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Abstract
High-throughput phenotyping (HTP) platforms are capable of monitoring the phenotypic variation of plants through
multiple types of sensors, such as red green and blue (RGB) cameras, hyperspectral sensors, and computed tomography,
which can be associated with environmental and genotypic data. Because of the wide range of information provided, HTP
datasets represent a valuable asset to characterize crop phenotypes. As HTP becomes widely employed with more tools
and data being released, it is important that researchers are aware of these resources and how they can be applied to ac-
celerate crop improvement. Researchers may exploit these datasets either for phenotype comparison or employ them as a
benchmark to assess tool performance and to support the development of tools that are better at generalizing between
different crops and environments. In this review, we describe the use of image-based HTP for yield prediction, root pheno-
typing, development of climate-resilient crops, detecting pathogen and pest infestation, and quantitative trait measure-
ment. We emphasize the need for researchers to share phenotypic data, and offer a comprehensive list of available datasets
to assist crop breeders and tool developers to leverage these resources in order to accelerate crop breeding.

Introduction
Plant phenotypic variation is the result of the complex in-
terplay between genetics and environmental conditions
(Boyer, 1982; Ficke et al., 2018; Frantzeskakis et al., 2020).
Advances in genome sequencing have uncovered substan-
tial genetic diversity within species (Hirsch et al., 2014;
Golicz et al., 2016; Zhao et al., 2018; Hübner et al., 2019;
Song et al., 2020). However, the wealth of genetic informa-
tion is rarely translated into gains for real-world agricul-
tural crops (Araus et al., 2018), partially due to the lack
of phenotypic information associated with the genetic
variation (Furbank and Tester, 2011; Mir et al., 2019).

High-throughput phenotyping (HTP) has emerged to over-
come the phenomics bottleneck. HTP platforms enable
noninvasive data collection through several types of sen-
sors that can be deployed in glasshouse facilities or field
monitoring devices, including ground platforms to un-
manned aerial vehicles (UAVs) and satellites (Li et al.,
2014; Hank et al., 2015; Kirchgessner et al., 2016; Naito et
al., 2017; Danzi et al., 2019). These platforms can support
the capture of temporal phenotypic variation for large
populations across plant development, generating massive
amounts of data. Systematic large-scale phenotyping plat-
forms can be used for genetic dissection of targeted traits
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and assist the development of better performing varieties
(Li et al., 2018; Mir et al., 2019).The increasing adoption of
HTP platforms leads to a demand for new computer-based
tools that can leverage these datasets and integrate-associ-
ated information (e.g. experimental conditions, weather
measurements, and genotypic data) to extract meaningful
insights regarding crop development and performance
(Tattaris et al., 2016; van Eeuwijk et al., 2019). HTP data
analysis is a nontrivial task, requiring a high level of exper-
tise in computer science and plant development to under-
stand the implications of phenotypic variation in the
plant. Completeness of HTP metadata is crucial for plant
physiologists to characterize the genetic and environmen-
tal conditions in which a phenotype occurs. Even though
the majority of available datasets are lacking a clear de-
scription of conditions depicted, it is important that new
datasets include metadata and methods to collect envi-
ronmental data in their experimental design.
Mathematical models, machine learning, and most re-
cently deep learning models, can be used as guides to
identify stress and predict crop performance under defined
conditions (Bai et al., 2016; Atkinson et al., 2017a; Joalland
et al., 2017; Moghadam et al., 2017; Naito et al., 2017;
Fernandez-Gallego et al., 2018; Prey et al., 2019; Walter et
al., 2019; Ducournau et al., 2020; Kerkech et al., 2020;
Selvaraj et al., 2020). Deep learning models have the ad-
vantage of automatically extracting features from the im-
age by constructing increasingly abstract representations
of the relationships within the dataset (LeCun et al., 2015).
In contrast, classic statistical approaches rely solely on the

researcher to manually define the features before the
analysis. Because deep learning models build the features
based solely on the dataset, it usually requires large
amounts of high-quality data to learn from these features
to achieve high performance.

Developing a custom pipeline of software applications for
processing HTP raw sensor data into traits, followed by its
analysis, amounts to a major part of the cost to adopt HTP
(Reynolds et al., 2019). However, if the data analysis pipeline
is being reutilized from a previous project, the cost of imple-
menting the pipeline would drop to 10%–20% (Reynolds et
al., 2019), which means that being able to employ whole or
part of a developed HTP analysis pipeline can decrease the
costs for adopting HTP in research projects. Many challenges
prevent the research community from efficiently reusing
data processing tools and analysis pipelines. For example,
the lack of interoperability between processing tools (image
processing, weather data transformation) and analysis mod-
els (trait quantification, classification) due to the absence of
standardized data processing methodology prevent the utili-
zation of previously published analysis models (Krajewski et
al., 2015; Janssen et al., 2017; Yu et al., 2017; van Eeuwijk et
al., 2019). The inconsistency of data processing pipelines can
be partially overcome by providing tools to standardize data
input for target analysis models (Busemeyer et al., 2013; Yu
et al., 2017; Chopin et al., 2018; Selvaraj et al., 2020); how-
ever, a robust solution requires standardizing syntax (for-
mats) and semantics (definitions, ontology) of input/output
files used by HTP data processing tools (Janssen et al., 2017).

Data sharing is an important step for the advancement of
crop breeding and the development of analysis pipelines
(Zamir, 2013; Mir et al., 2019). The need to establish a repos-
itory to host raw phenotypic datasets with associated infor-
mation has long been recognized (Zamir, 2013; Lobet, 2017).
A centralized database with access to raw data and stan-
dardized metadata would increase discoverability and reutili-
zation of the datasets, allowing researchers to reanalyze data
using updated state-of-the-art tools, which may lead to the
identification of novel and potentially interesting results
(Zamir, 2013). Even though some platforms have been de-
veloped to host selected datasets (Granier et al., 2006; Lobet
et al., 2013; Seren et al., 2017), the majority of datasets are
insufficiently described, preventing plant researchers from
properly analyzing phenotypic variations and leading to mis-
interpretation of results. The Minimum Information About
a Plant Phenotyping Experiment (MIAPPE) initiative
(https://www.miappe.org/) provides a framework for pheno-
typic data sharing designed to standardize data publication
with a controlled ontology vocabulary referencing multiple
previously established ontologies (Papoutsoglou et al., 2020).
The MIAPPE guidelines are compatible with the Breeding
Application Programming Interface (BrAPI), which aim to in-
crease breeding datasets interoperability and provide easy
access to breeding tools (Selby et al., 2019; Papoutsoglou et
al., 2020). Adoption of these standardization guidelines for
dataset description is a crucial step in transforming HTP
datasets into data assets for plant researchers and breeders.

ADVANCES

• A broad diversity of sensors enables capturing
and quantifying previously undetectable
phenotypic traits. Combining the reflectance of
different spectra allows for the detection of
abiotic stress, such as nitrogen deficiency and
frost damage.

• • HTP has the potential to accelerate crop
breeding, producing data that can be used to
identify varieties with improved traits and
higher performance, but there are technical
challenges to overcome.

• Deep learning models are effective in plant
phenotyping tasks due to their capacity to
leverage highly complex and multidimensional
data, but their performance is dependent on
the quality and diversity of the dataset.

• A large effort is required to facilitate sharing
high-quality phenotype datasets because they
provide a key resource for developing tools for
agronomic trait measurement and crop
breeding.
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Adequately described datasets can also be used to establish
benchmark datasets (detailed in Box 1). Benchmark datasets
provide a standard to compare computer-based tools per-
formance, helping uncover the tool limitations and strengths
(Zamir, 2013; Minervini et al., 2016; Lobet, 2017). Assessing
tool performance will guide the user to apply the most ef-
fective methodology for their experimental design and data
(Lobet, 2017).This review reports on previously published
image-based HTP datasets with the aim of assisting the
community to access and benefit from their development.
The main contributions presented are (1) highlighting the
challenges faced by researchers when reusing HTP datasets;
(2) describing some of the criteria required when creating
an effective benchmark dataset; and (3) presenting a collec-
tion of image-based HTP datasets available as a resource for
researchers to improve model development and analysis.

Applications of HTP

Improving crop productivity
A myriad of components contribute to yield, as plant per-
formance is regulated by a combination of genetic factors
(G), environmental factors (E), and the interaction between
them (G � E; Juliana et al., 2018; Montesinos-López et al.,
2018). Because of the high complexity that underlies plant
performance, breeders have to submit potential varieties to
extensive field testing to determine their potential yield
(Hunt et al., 2020). Field HTP can substantially accelerate
the breeding process by allowing breeders to predict end-of-
season traits, such as yield and biomass at early growth
stages. Early yield prediction allows researchers to bypass
plant growth time, a key limiting factor in crop breeding. In

a soybean (Glycine max) study, 2,551 genotypes were grown
in different locations, and it was observed that yield, plant
maturity, and seed size can be predicted at an early stage
using Cubist regression because it presented the best result
in comparison to Partial Least Squares Regression, Random
Forests, Artificial Neural Networks, and Support Vector
Regression (Yuan et al., 2019). Similar results were observed
for wheat (Triticum aestivum), barley (Hordeum vulgare),
and other soybean genotypes (Bai et al., 2016; Nevavuori et
al., 2019). Although promising, the results are constrained to
the conditions evaluated, since interannual weather varia-
tion, changes in agroecological zones, differences in farm
management practices, sensor use and specifications, and
other factors can cause instability in model accuracy.

The broad diversity of remote sensors enables capturing
different aspects of the plant phenotype. Different combina-
tions of RGB, multispectral, and thermal image data associ-
ated with weather and soil have been employed to train
deep learning models for crop yield forecasting (Vega et al.,
2015; Gracia-Romero et al., 2019; Zhang et al., 2019a;
Maimaitijiang et al., 2020; da Silva et al., 2020). The models
can support differentiating crop performance in relation to
irrigation regimes (Gracia-Romero et al., 2019), quantify
growth rate under nitrogen treatment (Holman et al., 2016;
Arroyo et al., 2017; Aranguren et al., 2020), estimate varia-
tion of wheat grain protein content (Rodrigues et al., 2018;
Sharabiani et al., 2019), and monitor crop height variation
during the season (Ziliani et al., 2018). A systematic review
on machine learning models for crop yield prediction was
published by van Klompenburg et al. (2020), showing that
deep learning models are increasing in popularity. The most
used architectures were Convolutional Neural Networks

Box 1 WHAT IS A BENCHMARKING DATASET?

Benchmark dataset refers to a comprehensive data collection that represents real life data that a method or tool
may encounter when performing the given task. Benchmark datasets are often employed as a standardized way
to assess a new method’s performance, finding its strengths, and limitations (Lobet, 2017). General requisites for
benchmark datasets in most of the applications described in this study are: (1) intentional, the dataset must be
designed to be employed on specific tasks; (2) relevant, the data should be coherent with the event it attempts
to describe and have the limitations identified and clearly stated; (3) representative, meaning that the dataset
covers most cases commonly encountered when performing a task within the defined scope (Schaafsma and
Vihinen, 2018), reporting any underrepresented classes; (4) sizable, the dataset must contain enough examples of
each class or target to enable training machine learning and computer vision methods; (5) reliable, the data
points must be experimentally obtained instead of artificially generated and annotations must be performed by
plant experts (Sasidharan Nair and Vihinen, 2013); and (6) descriptive, the dataset must have an extensive de-
scription of data collection methodology (sensors, UAV altitude), biological information (species, genotype,
growth stage), and experimental conditions (temperature, soil, water availability). The importance of these criteria
changes depending on the purpose of the dataset utilization. For computer tool developers, the first five criteria
are probably more relevant as they can directly impact the performance and robustness of the new method. For
plant physiology researchers, the sixth criteria is particularly important as it enables reutilization of the datasets
to gain a deep understanding of the plant conditions, extract meaningful insights from plant phenotype analysis,
and compare plant phenotype analyses with external phenotypic datasets.
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(CNNs) and Long-Short Term Memory (LSTM). These archi-
tectures were created for different purposes: LSTM is
designed specifically for sequence prediction tasks, while
CNN’s structure is suited to extract features from complex
image data. These architectures can benefit from transferred
learning, in which pretrained weights obtained with different
data can be implemented in the new model (He et al.,
2016) that allows rapid and high performance. Multimodal
machine learning can be employed to analyze datasets with
multiple data sources (rainfall, temperature, multispectral
image, soil data), each data type is a modality that will be
analyzed and combined to increase model performance
(Baltru�saitis et al., 2017). van Klompenburg et al. (2020) ob-
serve in the review that temperature, rainfall, and soil type
were the most used data types in machine learning models,
but different feature combinations and the volume of data
can directly impact the model performance and should be
tested during development.

A few HTP datasets were recently released with the goal
to improve yield prediction and more specifically support
genotype to phenotype prediction. The Genomes to Field
(G2F) datasets comprise genotype (single nucleotide poly-
morphism information), manual phenotype measurements,
climatic data, soil information, inbred ear images, and UAV
collected multispectral and hyperspectral images of several
maize (Zea mays) varieties grown over multiple years
(Supplemental Data Set 1; McFarland et al., 2020). Detailed
metadata are essential for understanding genotype to phe-
notype relationships in each season/environment. However,
the G2F field trials were carried out in a single location,
which limit the robustness of the traits identified. For sor-
ghum (Sorghum bicolor) and wheat, the Transportation
Energy Resources from Renewable Agriculture Phenotyping
Reference Platform (TERRA-REF) database offers a compre-
hensive resource of sensor data (five thermal, spectral, and
shape imaging sensors), phenotypic measurements, environ-
mental and genomic data, including genome sequencing of
384 varieties and genotyping by sequencing of 768 varieties
(Supplemental Data Set 1; LeBauer et al., 2017; Burnette et
al., 2018). TERRA-REF has four sensing platforms to collect
image-based phenotyping and agronomic traits from both
controlled environment and field grown plants. TERRA-REF
maintains a manuscript management section in their web-
site where researchers willing to use the data can register
their proposed manuscript to prevent overlap and encour-
age collaboration. Oftentimes, researchers will delay publish-
ing datasets until their planned publications are completed.
Nonetheless, the TERRA-REF approach to register publica-
tions enables early publishing of the data and allows other
groups to explore different aspects of the dataset or collabo-
rate. Federated learning is another strategy that can be used
when the data must be protected due to privacy or security
concerns, showing increasing use in medical research (Lee et
al., 2018; Huang et al., 2019; Rieke et al., 2020). Federated
learning allows for training machine learning models collabo-
ratively without exchanging the data, in this framework,

each dataset owner institution downloads the model and
trains it locally. The trained parameters from each institu-
tion are exported and aggregated, creating a model that
benefits from previously inaccessible datasets while the data
governance and accessibility remain in the control of the
data owner (Kone�cn�y et al., 2016).

Both G2F and TERRA-REF datasets present limitations re-
garding the types of environments represented, species
grown, and the treatments that they were subjected to.
Other similar phenotyping initiatives covering different loca-
tions and plant species (including noncrop plants) are
needed to depict phenotypic variation. Nonetheless, the
above datasets offer an extensive resource that can assist
the identification of quantitative trait loci (QTLs) related to
crop performance, develop tools for genotype to phenotype
prediction based on the multidimensional dataset, and ulti-
mately these could be used as benchmark datasets to assess
tool performance. Moreover, smaller datasets for field trial
experiments can be found at the Global Agricultural
Research Data Innovation Acceleration Network and the
International Maize and Wheat Improvement Center de-
scribed in Supplemental Data Set 1.

Grain yield in wheat is directly related to spike head pop-
ulation density, size, and maturity stage. The Annotated
Crop Image Dataset (ACID) provides images with coordi-
nates to identify wheat spikes under greenhouse conditions
(Pound et al., 2017b). ACID was designed for training novel
tools for identifying the spike heads, and measuring individ-
ual head traits, but the tool could be further applied to new
datasets and to link measured traits with genotypic variabil-
ity. Limited metadata annotation in ACID prevents further
exploration of the dataset itself for identification of yield-re-
lated traits because the genotypes and experimental condi-
tions are not described. The global wheat head database
compiles multiple RGB wheat images collected in the field,
from several countries using different cameras (David et al.,
2020). The dataset was used in a challenge hosted on Kaggle
(https://www.kaggle.com) with the goal to benchmark
wheat head detection approaches. Top solutions used object
detection deep learning architectures (EfficientDet, Faster-
RCNN, and Yolo-v3), with data augmentation techniques
playing a major role for their success. Data augmentation is
a computer vision technique to increase dataset size
through a series of transformations, such as flipping or rotat-
ing the image (Buslaev et al., 2020). It is important to note
that with field images, a greater variability of conditions can
occur such as genotype differences, head orientation, and
mixed developmental stages, which can cause the object de-
tection model to present performance instability such as
mislabeling plant organs at a higher rate when the condi-
tions differ from what was seen in the training data. The
global wheat head dataset provides a valuable resource for
developing and benchmarking tools due to the high variabil-
ity of wheat genotypes and conditions represented. Similar
datasets for different species can be developed collabora-
tively by annotating previously released HTP data (such as
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the G2F and TERRA-REF datasets). This can decrease the
cost of producing a dataset and benefit from the described
metadata.

Developing crops tolerant to abiotic stress
The development of climate resilient crops must consider
the effect of combined abiotic stresses occurring in the re-
gion (Cammarano et al., 2019). As a result, datasets featuring
combined abiotic stresses provide a resource to understand
how their interaction impacts plant health and develop-
ment. The Eschikon dataset (Supplemental Data Set 2)
includes temporal images of beet (Beta vulgaris) under mul-
tiple independent and combined drought, nitrogen defi-
ciency, and weed stresses (Khanna et al., 2019). This dataset
was employed to develop 3D representations of the plants
from which the authors were able to extract canopy cover,
height, and vegetation indices. These traits were used to
classify stress in plants with 83%–93% accuracy depending
on the stress measured. The dataset can be further explored
to measure agronomic traits related to each stress and un-
derstand plant response, it can also be employed in further
developing computer vision tools for stress classification
(Khanna et al., 2019). Plant researchers willing to predict the
effects of climatic change in crop species will require the
creation (or release) of more datasets in which the com-
bined stresses are observed. These datasets must offer a de-
tailed description of the environmental conditions and if
possible, of the genetic data to enable accurate interpreta-
tion of the results. Ideally, the aggregated datasets must de-
pict the diversity of agroecological zones including low
latitude locations, which are currently underrepresented.

Crop water management is essential in regions currently
facing or predicted to face water scarcity. Infrared thermog-
raphy has been successfully implemented to assess water
use by crops (Nhamo et al., 2020), and for measuring geno-
type performance under salinity or water deficit stress (Raza
et al., 2014; Kumar et al., 2017; Thapa et al., 2018; Hou et al.,
2019; Zhang et al., 2019b; Kumar et al., 2020; Masina et al.,
2020). In cotton (Gossypium arboreum) monitored by infra-
red thermography, it was observed that yield, fiber length,
and micronaire suffered reduction after canopy temperature
exceeded a given threshold (Conaty et al., 2015). Canopy
temperature and evapotranspiration (ET) maps are used as
a proxy for measuring the phenotypic response to both
stresses as they influence stomatal conductance (Fischer et
al., 1998; Sirault et al., 2009), and are observed from close
range, at the aerial and spatial level. Remotely sensed ther-
mal data collected by satellite platforms allow mapping wa-
ter resource use through the prediction of ET maps
(Anderson et al., 2012). In 2018, a space station mission
(ECOSTRESS) was launched to measure ET and identify
plant stress (Fisher et al., 2020). It provides a higher spatial
and temporal resolution ratio (60 m with 1–5 d interval) in
comparison to Landsat (>60 m, 16-d interval) or MODIS
(>375 m, daily; Anderson et al., 2012). The ECOSTRESS li-
brary provides satellite imagery associated with laboratory

measurements of vegetation to help correlate the spectral
patterns (Meerdink et al., 2019; Fisher et al., 2020). This
dataset has been employed to assess plant species diversity
in restoration areas, showing that sites with higher species
diversity present lower temperatures (Hamberg et al., 2020).
For this review, we chose to focus on HTP images collected
by aerial or ground devices since satellite images currently
do not yet provide enough resolution to be used for assess-
ing plants at the field level. However, satellite HTP imagery
offers the potential to help understand abiotic stress at a
large-scale (Anderson et al., 2012; Miralles et al., 2014), thus
we have included links to satellite libraries (ECOSTRESS,
Landsat and MODIS) in the resources in Supplemental Data
Set 2.

Besides infrared thermography, multispectral and hyper-
spectral sensors are also used in HTP. These sensors are ca-
pable of detecting physiological changes in the plant leaf
composition (Bruning et al., 2020). For example, decomposi-
tion of foliar hyperspectral signatures showed that C3 and
C4 plants have divergent and well-defined patterns of reflec-
tance (Baranoski et al., 2016). Hyperspectral images were
employed to quantitatively rank salt tolerance between four
wheat varieties (dataset available in Supplemental Data Set
2) using machine learning and dimensionality reduction.
The authors observed that multiple trait measurements
would be required to correctly assess the plants, whereas
with hyperspectral images they were able to score them in a
fast noninvasive way, dataset is described in Supplemental
Data Set 2 (Moghimi et al., 2018). Multispectral and hyper-
spectral images have also been employed to identify salt
stress in sugarcane (Saccharum officinarum L.) and wheat ir-
rigated with saline water (Hamzeh et al., 2013; El-Hendawy
et al., 2019), acidic and heavy metal stress (Liu et al., 2011;
Jin et al., 2013; Li et al., 2015; Zhang et al., 2017; Wang et al.,
2018a), nutrient deficiency (Pacumbaba and Beyl, 2011),
heat stress (Gautam et al., 2015; Trachsel et al., 2019), and
frost (Fitzgerald et al., 2019; Nuttall et al., 2019; Murphy et
al., 2020).

Frost damage in wheat can have a major impact, as a sin-
gle frost event can severely reduce quality and yield (Boer et
al., 1993; Frederiks et al., 2012; Martino and Abbate, 2019).
Rapid detection of frost damage would enable growers to
take management decisions to avoid losses. A study using
hyperspectral images indicated that under controlled condi-
tions, frosted and nonfrosted individuals, present significant
spectral differences (Murphy et al., 2020). Mixed results were
observed when detecting frost under field conditions, indi-
cating that more research is needed (Fitzgerald et al., 2019;
Nuttall et al., 2019). The Frost nursery dataset provides mul-
tispectral images of several commercial wheat varieties
grown in the field and were affected by frost at different de-
velopmental stages (AgReFed, 2019). This dataset includes fi-
nal yield, leaf protein, and abundance of metabolites, which
can be used to characterize the effect of frost (Supplemental
Data Set 2). The association of hyperspectral data with phys-
iological measurements may assist frost damage
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quantification, which can support crop breeders screening
for more tolerant varieties. Hyperspectral imagery has the
potential to capture traits related to the biochemical com-
position of target tissues. However, due to various technical
factors, the recorded data are usually noisy with nonnegli-
gible redundancy (Mishra et al., 2019). Datasets including
hyperspectral data may benefit from detailed description of
the experimental conditions and sensors used, helping guide
researchers how to better extract the information.

Platforms such as Quantitative Plant (Lobet et al., 2013),
Phenopsis (Granier et al., 2006), and BrAPI (Selby et al.,
2019) are dedicated to assemble a wide range of phenotyp-
ing datasets that can be used to compare phenotypic re-
sponse to stress within and between species. These
platforms are focused on making phenotypic datasets more
findable. Information and website links for other abiotic
stress datasets are described in Supplemental Data Set 2.

Pathogen and pest detection in the field
Changes in environmental conditions are likely to shift path-
ogen and pest regional distributions (Hovmøller et al., 2008;
Shaw and Osborne, 2011; Bebber et al., 2013; Garrett, 2013;
Mariette et al., 2016; Skelsey et al., 2016). To provide suitable
crop varieties and agricultural management recommenda-
tions for these new conditions, it is necessary to gain greater
understanding of the ecological, phenotypic, and molecular
basis of the interaction between plant and pathogens
(Skelsey et al., 2016). Pathogen identification and disease se-
verity estimation are an important part of characterizing
their distribution in the field (Ali and Hodson, 2017). The
detection and quantification of disease are usually per-
formed by visually assessing crop symptoms, which may be
subjected to bias and human error, besides being labor and
time intensive. Various datasets have been released to assist
the development of automated systems for disease identifi-
cation and assessment (Supplemental Data Set 3). The Plant
Village, BRACOL, RoCoLe, citrus (Citrus sp.), cassava
(Manihot esculenta), and apple (Malus sp.) datasets offer
close range annotated images of infected plant organs
against a clean background, offering a resource for disease
diagnosis and severity scoring in collected leaves (Mohanty,
2016; Arsenovic et al., 2019; Chouhan et al., 2019; Krohling,
2019; Parraga-Alava et al., 2019; Rauf et al., 2019; Tian et al.,
2019; Nakatumba-Nabende et al., 2020; Singh et al., 2020).
Machine learning models using support vector machines,
CNNs, and self-attention CNNs trained on similar datasets
were published recently (Abdu et al., 2020; El Abidine et al.,
2020; Zeng and Li, 2020), some of which report increased ef-
ficiency when using segmented regions for pathogen identifi-
cation (Esgario et al., 2020; Karlekar and Seal, 2020). A
comprehensive review on machine learning for disease as-
sessment in crops was published by Hasan et al. (2020).

Although disease detection models trained with the above
datasets can be used in the field, the input samples have to
be manually collected and imaged which can be time con-
suming. Hence, many researchers have focused on develop-
ing models that use UAV-collected images to accelerate

disease detection (Vergara-Diaz et al., 2015; Sugiura et al.,
2016; Moriya et al., 2019; Qiu et al., 2019; Tetila et al., 2020;
Zhao et al., 2020). (Marzougui et al., 2019) combined HTP
images from greenhouse and field experiments to quantify
Aphanomyces root rot resistance in lentils (Lens culinaris).
The authors developed 12 normalized spectral indices that
correlate with disease symptoms and severity, allowing
breeders to objectively quantify genotype resistance.
Another study used hyperspectral data and machine learn-
ing for early identification of charcoal rot disease in soybean,
obtaining classification accuracy of 90% for plants 3 d after
infection (Nagasubramanian et al., 2018). These studies dem-
onstrate the potential of image-based HTP to enable
growers and breeders to automatically screen plants. To the
best of our knowledge, there are no available datasets for
disease-related tasks in the field which prevents the develop-
ment and benchmarking of computer vision-based tools.
Benchmark datasets created for this task requirements are
shown in Box 1, with specific image annotations depending
on the target task (disease detection, identification, severity
scoring, and lesion segmentation).

Field HTP is widely applied to the detection and quantifi-
cation of pests. Rapid pest identification is important so
growers can take action to control pest spread and limit
damage to crops. A large benchmark dataset for insect pest
detection was released containing 75,000 close range images
of annotated pests belonging to 102 categories (see
Supplemental Data Set 3 for a detailed description; Wu et
al., 2019). This benchmark dataset is a valuable resource for
the development of crop monitoring and management
approaches, allowing researchers to test model performance
over a wide range of pests. This dataset can also be comple-
mented with the mango (Mangifera indica) pest classifica-
tion dataset, which has images of mango plants infected
with 15 different categories of pests, with a large volume of
augmented images to increase model robustness (Kusrini et
al., 2020a). Precise algorithms for the detection of pests can
support assessing crop resistance by counting the pests,
helping identify pest species in the field, and monitoring
pest spread. Employing HTP datasets to measure plant–in-
sect interactions can allow the use of RGB sensors to quan-
tify leaf damage and defoliation (O’Neal et al., 2002).
Thermal infrared and hyperspectral images can also be used
to capture physiological changes, such as stomata regulation
(Backoulou et al., 2011; Nabity et al., 2013). Novel datasets
targeting the plant–insect interactions should follow the
guidelines proposed in Box 1 with special attention to pro-
viding detailed metadata (view MIAPPE project) and
ground-truth measurements and labeling.

The development of navigation maps is particularly im-
portant for weed management systems, in which the map
can be used for targeted herbicide application or by weed
killing robots (Somerville et al., 2019; Ga�sparovi�c et al., 2020;
Hunter et al., 2020; Raja et al., 2020). Weed detection sys-
tems can reduce herbicide application by up to 60% in com-
parison to broadcast applications (Somerville et al., 2019;
Hunter et al., 2020) and increase efficiency in organic
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production systems. A key challenge for implementing weed
detection in the field using image-based HTP data is the dif-
ficulty in establishing robust computer vision-based models
that can distinguish between crop and weed species under
varying field conditions. To help overcome this challenge,
many datasets have been released consisting of RGB and
multispectral images of a wide variety of weed and crop spe-
cies, some of which contain pixel level annotations to sepa-
rate the weed from background (Supplemental Data Set 3;
Haug and Ostermann, 2015; Dos Santos Ferreira, 2017;
Giselsson et al., 2017; Sa et al., 2018; Teimouri et al., 2018;
Skovsen et al., 2019; Sudars et al., 2020). A few datasets fea-
ture images of weed seedlings, enabling the development of
models that can detect weed infestation at an early stage.
Studies using similar datasets employed computer vision
and machine learning algorithms for weed detection, though
these presented a high variability in the precision rate
(69%–98%) depending on the crop field analyzed (Wang et
al., 2007; dos Santos Ferreira et al., 2017; Pallottino et al.,
2018; Umamaheswari et al., 2018; Bah et al., 2019; Partel et
al., 2019). These results emphasize the need to produce
more datasets with an increased variety of crop and weed
species at different growth stages. Furthermore, the datasets
need to reflect the management practices (e.g. sowing den-
sity) that the weed detection model would encounter in the
field. Increasing model robustness to varied field conditions
is essential to enable its adoption in agricultural manage-
ment systems and allow plant researchers to quantify herbi-
cide or other weed control practices efficiency.

Root phenotyping
Root system architecture (RSA) greatly influences nutrient
access, efficient water uptake, and plant tolerance to stress
(Mary et al., 2018; York et al., 2018; Mattupalli et al., 2019;
Busener et al., 2020; Griffiths et al., 2020; McKay Fletcher et
al., 2020; Seo et al., 2020). Increased efforts in breeding for
desirable RSA traits can drive a breakthrough in crop pro-
ductivity and resource efficiency (Lynch, 2007). To leverage
RSA potential in crop breeding, it is important that we im-
prove current root phenotyping strategies.

Noninvasive RSA imaging is extremely challenging due to
soil opacity. At the same time, soil replacements such as
transparent gels or hydroponic mediums often lead to phe-
notypes that diverge substantially from the ones observed in
regular soil (Hargreaves et al., 2009; Wojciechowski et al.,
2009; Clark et al., 2011; Ma et al., 2019). A wide variety of
sensors can be employed to acquire 2D or 3D images of
plant root grown in the glasshouse, such as X-ray computed
tomography, magnetic resonance imaging, positron emission
tomography, and hyperspectral imaging (Jahnke et al., 2009;
Garbout et al., 2012; Mooney et al., 2012; van Dusschoten et
al., 2016; Bodner et al., 2018). In Supplemental Data Set 4,
we list available RSA datasets with metadata at varied levels
of detail including from plants grown in multiple types of
media, such as gellan gum, soil, and hydroponics. In addi-
tion, a synthetic root system dataset is available. This large
dataset was produced for tool calibration and modeling

since it provides ground-truth of fibrous and tap-root
images which help identify artifacts generated by the model
when dealing with complex, overlapping root structures.
The data were produced using ArchiSimple with three levels
of noise, and the roots present varying degrees of complex-
ity (Lobet et al., 2017).

Field root phenotyping frequently requires the manual ex-
cavation of individual plants followed by imaging of the
washed root crown system for quantitative trait analysis
(Trachsel et al., 2011; Bucksch et al., 2014; Colombi et al.,
2015). Root crown datasets of multiple crop species are de-
scribed in Supplemental Data Set 4, some of which were
produced with the aim to automatically quantify RSA traits
using different tools. Noninvasive alternative approaches are
not as commonly employed, but offer the potential to un-
dertake a time-series analysis of crop development. These in-
clude electrical resistance tomography, electromagnetic
inductance, and ground penetrating radar (Diaz and
Herrero, 1992; Zenone et al., 2008; Srayeddin and Doussan,
2009), which are used to characterize root water uptake of
wheat and vine plants in the field (Shanahan et al., 2015;
Whalley et al., 2017; Mary et al., 2018).

Overall, image-based RSA phenotyping has many applica-
tions, such as linking RSA traits to micronutrient concentra-
tion and heritability (Busener et al., 2020; McKay Fletcher et
al., 2020), the effect of dwarf genes in seedling roots
(Wojciechowski et al., 2009), changes in the root crown in
response to disease (Corona-Lopez et al., 2019; Mattupalli et
al., 2019), to investigate root plasticity (Rosas et al., 2013),
genetically driven root architecture differences (Jiang et al.,
2019), and QTL mapping of regions controlling RSA (Topp
et al., 2013). Most of the studies cited above use a combina-
tion of tools for RSA trait extraction (DIRT; Das et al., 2015),
RhizoVision (Seethepalli and York, 2019), RSA-GiA
(Galkovskyi et al., 2012; Topp et al., 2013), or Rootscape
(Ristova et al., 2013)) followed by statistical analysis (varia-
tions of ANOVA, three-parameter logistic function, PCA) or
linear regression to test if the observed traits relate to envi-
ronmental or genetic data. The wide range of approaches
used reflects the diversity of input data formats. The sensors
employed to collect RSA traits are very diverse and capture
different aspects of the root. Hence, the decision for which
feature extraction tool and analysis method to implement
must be decided case by case. Even more important in this
case is tool and data interoperability because it will allow
researchers to explore the resources efficiently. Root image
datasets from several major crop species can be downloaded
from the Quantitative Plant platform (quantitative-plan-
t.org/dataset) and Zenodo database(zenodo.org/).

The reconstruction of the data as 2D or 3D representa-
tions of the root system, and root segmentation from the
medium usually assumes a high contrast between root and
background, which is not always the case (Atkinson et al.,
2019). Machine and deep learning-based tools have been de-
veloped for root segmentation in 2D or 3D (Iyer-Pascuzzi et
al., 2010; Bucksch et al., 2014; Falk et al., 2020; Yasrab et al.,
2020a), including very thin (1–3 pixels) roots grown in

Resources for HTP in crops PLANT PHYSIOLOGY 2021: 187; 699–715 | 705

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/article/187/2/699/6310753 by guest on 25 April 2024

https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab301#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab301#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab301#supplementary-data


visible medium (RootNet; Yasrab et al., 2020b) and in soil
(Soltaninejad et al., 2020), while other tools aimed for RSA
trait quantification (Atkinson et al., 2017a; Falk et al., 2020).
Although there are many potential approaches to perform
root segmentation, most are not suited for newer image
data types. In addition, few tools are capable of linking ob-
served RSA to genotypic information. Recently, deep learn-
ing models have been employed to attempt to bridge
phenotype to genotype predictions (Pound et al., 2017a;
Yasrab et al., 2020a) and can achieve similar results for QTL
identification as user supervised methods (Pound et al.,
2017a). However, to effectively integrate high-throughput
phenotype to genotype tools into the breeding process
requires refined tools. These tools must be capable of deal-
ing with phenotype and sensor variability and of aggregating
experimental metadata into the analysis. The success in the
development of such tools relies on the quality and size of
the available datasets because these are the sole source of
information for the deep learning model to adjust its inter-
nal parameters.

Quantitative plant morphology
The description of plant morphological traits, for example,
number of leaves, canopy cover, number of flowers, and
seeds, provides a foundation to characterize plant pheno-
typic response, which is directly related to plant develop-
mental stage, yield potential, and overall health (Kouressy et
al., 2008). The quantification of agronomic traits often relies
on manual measurements, which are costly, labor-intensive,
and prone to errors. Several approaches including neural
networks and other machine learning models have been
published to perform leaf counting, area estimation, folding
and plant growth stage classification, stem–leaf segmenta-
tion, and seed counting (Parmar et al., 2016; Pereira et al.,
2016; Sodhi et al., 2017; Teimouri et al., 2018; Uzal et al.,
2018; Jin et al., 2019; Rascio et al., 2020). Deep learning
models are widely applied to image analysis due to the
high complexity of the data and their potential for quantita-
tive morphology lies partially in their capacity to segment
the target object from the nontarget objects in the image.
Hence, it is possible to measure the traits of the segmented
object (number of seeds, color, fruit shape, fruit, or seed size).
This measurement ability was shown in a study for fish
morphology quantification that used Mask R-CNN for pixel-
wise segmentation of the fish body followed by measurement
of its morphological features (Yu et al., 2020). A variety of
trait phenotyping datasets have been released to develop
pipelines for trait measurement, such as the hypocotyl
dataset with images of A. thaliana seedlings for length
determination (Dobos et al., 2019), image time-series of
A. thaliana growth that can be used to predict performance
(Taghavi Namin et al., 2018), and species identification
datasets (Kumar et al., 2012; Lee et al., 2015, 2017; Fricker
et al., 2019; Zheng et al., 2019) as shown in Supplemental
Data Set 5.

PlantCV and Deep Plant Phenomics are the two platforms
that offer packaged pretrained deep learning models to run
as applications for phenotyping (Fahlgren et al., 2015;
Ubbens and Stavness, 2017). However, tools for quantitative
morphology analysis can only guarantee performance if un-
der restricted image conditions and may require further im-
age processing steps. Producing and sharing annotated
datasets from a diverse set of species are the most efficient
way to ensure new tools can be developed to incorporate
them. The Plant Phenotyping Datasets (Supplemental Data
Set 5) are the collection of annotated top-view images of A.
thaliana and tobacco (Nicotiana tabacum) undergoing dif-
ferent treatments (Minervini et al., 2016). It is a benchmark
dataset (Box 1), that was employed in the leaf segmentation
and leaf counting challenges at the Computer Vision
Problems in Plant Phenotyping conference, and propelled
the development of tools for leaf segmentation and count-
ing (Aich and Stavness, 2017; Dobrescu et al., 2017; Giuffrida
et al., 2018; Praveen Kumar and Domnic, 2020), which can
be later used for assessing plant growth and biomass. Other
datasets focused on seed and fruit organs are available.
Some datasets are useful to compare variance in seed mor-
phological traits (Ducournau et al., 2020), while others can
be used for the development of computer vision tools for
fruit counting and automatic quality assessment. In this cat-
egory, there is a soybean image dataset to assess seed dam-
age from mechanical and biological sources (Pereira et al.,
2019), a dataset for the identification of Indian basmati rice
(Oryza sativa) seed varieties (Sharma et al., 2020), sugar beet
(Beta vulgaris) seed traits (Ducournau et al., 2020), a cocoa
bean (Theobroma cacao) dataset for quality assessment
(Santos et al., 2019), a banana (Musa sp.) tier abnormality
classification (Piedad, 2019), and hyperspectral images of dif-
ferent loose tea (Camellia sinensis; Mishra, 2018;
Supplemental Data Set 5).

Determining leaf inclination and distribution on the plant
is an important morphological trait, it impacts the plant
spectral reflectance and is a mechanism to increase toler-
ance to abiotic stress, with impacts on leaf temperature, wa-
ter loss, and drought tolerance (Ehleringer and Comstock,
1987; Fuchs, 1990; He et al., 1996; Werner et al., 1999). In
common bean (Phaseolus vulgaris L.) the extent of leaf
movement increases as the water availability drops, allowing
the plants to maintain leaf temperature despite stomata clo-
sure (Pastenes et al., 2005). A dataset for leaf angle estima-
tion with ground-truth angles for 71 Eucalyptus species
(Pisek and Adamson, 2020) is described in Supplemental
Data Set 5, it contains images of Eucalyptus canopies that
can be used to estimate leaf angle distribution in trees.
Automated pipelines for leaf angle extraction have been de-
veloped and tested for A. thaliana, beet, apple (Malus
domestica), maize, and sorghum (Müller-Linow et al., 2015;
Kenchanmane Raju et al., 2020), allowing researchers to
track leaf angle variability and distribution over time.
Identifying varieties with desired leaf angle distribution can
assist breeders to select the varieties best adapted to specific
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environmental conditions, such as high planting densities
where a narrow angle prevents the leaf from being shad-
owed by others (Pepper et al., 1977; Lambert and Johnson,
1978).

A multitask pipeline capable of phenotyping a compre-
hensive array of traits in different tissues would produce a
snapshot that can be used to identify new QTLs. It was ob-
served that genetic traits may contribute to different tissues
causing multiple trait variance (Li et al., 2018). This would
provide a resource to detect QTLs and improve our under-
standing of the genetic basis of complex phenotypes (Topp
et al., 2013). Trait phenotyping can also be used for the con-
struction of 3D representations of the plant structure (Topp
et al., 2013; Vadez et al., 2015; van Dusschoten et al., 2016;
McCormick et al., 2016; Bengochea-Guevara et al., 2017;
Sodhi et al., 2017; Vázquez-Arellano et al., 2018; Wang et al.,
2018b). This avoids loss of information caused by 2D com-
pression and prevents the generation of artifacts that can
occur due to lighting, occlusion, and overlaps.

Concluding remarks
HTP platforms and tools are revolutionizing the way we
capture plant phenotypic variation, by allowing the quantifi-
cation of agronomic traits, and the identification of genetic
traits with potential for crop breeding. Publishing the col-
lected phenotypic datasets and associated information
would help drive the development of high-performance
crops, allowing growers to more effectively monitor their
crops and giving breeders the opportunity to explore re-
search from a new perspective with updated tools. The re-
search community must adhere to standardized practices
for dataset release such as proposed by MIAPPE in order for
the datasets to be explored and interpreted (see
“Outstanding questions”). Because of the multiple types of
data comprising a HTP dataset, it is important that the
terms are clearly defined so researchers from different fields
(computer science, remote sensing, and plant biology) can
collaborate. In cases where data sharing is unfeasible due to
privacy or security concerns, federative learning offers an op-
portunity to train machine learning algorithms collabora-
tively without exchanging data. A variety of mathematical
and machine learning methods have recently been applied
to address the bottleneck of phenotypic quantitative analy-
sis. However, without established benchmark datasets, it is
difficult to compare the performance of these approaches,
imposing a barrier to improvements and our understanding
of the limitations of techniques. It is also important that
novel tools are intuitive and well documented, allowing do-
main experts with minimal programing background to bene-
fit (Klukas et al., 2014; Ubbens and Stavness, 2017). Plant
phenotyping is a rapidly evolving field with a growing com-
munity, it is important that we use this growth to establish
structures such as public repositories and benchmarks to
support the field so it may achieve its potential to accelerate
crop breeding.

Supplemental data
The following materials are available in the online version of
this article.

Supplementary Data Set 1. Available image-based HTP
datasets for crop yield prediction.

Supplementary Data Set 2. Available image-based HTP
datasets for abiotic stress phenotyping

Supplementary Data Set 3. Available image-based HTP
datasets for disease and pest detection

Supplementary Data Set 4. Root phenotyping datasets
Supplementary Data Set 5. Other miscellaneous data-

bases that may be useful for applications not discussed in
this review.
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Moriya ÉAS, Imai NN, Tommaselli AMG, Berveglieri A,
Honkavaara E, Soares MA, Marino M (2019) Detecting citrus
huanglongbing in Brazilian orchards using hyperspectral aerial
images. Int Arch Photogramm Remote Sens Spatial Inf Sci
XLII-2/W13: 1881–1886

Müller-Linow M, Pinto-Espinosa F, Scharr H, Rascher U (2015)
The leaf angle distribution of natural plant populations: assessing
the canopy with a novel software tool. Plant Methods 11: 11

Murphy ME, Boruff B, Callow JN, Flower KC (2020) Detecting frost
stress in wheat: a controlled environment hyperspectral study on
wheat plant components and implications for multispectral field
sensing. Remote Sens (Basel) 12: 477

Nabity PD, Haus MJ, Berenbaum MR, DeLucia EH (2013)
Leaf-galling phylloxera on grapes reprograms host metabolism and
morphology. Proc Natl Acad Sci U S A 110: 16663–16668

Nagasubramanian K, Jones S, Sarkar S, Singh AK, Singh A,
Ganapathysubramanian B (2018) Hyperspectral band selection
using genetic algorithm and support vector machines for early
identification of charcoal rot disease in soybean stems. Plant
Methods 14: 86

Naito H, Ogawa S, Valencia MO, Mohri H, Urano Y, Hosoi F,
Shimizu Y, Chavez AL, Ishitani M, Selvaraj MG, et al. (2017)
Estimating rice yield related traits and quantitative trait loci analy-
sis under different nitrogen treatments using a simple tower-based
field phenotyping system with modified single-lens reflex cameras.
ISPRS J Photogramm Remote Sens 125: 50–62

Nakatumba-Nabende J, Akera B, Tusubira JF, Nsumba S,
Mwebaze E (2020) A dataset of necrotized cassava root
cross-section images. Data Brief 32: 106170

Nevavuori P, Narra N, Lipping T (2019) Crop yield prediction with
deep convolutional neural networks. Comput Electron Agric 163:
104859

Nhamo L, Ebrahim GY, Mabhaudhi T, Mpandeli S, Magombeyi M,
Chitakira M, Magidi J, Sibanda M (2020) An assessment of

groundwater use in irrigated agriculture using multi-spectral re-
mote sensing. Phys Chem Earth 115: 102810

Nouri M, Gorretta N, Vaysse P, Giraud M, Germain C, Keresztes
B, Roger J-M (2018) Near infrared hyperspectral dataset of healthy
and infected apple tree leaves images for the early detection of ap-
ple scab disease. Data Brief 16: 967–971

Nuttall JG, Perry EM, Delahunty AJ, O’Leary GJ, Barlow KM,
Wallace AJ (2019) Frost response in wheat and early detection us-
ing proximal sensors. J Agro Crop Sci 205: 220–234

O’Neal ME, Landis DA, Isaacs R (2002) An inexpensive, accurate
method for measuring leaf area and defoliation through digital im-
age analysis. J Econ Entomol 95: 1190–1194

Pacumbaba RO, Beyl CA (2011) Changes in hyperspectral reflec-
tance signatures of lettuce leaves in response to macronutrient de-
ficiencies. Adv Space Res 48: 32–42

Pallottino F, Menesatti P, Figorilli S, Antonucci F, Tomasone R,
Colantoni A, Costa C (2018) Machine vision retrofit system for
mechanical weed control in precision agriculture applications.
Sustainability 10: 2209

Papoutsoglou EA, Faria D, Arend D, Arnaud E, Athanasiadis IN,
Chaves I, Coppens F, Cornut G, Costa BV, Ćwiek-Kupczy�nska H,
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