seymour
J. R.
Mitchell
J. G.
Geostatistical characterization of centimetre-scale spatial structure of in vivo fluorescence
Mar. Ecol. Prog. Ser.
 , 
2003
, vol. 
251
 (pg. 
49
-
58
)
Wijesekera
H. W.
Fractal dimension as an indicator for turbulent mixing in the thermocline
J. Geophys. Res.
 , 
1996
, vol. 
101
 (pg. 
16703
-
16709
)