Abstract

Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have been associated with amyotrophic lateral sclerosis (ALS). FUS-positive neuropathology is reported in a range of neurodegenerative diseases, including ALS and fronto-temporal lobar degeneration with ubiquitin-positive pathology (FTLDU). To examine protein aggregation and cytotoxicity, we expressed human FUS protein in yeast. Expression of either wild type or ALS-associated R524S or P525L mutant FUS in yeast cells led to formation of aggregates and cytotoxicity, with the two ALS mutants showing increased cytotoxicity. Therefore, yeast cells expressing human FUS protein recapitulate key features of FUS-positive neurodegenerative diseases. Interestingly, a significant fraction of FUS expressing yeast cells stained by propidium iodide were without detectable protein aggregates, suggesting that membrane impairment and cellular damage caused by FUS expression may occur before protein aggregates become microscopically detectable and that aggregate formation might protect cells from FUS-mediated cytotoxicity. The N-terminus of FUS, containing the QGSY and G rich regions, is sufficient for the formation of aggregates but not cytotoxicity. The C-terminal domain, which contains a cluster of mutations, did not show aggregation or cytotoxicity. Similar to TDP-43 when expressed in yeast, FUS protein has the intrinsic property of forming aggregates in the absence of other human proteins. On the other hand, the aggregates formed by FUS are thioflavin T-positive and resistant to 0.5% sarkosyl, unlike TDP-43 when expressed in yeast cells. Furthermore, TDP-43 and FUS display distinct domain requirements in aggregate formation and cytotoxicity.

References

Alberti
S.
,
Halfmann
R.
,
King
O.
,
Kapila
A.
,
Lindquist
S.
(
2009
)
A systematic survey identifies prions and illuminates sequence features of prionogenic proteins
.
Cell
137
,
146
158
.

Bagriantsev
S.N.
,
Kushnirov
V.V.
,
Liebman
S.W.
(
2006
)
Analysis of amyloid aggregates using agarose gel electrophoresis
.
Methods Enzymol
412
,
33
48
.

Bosco
D.A.
,
Lemay
N.
,
Ko
H.K.
,
Zhou
H.
,
Burke
C.
,
Kwiatkowski
T. J.
Jr
,
Sapp
P.
,
McKenna-Yasek
D.
,
Brown
R.H.
Jr
,
Hayward
L.J.
(
2010
)
Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules
.
Hum Mol Genet
19
,
4160
4175
.

Buratti
E.
,
Baralle
F.E.
(
2008
)
Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease
.
Front Biosci
13
,
867
878
.

Cushman
M.
,
Johnson
B.S.
,
King
O.D.
,
Gitler
A.D.
,
Shorter
J.
(
2010
)
Prion-like disorders: blurring the divide between transmissibility and infectivity
.
J Cell Sci
123
,
1191
1201
.

Derkatch
I.L.
,
Bradley
M.E.
,
Hong
J.Y.
,
Liebman
S.W.
(
2001
)
Prions affect the appearance of other prions: the story of [PIN(+)]
.
Cell
106
,
171
182
.

Dormann
D.
,
Rodde
R.
,
Edbauer
D.
,
Bentmann
E.
,
Fischer
I.
,
Hruscha
A.
,
Than
M.E.
,
Mackenzie
I.R.
,
Capell
A.
,
Schmid
B.
, et al.  (
2010
)
ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import
.
EMBO J
29
,
2841
2857
.

Duennwald
M.L.
,
Jagadish
S.
,
Giorgini
F.
,
Muchowski
P.J.
,
Lindquist
S.
(
2006
)
A network of protein interactions determines polyglutamine toxicity
.
Proc Natl Acad Sci U S A
103
,
11051
11056
.

Gal, J., Zhang, J., Kwinter, D.M., Zhai, J., Jia, H., Jia, J., and Zhu, H. (2010). Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol Aging. July 29. [Epub ahead of print].

Huang
E.J.
,
Zhang
J.
,
Geser
F.
,
Trojanowski
J.Q.
,
Strober
J.B.
,
Dickson
D.W.
,
Brown
R.H.
Jr
,
Shapiro
B.E.
,
Lomen-Hoerth
C.
(
2010
)
Extensive FUS-Immunoreactive Pathology in Juvenile Amyotrophic Lateral Sclerosis with Basophilic Inclusions
.
Brain Pathol
20
,
1069
1076
.

Ito
D.
,
Seki
M.
,
Tsunoda
Y.
,
Uchiyama
H.
,
Suzuki
N.
(
2010
)
Nuclear transport impairment of amyotrophic lateral sclerosislinked mutations in FUS/TLS
.
Ann Neurol
8
,
11
.

Johnson
B.S.
,
McCaffery
J.M.
,
Lindquist
S.
,
Gitler
A.D.
(
2008
)
A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity
.
Proc Natl Acad Sci U S A
105
,
6439
6444
.

Johnson
B.S.
,
Snead
D.
,
Lee
J.J.
,
McCaffery
J.M.
,
Shorter
J.
,
Gitler
A.D.
(
2009
)
TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity
.
J Biol Chem
284
,
20329
20339
.

Krobitsch
S.
,
Lindquist
S.
(
2000
)
Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins
.
Proc Natl Acad Sci U S A
97
,
1589
1594
.

Kwiatkowski
T.J.
Jr.,
Bosco
D.A.
,
Leclerc
A.L.
,
Tamrazian
E.
,
Vanderburg
C.R.
,
Russ
C.
,
Davis
A.
,
Gilchrist
J.
,
Kasarskis
E.J.
,
Munsat
T.
, et al.  (
2009
)
Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis
.
Science
323
,
1205
1208
.

Lagier-Tourenne
C.
,
Polymenidou
M.
,
Cleveland
D.W.
(
2010
)
TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration
.
Hum Mol Genet
19
,
R46
R64
.

Li
Y.
,
Ray
P.
,
Rao
E.J.
,
Shi
C.
,
Guo
W.
,
Chen
X.
,
Woodruff
E.A.
3rd
,
Fushimi
K.
,
Wu
J.Y.
(
2010
)
A Drosophila model for TDP-43 proteinopathy
.
Proc Natl Acad Sci U S A
107
,
3169
3174
.

Munoz
D.G.
,
Neumann
M.
,
Kusaka
H.
,
Yokota
O.
,
Ishihara
K.
,
Terada
S.
,
Kuroda
S.
,
Mackenzie
I.R.
(
2009
)
FUS pathology in basophilic inclusion body disease
.
Acta Neuropathol
118
,
617
627
.

Neumann
M.
,
Rademakers
R.
,
Roeber
S.
,
Baker
M.
,
Kretzschmar
H.A.
,
Mackenzie
I.R.
(
2009
)
A new subtype of frontotemporal lobar degeneration with FUS pathology
.
Brain
132
,
2922
2931
.

Neumann
M.
,
Sampathu
D.M.
,
Kwong
L.K.
,
Truax
A.C.
,
Micsenyi
M.C.
, et al.  (
2006
)
Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
.
Science
314
,
130
133
.

Osherovich
L.Z.
,
Weissman
J.S.
(
2001
)
Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion
.
Cell
106
(
2
),
183
194
.

Outeiro
T.F.
,
Lindquist
S.
(
2003
)
Yeast cells provide insight into alpha-synuclein biology and pathobiology
.
Science
302
,
1772
1775
.

Peters
T.W.
,
Huang
M.
(
2007
)
Protein aggregation and polyasparagine-mediated cellular toxicity in Saccharomyces cerevisiae
.
Prion
1
(
2
),
144
153
.

Rabbitts
T.H.
,
Forster
A.
,
Larson
R.
,
Nathan
P.
(
1993
)
Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma
.
Nat Genet
4
,
175
180
.

Tank
E.M.
,
Harris
D.A.
,
Desai
A.A.
,
True
H.L.
(
2007
)
Prion protein repeat expansion results in increased aggregation and reveals phenotypic variability
.
Mol Cell Biol
27
,
5445
5455
.

Urwin
H.
,
Josephs
K.A.
,
Rohrer
J.D.
,
Mackenzie
I.R.
,
Neumann
M.
,
Authier
A.
,
Seelaar
H.
,
Van Swieten
J.C.
,
Brown
J.M.
,
Johannsen
P.
,
the FReJA Consortium
et al.  (
2010
)
FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration
.
Acta Neuropathol
120
,
33
41
.

Vance
C.
,
Rogelj
B.
,
Hortobágyi
T.
,
De Vos
K.J.
,
Nishimura
A.L.
,
Sreedharan
J.
,
Hu
X.
,
Smith
B.
,
Ruddy
D.
,
Wright
P.
, et al.  (
2009
)
Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6
.
Science
323
,
1208
1211
.

Woulfe
J.
,
Gray
D.A.
,
Mackenzie
I.R.
(
2010
)
FUS-immunoreactive intranuclear inclusions in neurodegenerative disease
.
Brain Pathol
20
,
589
597
.

Zinszner
H.
,
Sok
J.
,
Immanuel
D.
,
Yin
Y.
,
Ron
D.
(
1997
)
TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling
.
J Cell Sci
110
,
1741
1750
.

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)