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We explore topological defects in the 4D pure Z2 lattice gauge theory. This theory has
1-form Z2 center symmetry as well as Kramers–Wannier–Wegner (KWW) duality. We con-
struct the KWW duality topological defects in a similar way to those constructed by Aasen
et al. [J. Phys. A 49, 354001 (2016)] for the 2D Ising model. These duality defects turn out
to be non-invertible. We also construct 1-form Z2 symmetry defects as well as the junctions
between the KWW duality defects and 1-form Z2 center symmetry defects. The crossing
relations between these defects are derived. The expectation values of some configurations
of these topological defects are calculated by using these crossing relations.
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1. Introduction
Recently, there has been progress in extending the concept of symmetry and its application
to the analysis of non-perturbative dynamics of quantum field theories. One of them is the
so-called “non-invertible symmetry”. In two dimensions, such non-invertible symmetries are
described by “fusion categories” and investigated actively in many papers including Refs. [1–
13]. Non-invertible symmetries in higher dimensions are less understood than those in two
dimensions. A class of non-invertible symmetries in higher dimensions is described by “fusion
n-categories” [14,15]. There have been several studies of 4D non-invertible symmetries and their
applications [16–20]. There have also been other studies of non-invertible symmetries and their
applications including Refs. [21–25].

These symmetries and generalized symmetries are described by topological defects [26]. An
interesting approach is to construct such topological defects in lattices, initiated by Aasen,
Mong, and Fendley (AMF) [27,28]. One of the advantages of the AMF approach is that this
construction is perfectly explicit. In this paper, we employ this AMF approach to construct
topological defects in higher dimensions.

In this paper, we study the 4D pure Z2 lattice gauge theory [29]. We prepare the 4D cubic
lattice and assign a variable Um = ±1 to each link m. The partition function of this theory is
given, with a positive constant parameter K, by

Z =
∑
{U }

exp

⎛
⎝K

∑
i∈P

∏
m∈�i

Um

⎞
⎠ . (1.1)

Here P is the set of all plaquettes, and �i is the set of four links included in the plaquette i.
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Wegner [30] discovered a duality in this 4D pure Z2 lattice gauge theory that is similar to the
Kramers–Wannier duality [31,32] in the 2D Ising model. Let us call this duality “the KWW
duality”. According to the KWW duality, the 4D pure Z2 lattice gauge theories with the pa-
rameters K and K̂ are equivalent1 when they satisfy the relation

sinh 2K sinh 2K̂ = 1. (1.2)

This theory is in the confinement phase when K is small, and in the deconfinement phase when
K is large. If there is only one phase transition, one can conclude that the phase transition
occurs at the self-dual point K = K̂ =: Kc where

Kc = −1
2

log
(
−1 +

√
2
)
. (1.3)

It is believed that this is actually the case, and the phase transition is first order [33,34].
Another important symmetry in this theory is the 1-form Z2 center symmetry [26]. Wilson

loops are charged under this center symmetry.
In this paper, we investigate the KWW duality and the 1-form Z2 center symmetry in the

pure Z2 lattice gauge theory in four dimensions by the AMF approach. We explicitly construct
duality defects and show that they are non-invertible. In particular, we find that the expectation
value of a duality defect with a topology of S3 is 1√

2
, not 1, which implies that the duality defect

is non-invertible. We also construct Z2 symmetry defects by the AMF approach.
Furthermore, we investigate the crossing relations between duality defects and Z2 symmetry

defects. The crossing relations are not closed within duality defects. They are closed only when
Z2 symmetry defects are included. To consider these relations, we introduce defect junctions.
In particular, we derive the crossing relations between two configurations of duality defects
that are related by cutting and gluing solid tori. By using junctions and these relations, we can
calculate the expectation values of the duality defects with various topologies. These values are
invariants of embeddings of 3D manifolds into four dimensions because duality defects are
topological defects. We compute expectation values of S3 and S1 × S2.

The construction of this paper is as follows. In Sect. 2, we explain the setup of the pure Z2

lattice gauge theory in four dimensions. In Sect. 3, we construct duality defects and Z2 symmetry
defects by the AMF approach. We solve the commutation relations that are satisfied by the
topological defects and find the solution. We show that duality defects are non-invertible by
calculating their expectation values. We also construct Z2 symmetry defects and their junctions
with duality defects. Then we find crossing relations between duality defects and Z2 symmetry
defects. Section 4 is devoted to the conclusions and discussions.

2. 4D Z2 lattice gauge theory
In this section, we explain our formulation of the 4D Z2 lattice gauge theory.

We introduce two kinds of lattices in order to consider duality defects later as shown in Fig. 1.
Our formulation in four dimensions is almost parallel to Ref. [27] in two dimensions.

To be more specific, we introduce coordinates (x1, x2, x3, x4) of R4. The coordinates of points
in � are even integers, while those of �̂ are odd integers. In other words, we define � :=
{(x1, x2, x3, x4)|x1, x2, x3, x4 ∈ 2Z} and �̂ := {(x1, x2, x3, x4)|x1, x2, x3, x4 ∈ 2Z + 1}. We call

1Precisely speaking, the theory with parameter K is equivalent to the theory with parameter K̂ in which
the 1-form Z2 center symmetry is topologically gauged. Such gauging does not affect the local dynamics.
For example, the critical point is exact if there is only one phase transition.
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Fig. 1. A schematic illustration of lattices. Although depicted as 2D in this figure, the actual lattices
treated in this paper are 4D ones. The black lattice represents the lattice �, and the blue lattice represents
the lattice �̂. They are dual to each other.

Fig. 2. Stereographic projection of a 16-cell into three dimensions. The black plaquette represents an
active plaquette, and the blue plaquette represents an inactive plaquette. The 16-cell consists of 16 tetra-
hedrons, each of which contains one active link and one inactive link.

the line segment connecting the nearest two points in each lattice a link. We also call the small-
est square consisting of such links a plaquette. The line segment connecting a point on � and
a point on �̂ is not called a link.

We assign the link variables Um as explained in Sect. 1 to the links in �, while we do not
assign link variables to the links in �̂. For this reason, we refer to the lattice � to which the
link variable is assigned as the active lattice, and sites, links, and plaquettes on it as active sites,
active links, and active plaquettes, respectively. On the other hand, the lattice �̂, to which no
link variables are assigned, is called the inactive lattice, and links, sites, and plaquettes on it are
called inactive sites, inactive links, and inactive plaquettes, respectively.

We can regard the basic unit of such a lattice system as a 16-cell (see, e.g., Refs. [35,36]). As
shown in Fig. 2, the 16-cell consists of an active plaquette and an inactive plaquette that share
a center. The 16-cell consists of 16 tetrahedrons, each of which contains an active link and an
inactive link. The surface of the 16-cell is homeomorphic to S3.

Notice that there is a one-to-one correspondence between active plaquettes and 16-
cells. For example, let us choose an active plaquette p composed of four points
(0,0,0,0),(0,0,0,2),(0,0,2,0),(0,0,2,2) in �. The center of this plaquette is (0,0,1,1). Then the in-
active plaquette p̃ composed of four points ( ± 1, ±1, 1, 1) in �̂ shares the same center as p.
There is a 16-cell containing p, p̃, and these eight points.
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Since there is a one-to-one correspondence between 16-cells and active plaquettes, assigning
Boltzmann weights to the active plaquettes is equivalent to assigning Boltzmann weights to the
16-cells. Let ai = 0, 1 (i = 1, 2, 3, 4) be the link variables assigned to the four active links in a
16-cell. We define the Boltzmann weight of this 16-cell as

W (a1, a2, a3, a4) = exp
(

K (−1)(a1+a2+a3+a4 )
)
. (2.1)

This definition is equivalent to the Boltzmann weight in the Z2 gauge theory in Eq. (1.1) if the
link variables for the link m are identified as Um = (−1)am .

It is convenient to introduce constant weights for links and sites. We define the weights for
active links, active sites, inactive links, and inactive sites as s, l, s̄, and l̄ , respectively. These
weights are required to define the duality defect later. They are determined in Sect. 3.1.

We define the partition function of this theory as

Z =
∑
{a}

⎛
⎜⎝ ∏

active
sites

s

⎞
⎟⎠

⎛
⎜⎝ ∏

active
links

l

⎞
⎟⎠

⎛
⎜⎝ ∏

inactive
sites

s̄

⎞
⎟⎠

⎛
⎜⎝ ∏

inactive
links

l̄

⎞
⎟⎠ ∏

i∈C

W
(
a j1(i), a j2(i), a j3(i), a j4(i)

)
, (2.2)

where C is the set of all 16-cells and j1(i), j2(i), j3(i), and j4(i) are the four active links in the 16-
cell i. aj is the link variable assigned to the active link j. Besides the constant normalization, it
is identical to the partition function (1.1).

3. Topological defects
In this section, we discuss topological defects and junctions between them in the Z2 lattice gauge
theory following the AMF approach [27,28]. We require the defect commutation relations of
topological defects and their junctions, and determine their weights. We derive crossing rela-
tions between them. We calculate the expectation values of some configurations of defects by
using these crossing relations. In particular, we find that the defect associated with the KWW
duality is non-invertible.

3.1 Duality defect
In this subsection, we discuss duality defects in the 4D Z2 pure gauge theory. Duality defects
are 3D operators supported on the boundary between two regions associated by the KWW
duality. The active lattice and the inactive lattice are swapped across a duality defect, like a KW
defect in the 2D Ising model [27].

The 3D unit cell on the tessellation by regular 16-cells is a regular tetrahedron. Therefore, we
employ these tetrahedrons as the building blocks of the 3D surface on which a duality defect
is supported. In our model, each such tetrahedron consists of an active link and an inactive
link. The active lattice and the inactive lattice are swapped across the duality defect. In order
to implement this property, it is convenient to double each tetrahedron on which the duality
defect is supported, and swap the active link and the inactive link (see Fig. 3). As a result, the
building block of duality defects is a tetrahedral prism (see Fig. 4).

We want to construct topological duality defects. We expect that such topological duality
defects exist because the duality transformation just changes the description of the theory, not
the observables. In the following, we impose defect commutation relations so that the duality
defect is topological, and find a solution.

Now we focus on a single 16-cell in our setup and consider defect commutation relations (see
Fig. 5). There are 16 tetrahedrons on the surface of the 16-cell. We consider a configuration of
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Fig. 3. A schematic illustration of the duality defect. The black dots represent the active lattice and
the blue dots represent the inactive lattice. A duality defect is located at the boundary between the two
regions. The active lattice (black dots) and the inactive lattice (blue dots) are swapped across the duality
defect. A unit cell of the duality defect is a tetrahedral prism depicted as a green parallelogram in this
figure.

Fig. 4. The building block of duality defects in the 4D Z2 lattice gauge theory. The 3D surface is composed
of tetrahedrons, each of which includes an active link and an inactive link. A tetrahedron on which a
duality defect is supported is doubled and becomes a tetrahedral prism. An inactive link is put on the
edge of a tetrahedron in this tetrahedral prism associated with the active link of the other tetrahedron
and vice versa.

Fig. 5. A schematic illustration of a defect commutation relation. The circle represents a 16-cell and
a green line represents a duality defect. The defect commutation relation implies that the value of the
duality defect remains the same even if it is deformed without changing the topology.

a duality defect A . Some of the 16 tetrahedrons are filled by this defect A ; the others are not.
We also consider a deformed configuration B in which the tetrahedrons that are not filled by
A are filled and vice versa. A and B are the same away from the focused 16-cell. We require that
A and B have the same weight if A and B have the same topology. Such an equality between two
different duality defect configurations is called a defect commutation relation.
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The topologies of A and B are the same without any ambiguity if and only if the filled tetra-
hedrons on the focused 16-cell satisfy the following conditions:

� The filled tetrahedrons on the 16-cell of A and B are both non-empty sets.
� The configurations A and B restricted on the surface of the focused 16-cell are both simply

connected.
� There is no ambiguity in the above condition. In other words, there is no connection such

that the duality defects are connected only by sites or links.

We explain the defect commutation relations in more detail. Each building block of a duality
defect contains two active links. Let us take a building block and let the link variables assigned
to these two active links a, ã = 0, 1. Then we assign a weight D(a, ã) to this building block. We
also define the weights of each component of the active lattice and the inactive lattice as in
Sect. 2. We denote the weight of an active link, the weight of an active site, the weight of an
inactive link, and the weight of an inactive site as l, s, l̄, s̄, respectively.

Let us choose a 16-cell in our system away from defects and explain the notations further. Let
the labels of the active links in this 16-cell be m = 1, 2, 3, 4 and the labels of the inactive links
be ñ = 1̃, 2̃, 3̃, 4̃. We also denote the set of four active links in the 16-cell as M = {1, 2, 3, 4} and
the set of four inactive links as Ñ = {1̃, 2̃, 3̃, 4̃}. A pair of an active link and an inactive link
(m, ñ) can be used to specify a tetrahedron in the 16-cell. Let U be the set of all tetrahedrons:

U = {(m, ñ)|m = 1, 2, 3, 4, ñ = 1̃, 2̃, 3̃, 4̃}. (3.1)

The weight of this 16-cell is the Boltzmann weight W(a1, a2, a3, a4) in Eq. (2.1). Here, am is the
link variable assigned to the active link m.

Next, we consider a 16-cell with duality defects on its surface in the configuration A . Let
I⊂U be the set of tetrahedrons filled by the duality defects in the configuration A . Since the
duality defect is defined by doubling the tetrahedron, we have to take active links coming from
this doubling into account, in addition to the set of active links M contained within this 16-cell.
These additional active links are the counterparts of the inactive links included in tetrahedrons
contained in the set I. We can use ñ, which is originally the label of an inactive link in the 16-cell,
as the label of such an additional active link. Thus, the set of all such additional active links
is Ẽ = {ñ|(m, ñ) ∈ I}. Also, let ãñ be the link variable of the additional active link ñ. By using
these notations, we can write down the weight of each building block of this duality defect
located on the surface of the 16-cell as

D(am, ãñ), (m, ñ) ∈ I . (3.2)

Then the total weight of the 16-cell and the duality defect located on the 16-cell in the config-
uration A is written as

W (a1, a2, a3, a4)
∏

(m,ñ)∈I

D(am, ãñ). (3.3)

The defect commutation relations are conditions that the weight of the configuration A before
the deformation of Fig. 5 with the defect placed on I is equal to the weight of the configura-
tion B after the deformation with the defect placed on its complement Ī = U \ I . Therefore,
we should also consider the configuration B . One should notice that the 16-cell and its active
links in the configuration B are included in the region of the other side of the defect where the
active lattice and the inactive lattice are swapped. In order to compare it to the weights of the
configuration A , it is more convenient to denote the labels of the active links within the 16-cell
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after the deformation by ñ = 1̃, 2̃, 3̃, 4̃, and the labels of the inactive links within the 16-cell by
m = 1, 2, 3, 4. The link variable for ñ is denoted by ãñ since they couple to the other part of
the system in just the same way as ãñ does in the configuration A if it exists. In this notation,
the Boltzmann weight for the 16-cell is W (ã1̃, ã2̃, ã3̃, ã4̃ ). The total weight of the 16-cell and the
duality defects located on the 16-cell in the configuration B is written as

W (ã1̃, ã2̃, ã3̃, ã4̃ )
∏

(m,ñ)∈Ī

D(am, ãñ). (3.4)

We also consider E = {m|(m, ñ) ∈ Ī}. This is the set of inactive links m touching the duality
defect located on the tetrahedrons in Ī . Each of these inactive links is doubled by the duality
defect and corresponds to an additional active link. The link variable am for the active link m
couples to the other part of the system in just the same way as the link variable am does in the
configuration A . Therefore, they are identified with each other.

We impose the following defect commutation relations as conditions for D(a, ã), l, s, l̄, s̄, K:∑
M\E

W (a1, a2, a3, a4)sα1 lβ1 s̄α̃1 l̄ β̃1
∏

(m,ñ)∈I

D(am, ãñ)

=
∑
Ñ\Ẽ

W (ã1̃, ã2̃, ã3̃, ã4̃ )sα2 lβ2 s̄α̃2 l̄ β̃2
∏

(m,ñ)∈Ĩ

D(am, ãñ). (3.5)

Here the number of active sites, active links, inactive sites, and inactive links in the configuration
A are denoted by α1, β1, α̃1, and β̃1, respectively. The number of active sites, active links, inactive
sites, and inactive links on the configuration B are denoted by α2, β2, α̃2, and β̃2, respectively.
Also, the sums

∑
M\E ,

∑
Ñ\Ẽ are defined by

∑
M\E

:=
∏

m∈M\E

∑
am=0,1

,
∑
Ñ\Ẽ

:=
∏

ñ∈Ñ\Ẽ

∑
ãñ=0,1

. (3.6)

On the left-hand side of Eq. (3.5), we sum over the link variables for the links in M\E, and
on the right-hand side we sum over the link variables for the links in Ñ \ Ẽ . Let us explain
this summation further. To begin with, both sides of the defect commutation relations are the
contributions to the partition function or correlation functions with the defects from the 16-cell
and the building blocks of the defect on the surface of it. The defect commutation relations
are required to be satisfied for arbitrary link variables for the active links that are included
in other 16-cells where some other operator may be inserted. On the other hand, the active
links contained in M \ E, Ñ \ Ẽ are not contained in other 16-cells. These are the degrees of
freedom that arise and disappear before and after the deformation. Therefore, the sums for the
link variables for such links inherited from the partition function are taken.

We determine the values D(a, ã), l, s, l̄, s̄, K by solving these defect commutation relations. In
a physically sensible solution, these values satisfy

D(a, ã) �= 0, l, s, l̄, s̄ > 0, K ∈ R, K �= 0. (3.7)

There is a unique physically sensible solution up to the sign of D(a, ã). The solution is2

2We have used Mathematica to find the solution. We learned this method from Kantaro Ohmori’s
lecture “Categorical symmetry in 1 + 1 dimensions” (in Japanese) at the CREST online workshop “The-
oretical studies of topological phases of matter”. We would like to thank him for this excellent lecture.
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(3.8)

(3.9)

(3.10)

K = Kc = −1
2

log
(
−1 +

√
2
)
, W (a1, a2, a3, a4) = exp

(
K (−1)(a1+a2+a3+a4 )

)
. (3.11)

Notice that the value of K is determined as the critical value Kc. The sign ambiguity for D(a, ã)
does not affect the observables, at least locally. We discuss this sign ambiguity further in Sect. 4.

Let us show the gauge invariance of our duality defects. The building block by itself is not
gauge invariant. To see this, we consider the gauge transformation at a site S in a building block
B. Let L be the active link including S contained in B. Also let L

′
be the other active link in

B. a and ã denote the link variables of L and L
′
, respectively. Then the weight of this building

block B is transformed by this gauge transformation as

D(a, ã) → D(1 − a, ã) = (−1)(1−a)ã. (3.12)

So, it is not gauge invariant. However, the whole of the duality defect is gauge invariant as
shown below. Since the whole of the duality defect does not have a boundary, there is a unique
building block that includes S and L

′
and does not include L; let B

′
denote this building block.

Also, let b be the link variable of the active link including S contained in B
′
. Then the weights

of these building blocks B, B
′
are transformed by the gauge transformation at the active site S

as

D(a, ã)D(b, ã) → D(1 − a, ã)D(1 − b, ã) = (−1)(1−a)ã(−1)(1−b)ã = (−1)aã(−1)bã

= D(a, ã)D(b, ã). (3.13)

Therefore, this pair of building blocks B, B
′
is invariant by this gauge transformation. The build-

ing blocks including the site S are divided into such pairs, so they are invariant. The building
blocks that do not include S are trivially invariant. Thus we can conclude that the whole of the
duality defect is gauge invariant.

Now we show that the duality defects constructed here are non-invertible. The easiest way to
do this is to consider the case where the set of filled tetrahedrons on the 16-cell in the configu-
ration B is empty, as shown in Fig. 6. In the configuration A , the duality defect is located on all
tetrahedrons of the 16-cell and forms a closed manifold S3. In this case, the deformation does
change the topology of the defect from S3 to empty; therefore, Eq. (3.5) is not required. Instead,
one finds that the following equation is satisfied by substituting our solution (3.8)–(3.11):∑

a1,a2,a3,a4=0,1

W (a1, a2, a3, a4)s8l8s̄8 l̄8
∏

(m,ñ)∈U

D(am, ãñ) = 1√
2

W (ã1̃, ã2̃, ã3̃, ã4̃ )s4l4s̄4 l̄4.

(3.14)

For a symmetry defect placed on a closed manifold without any operator insertion inside, the
weight is identical with the empty configuration [26]. However, for our duality defect they are
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Fig. 6. A schematic illustration of Eq. (3.14). The circles represent the 16-cell and the green line represents
the duality defect.

Fig. 7. The building block of the 1-form Z2 center symmetry defect. A black dot represents the midpoint
of an active link. A blue dot represents an inactive site and a blue line represents an inactive link. A
building block of the surface on which a 1-form Z2 symmetry defect is supported is a triangle formed by
an inactive link and the midpoint of an adjacent active link. A triangle on which a Z2 symmetry defect
is supported is doubled and becomes a triangular prism.

not identical, but their ratio is 1/
√

2. As a result, we can conclude that our duality defects are
non-invertible.

3.2 Z2 1-form symmetry defects
In this subsection, we explain topological defects associated with the 1-form Z2 center symme-
try [26]. The 4D Z2 pure gauge theory has 1-form Z2 center symmetry. By the general symmetry
argument [26], the symmetry defects associated with this symmetry are supported on 2D man-
ifolds. The charged objects are Wilson loops. A Z2 symmetry defect acts on the Wilson loop by
linking it. The sign of the expectation value including the Wilson loop is flipped by the action
of the Z2 symmetry defect.

Since Z2 symmetry defects are not codimension-1, the construction of the symmetry defects
is slightly different from that of the duality defects explained in Sect. 3.1 and the defects con-
structed in Refs. [27, 28]. We consider a closed 2D surface constructed by triangles each of
which is formed by an inactive link and the midpoint of an adjacent active link. We consider a
Z2 symmetry defect supported on it. We deform the lattice to describe these Z2 symmetry de-
fects as follows. An inactive link and the inactive sites contained in the Z2 symmetry defects are
doubled. On the other hand, if the midpoint of an active link is contained in the Z2 symmetry
defect, the active link is doubled while the two active sites at the endpoints of the active link are
not doubled. Each triangle on this surface is doubled and becomes a triangular prism by this
deformation (see Figs. 7, 8). We employ this triangular prism as a building block of Z2 1-form
symmetry defects.

We assign weights to elements of Z2 symmetry defects as follows. A building block contains
the midpoints of two active links. The link variables of these two active links are denoted by
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Fig. 8. The surface is made by connecting several building blocks of the 1-form Z2 symmetry defect. A
black line represents an active link. A blue dot represents an inactive site and a blue line represents an
inactive link.

Fig. 9. An active cube. A black line represents an active link. A blue dot represents the inactive link
crossing the center of the active cube.

b, c = 0, 1. We want to define the 1-form Z2 symmetry defect in such a way that its action flips
the sign of a Wilson loop. Therefore, we assign the weight Z2(b, c) = σ x

b,c = (1 − δb,c) to each

building block. We also assign a weight z = √
2 to each pair of doubled active links so that the

extra weight (3.9) for the doubled active link is canceled. The weights for these elements are
summarized as follows:

(3.15)

It is not completely obvious how to assign the Boltzmann weight for a plaquette (or a 16-cell)
including doubled active links. It is assigned by the following rules. There is a pair of doubled
inactive links in each building block of a Z2 symmetry defect. In our setup, an inactive link
crosses the center of a cube formed by six active plaquettes, which we call an “active cube”.
Moreover, the building block of the Z2 symmetry defect specifies the midpoint of an active
link contained in this active cube. Let us choose such a building block and explain how to
assign the Boltzmann weights. There are two plaquettes in this active cube sharing this active
link. Then the Boltzmann weight of one of these two plaquettes is calculated by using one of
the doubled active links, and that of the other plaquette is calculated by the other active link
(see Figs. 9, 10). It could be a bit confusing when two plaquettes in an active cube share a pair
of doubled active links, although the triangle formed by the center of these doubled active links
and the inactive link at the center of this active cube is not included in a Z2 symmetry defect.
In this case, the Boltzmann weights of both of these two plaquettes are calculated by one of
these doubled active links. These rules determine the Boltzmann weights for all plaquettes.
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Fig. 10. An active cube with a building block of a Z2 symmetry defect. The inactive link and an active
link are doubled by the Z2 symmetry defect. Two plaquettes that share the active link before doubling
each contain one of the doubled active links.

Now, we show that these Z2 1-form symmetry defects are topological. We focus on a 16-cell
as in the case of the duality defects. We denote the set of active links in this 16-cell as M = {m
= 1, 2, 3, 4} and the set of inactive links as Ñ = {ñ = 1̃, 2̃, 3̃, 4̃}. Let us choose two neighboring
active links m = 1, 2 from the set M. Moreover, we focus on the set of triangles

V = {(m, ñ)|m = 1, 2, ñ = 1̃, 2̃, 3̃, 4̃}. (3.16)

These triangles form an octahedron. We consider a Z2 1-form symmetry defect consisting of
H⊂V in the octahedron; this configuration is denoted by B . We compare it to the deformed
configuration C in which the defect consists of H̃ := V \ H in the octahedron and the configu-
ration away from the octahedron is not changed. In order to write down the commutation rela-
tions between these two configurations of defects, we also define M ′ = {m = 1, 2} ⊂ M, Fb :=
{m|(m, ñ) ∈ H̃} and Fc := {m|(m, ñ) ∈ H}. The link variables of the active links 3,4 are denoted
by a3, a4, respectively. The link variables of the links m = 1, 2 are denoted by bm and cm if the
link m is doubled. If m = 1, 2 is not doubled, its link variable is denoted by bm in the configu-
ration B and cm in the configuration C . Then our Z2 symmetry defects turn out to satisfy the
commutation relation∑

M ′\Fb

W (b1, b2, a3, a4)
∏

(m,ñ)∈H

Z2(bm, cm) =
∑

M ′\Fc

W (c1, c2, a3, a4)
∏

(m,ñ)∈H̃

Z2(bm, cm).

(3.17)

Here, taking the weight of z into account, the weights of the sites and links on both sides are
the same and cancel each other, so we have omitted them in Eq. (3.17). The summations in
Eq. (3.17) are defined by ∑

M ′\Fb

:= ∏
m∈M ′\Fb

∑
bm=0,1, (3.18)

∑
M ′\Fc

:= ∏
m∈M ′\Fc

∑
cm=0,1 . (3.19)

The commutation relations (3.17) imply that our Z2 symmetry defects are topological.
The commutation relations (3.17) also imply that our Z2 symmetry defects are invertible. For

example, a Z2 symmetry defect placed on the octahedron has the same weight as the empty
configuration:

1∑
b1,b2=0

W (b1, b2, a3, a4)
∏

(m,ñ)∈V

Z2(bm, cm) = W (c1, c2, a3, a4). (3.20)
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Fig. 11. A schematic illustration of junctions. The red line represents a Z2 symmetry defect, and the green
surface represents a duality defect. The intersection is actually 1D.

Fig. 12. A schematic illustration of a junction sharing an inactive link. Its weight is denoted as J(a).

Fig. 13. A schematic illustration of a junction sharing an active link. Its weight is denoted as J̃(b, c).

We conclude that our Z2 symmetry defects are actually the symmetry defects associated with
the 1-form Z2 center symmetry.

3.3 Defect junctions
We can consider a configuration of defects where two or more kinds of defects meet and make
junctions. In this subsection, we discuss such junctions and their weights.

In our system, a junction occurs when a Z2 1-form center symmetry defect ends on a duality
defect as in Fig. 11. Junctions are located on 1D lines.

As discussed in Sect. 3.1, duality defects are defined by doubling tetrahedrons and links on
them. A junction occurs when a doubled link of the duality defect and the Z2 symmetry defect
have an intersection. There are two types of junctions, depending on whether the common link
is an active link or an inactive link. Each junction has the form shown in Figs. 12 and 13. The
weight of a junction when sharing an inactive link is denoted as J(a) with the link variable a
of the active link corresponding to the common inactive link. Similarly, if the common link is
an active link, the weight of the arising junction is denoted by J̃(b, c), where b, c are the link
variables of the common links doubled by the Z2 symmetry defect. Since the total weight is
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Fig. 14. A configuration of tetrahedrons. Each vertex represents a tetrahedron. Two tetrahedrons con-
nected by a black line share an active link, and two tetrahedrons connected by a blue line share an
inactive link. The pairs of numbers assigned to the vertices specify the labels of the active and inactive
links contained by each tetrahedron.

Fig. 15. The configuration of Eq. (3.21). The green dots represent the tetrahedrons on which the duality
defect is located. The red dots represent the tetrahedrons on which the Z2 symmetry defect is located.
Here, placing a Z2 symmetry defect on a tetrahedron means placing a Z2 symmetry defect on a triangle
connecting the center of the active link with the inactive link in the tetrahedron.

non-zero only when b = 1 − c due to the Z2 symmetry defect, we can use a function J̃(a) that
depends only on a and express the weight of this junction as J̃(b, c) = J̃(b)σ x

b,c.
These junction weights are determined so that the following junction commutation relations

are satisfied. In order to explain junction commutation relations concretely, we introduce a
diagram as shown in Fig. 14. In this diagram, each vertex represents a tetrahedron. Two tetra-
hedrons connected by a black line share an active link, and two tetrahedrons connected by a
blue line share an inactive link.

First, we impose a junction commutation relation of the J junction weights and the J̃ junction
weights. We consider two configurations of defects shown in Fig. 15 and require their weights
to be equal to each other. This commutation relation is required so that the Z2 symmetry defect
can be continuously deformed along with the duality defect as schematically depicted in Fig. 16.
This commutation relation can be written as

W (1 − a1, a2, a3, a4)D(1 − a1, ã2̃ )D(1 − a1, ã3̃ )D(a2, ã1̃ )D(a2, ã2̃ )D(a2, ã3̃ )J(ã1̃ )J̃(1 − a1)

= W (a1, 1 − a2, a3, a4)D(a1, ã2̃ )D(a1, ã3̃ )D(1 − a2, ã1̃ )D(1 − a2, ã2̃ )D(1 − a2, ã3̃ )J̃(1 − a2).

(3.21)

Here, the constant weights are omitted since they are common to both sides. The summation
caused by the Z2 symmetry defect is eliminated.

Next, we determine the J̃(a, b) junction weight from the junction commutation relations. We
consider two configurations of defects shown in Fig. 17, and require that their weights are equal
to each other. This junction commutation relation also requires that the Z2 symmetry defect
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Fig. 16. A schematic illustration of junction commutation relations. The green surface represents a du-
ality defect and the red surface represents a Z2 symmetry defect. The junction commutation relation
requires that the Z2 defect can be deformed along with the duality defect. Junctions are located on the
intersection of the two kinds of defects.

Fig. 17. The configuration of Eq. (3.22).

can be continuously deformed along with the duality defect. This equation reads

W (1 − a1, a2, a3, a4)D(1 − a1, ã2̃ )D(1 − a1, ã3̃ )D(a2, ã2̃ )D(a2, ã3̃ )J̃(1 − a1)

= W (a1, 1 − a2, a3, a4)D(a1, ã2̃ )D(a1, ã3̃ )D(1 − a2, ã2̃ )D(1 − a2, ã3̃ )J̃(a1)J̃(1 − a2).

(3.22)

Here, the constant weights are omitted since they are common to both sides, and the summation
caused by the Z2 symmetry defect has already been eliminated.

We can solve the junction commutation relations of Eqs. (3.21) and (3.22) and find a unique
solution for J(a), J̃(b, c). It is written as

(3.23)

(3.24)

There are general junction commutation relations including Eqs. (3.21), (3.22). We explain
these commutation relations using the notation of Sect. 3.1. Let us suppose that duality defects
are placed on I ⊂ U. We choose i, j ∈ M = {1, 2, 3, 4} (i �= j) and consider two configurations
of Z2 symmetry defects on F = {i, j} × Ñ, Ñ := {1̃, 2̃, 3̃, 4̃}. We define IF = {(m, ñ)|(m, ñ) ∈
I and m ∈ {i, j}} as the set of building blocks of the duality defect whose active links are i
or j. We also define F̄ = F \ IF . We require that the weight of the configuration with a Z2
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Fig. 18. A schematic illustration of the crossing relations that a Z2 symmetry defect with a boundary on
the duality defect can remove if the boundary is homologically trivial on the duality defect.

Fig. 19. The configuration of the left-hand side of Eq. (3.25).

defect located on HF ⊂ F̄ is equal to that on F̄ \ HF . These are non-trivial relations for junction
weights. The weights (3.23), (3.24) satisfy all these commutation relations.

Let us explain the gauge invariance of our junctions. The weight (3.24) is gauge invariant by
itself. This is because it transforms as J̃(b, c) → J̃(1 − b, 1 − c) = J̃(b, c) by the gauge transfor-
mation at an active site contained in this building block. On the other hand, J(a) in Eq. (3.23)
is not gauge invariant by itself, because it transforms as J(a) → J(1 − a) = −J(a) by the gauge
transformation at an active site contained in this building block of junctions. However, a whole
junction is gauge invariant as follows. Let us focus on an active site S on a J junction. Since this
junction is a line without boundaries, there are exactly two building blocks of junctions that
include S. Let a, b be the link variables of the two active links in these two building blocks. By
the gauge transformation at S, the weights of these two building blocks transform as J(a)J(b)
→ J(1 − a)J(1 − b) = J(a)J(b). The other part of the junction is trivially invariant by this gauge
transformation. Therefore we can conclude that our junctions are gauge invariant.

3.4 Crossing relations and expectation values
In this subsection, we discuss various crossing relations using the defects and junctions de-
scribed so far. For example, we derive the crossing relations between two duality defect config-
urations whose topologies are different. We also derive some crossing relations in which both
duality defects and Z2 symmetry defects appear.

An example of such a relation is that Z2 symmetry defects with a boundary on the duality
defect can be removed if the boundary is homologically trivial on the duality defect. This is
schematically illustrated in Fig. 18. One concrete configuration in the lattice is shown in Fig. 19.
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Fig. 20. A schematic illustration of solid torus equations. The left-hand side represents a duality defect
configuration on one solid torus V1. The first term on the right-hand side represents a duality defect
configuration on one solid torus V2 and the second term represents a configuration of the duality defect
on a solid torus V2 with a Z2 symmetry defect on D2 whose boundary is a non-trivial cycle on the duality
defect. This is an example in which the crossing relation is not closed only within duality defects.

Fig. 21. The configuration of Eq. (3.26). The left-hand side is the duality defect configuration on V1. The
first term on the right-hand side is the duality defect configuration on V2, and the second term on the
right-hand side is the duality defect configuration on V2 with a Z2 symmetry defect.

We can verify the following equation, which represents Fig. 19:∑
a1,b3=0,1

J(ã1̃ )J(ã2̃ )J(ã3̃ )J(ã4̃ )W (a1, a2, b3, a4)Z2(b3, c3)4D(a1, ã1̃ )D(a1, ã2̃ )D(a1, ã3̃ )D(a1, ã4̃ )

=
∑

a1=0,1

W (a1, a2, c3, a4)D(a1, ã1̃ )D(a1, ã2̃ )D(a1, ã3̃ )D(a1, ã4̃ ). (3.25)

Here, we omit the constant weights such as link weights because these weights are common to
both sides.

Another important crossing relation is the equation for the duality defect on a 3D solid torus.
We consider the decomposition of a 16-cell into two solid tori. We call these solid tori V1 and V2.
A solid torus is not simply connected and thus the topology of the duality defects changes by
the deformation as explained in Sect. 3.1. Therefore, the defect commutation relations need not
be satisfied. Instead, we find the solid torus crossing relations including Z2 defects (see Fig. 20);
there is a relation between the duality defect on V1, the duality defect on V2, and the duality
defect on V2 with the Z2 symmetry defect of the following. Let IS be the set of tetrahedrons in
V2. First, we choose one k̃ ∈ N = {1̃, 2̃, 3̃, 4̃}, and define Ik̃

S := {(m, k̃)|(m, k̃) ∈ IS} to be the set
of tetrahedrons in V2 that contain k̃. Consider a duality defect on V2 with a Z2 symmetry defect
on every tetrahedron on M × {k̃} \ Ik̃

S , M = {1, 2, 3, 4}. Here, placing the Z2 symmetry defect
on the tetrahedron means placing the Z2 symmetry defect in a triangle such that it connects
the center of the active link with the inactive link in the tetrahedron. Notice that the weight of
the configuration is independent of the choice k̃ because of the defect commutation relations
described in Sect. 3.3. For example, if the duality defect is placed on V1 as shown on the left-
hand side of Fig. 21, the configuration of the Z2 symmetry defect is shown in the second term
on the right-hand side of Fig. 21.
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Fig. 22. A calculation of an expectation value of a duality defect on S2 × S1. On the left-hand side, we
focus on the part surrounded by the dotted circle. The duality defect in this part is D2 × S1 shaped, and
therefore we apply the solid torus equation here. In the first line on the right-hand side, the first term is
a duality defect on S3. The second term is a duality defect on S3 and a Z2 symmetry defect on D2 whose
boundary is on the duality defect. By using the crossing relation in Fig. 18, we find the second term to
be equal to the first term. Therefore, the expectation value of a duality defect on S2 × S1 is equal to the√

2 times S3 expectation value. By using the relation in Fig. 6, finally, we find that the expectation value
of a duality defect on S2 × S1 is one.

Then, the crossing relation as shown in Fig. 21 is satisfied. The concrete equation for this is
as follows:

s8l8W (a1, a2, a3, a4)D(a1, ã1̃ )D(a2, ã1̃ )D(a2, ã2̃ )D(a2, ã3̃ )D(a3, ã3̃ )D(a4, ã1̃ )D(a4, ã3̃ )D(a4, ã4̃ )

= 1√
2

(
s8l8W (ã1̃, ã2̃, ã3̃, ã4̃ )D(a1, ã2̃ )D(a1, ã3̃ )D(a1, ã4̃ )D(a2, ã4̃ )D(a3, ã1̃ )D(a3, ã2̃ )

× D(a3, ã4̃ )D(a4, ã2̃ ) +
∑

b̃1̃=0,1

s8l9zW (b̃1̃, ã2̃, ã3̃, ã4̃ )D(a1, ã2̃ )D(a1, ã3̃ )D(a1, ã4̃ )D(a2, ã4̃ )

× D(a3, b̃1̃ )D(a3, ã2̃ )D(a3, ã4̃ )D(a4, ã2̃ )Z2(ã1̃, b̃1̃ )3J(a1)J(a2)J(a3)J̃(ã1̃, b̃1̃ )
)
. (3.26)

By using the solid torus equations (3.26), we can compute a couple of expectation values. The
first example is the expectation value of a duality defect on S2 × S1 as shown in Fig. 22. We can
cut out one solid torus from S2 × S1. We apply the solid torus equation to this solid torus. With
the relations in Figs. 6 and 18, we find that the expectation value of the duality defect on S2 ×
S1 is one. The second example is the expectation value of a Z2 symmetry defect on a 2D disk
whose boundary is a non-trivial S1 cycle on the duality defect on S2 × S1 as shown in Fig. 23.
We use the solid torus equation for the duality defect configuration on S3. Then, we find that
the expectation value is zero.

We also find the crossing relation for duality defects placed on two disconnected 3D disks
as depicted in Fig. 24. This relation is realized in a 16-cell as shown in Fig. 25. This relation is
expressed as

s8l6W (a1, a2, a3, a4)D(a1, ã1̃ )D(a3, ã3̃ )

= 1√
2

∑
ã2,ã4=0,1

s8l8W (ã1̃, ã2̃, ã3̃, ã4̃, )D(a1, ã2̃ )D(a1, ã3̃ )D(a1, ã4̃ )D(a2, ã1̃ )D(a2, ã2̃ )D(a2, ã3̃ )

× D(a2, ã4̃ )D(a3, ã1̃ )D(a3, ã2̃ )D(a3, ã4̃ )D(a4, ã1̃ )D(a4, ã2̃ )D(a4, ã3̃ )D(a4, ã4̃ ). (3.27)

We can also calculate the expectation values of the duality defects by using this relation. The
first example is a duality defect on S3. We consider two disconnected duality defects on S3.
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Fig. 23. A calculation of the expectation value of a duality defect on S2 × S1 with a Z2 symmetry defect
on D2 whose boundary is a non-trivial cycle on the duality defect. In the first equality, we use the solid
torus equation in Fig. 20. By using the relations in Figs. 6 and 22, we find that the expectation value is
zero.

Fig. 24. A schematic illustration of the crossing relation including two disconnected disks.

Fig. 25. The configuration of Eq. (3.27).

We can relate this configuration and a S3 duality defect by using Eq. (3.27). Therefore, the
expectation value of the duality defect on S3 is 1/

√
2. This result is consistent with the result

in Eq. (3.14). The second example is a duality defect on S1 × S2 as shown in Fig. 26. By using
the crossing relation in Fig. 24 to S1 × S2, we see that the S1 × S2 expectation value is one.

More generally, one can calculate the expectation values of the duality defect on the con-
nected sum by using the crossing relation in Fig. 24 as follows. Let 〈X 〉 be the expectation
values of the duality defects on a sub-manifold X. Then the expectation value of the connected
sum is given by

〈X #Y 〉 =
√

2〈X 〉〈Y 〉. (3.28)

For example,
〈
(S1 × S2)#(S1 × S2)

〉 = √
2.

We explain the action of a duality defect on a Wilson loop. When we place the duality defect
around a plaquette Wilson loop, the relation in Fig. 27 is derived; a ’t Hooft loop appears on
the plaquette where the Wilson loop was located. A ’t Hooft loop by itself cannot be defined
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Fig. 26. Calculation of the expectation value of a duality defect on S1 × S2. We use the commutation
relation shown in Fig. 24 for S1 × S2. Then, the S1 × S2 expectation value is equal to

√
2 times the S3

expectation value. We see that the S1 × S2 expectation value is one by the relation in Fig. 6.

Fig. 27. A schematic illustration of the action of a duality defect on a Wilson loop.

Fig. 28. A schematic illustration of the general action of a duality defect on a Wilson loop.

locally at the loop in this theory. It must be accompanied with a Z2 symmetry defect on a surface
whose boundary is the loop [26]. The relation in Fig. 27 is expressed as∑

ã1̃,ã2̃,ã3̃,ã4̃=0,1

W (a1, a2, a3, a4)s8l8(−1)ã1̃+ã2̃+ã3̃+ã4̃

∏
(m,ñ)∈U

D(am, ãñ)

= 1√
2

W (1 − a1, a2, a3, a4)s4l4. (3.29)

In this equation, U is defined as U = {1, 2, 3, 4} × {1̃, 2̃, 3̃, 4̃}. The right-hand side 1/
√

2 is the
expectation value of the duality defect on S3. The sum of the Z2 symmetry defect has already
been evaluated. It is most likely that the more general relations in Fig. 28 are satisfied.

4. Conclusion and discussion
In this paper, we construct topological defects in the 4D Z2 lattice gauge theory, and discuss
the commutation relations between them. We construct KWW duality defects and see that
these duality defects are non-invertible defects. We also construct Z2 symmetry defects and
defect junctions. We find several crossing relations between these defects. The duality defects
by themselves are not closed by these crossing relations, and thus Z2 symmetry defects have to
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be introduced to close the crossing relations. By using these crossing relations, we calculate the
expectation values of a few defect configurations.

Here, we make some comments on the open questions and future issues.
When we impose the defect commutation relations and find the weights for a building block

of duality defects in Sect. 3.1, we only consider configurations of defects where there is no
ambiguous connection in which the duality defects are connected only by sites or links. As
for the deformations of duality defects including such ambiguous connections, we make the
following interesting observations. There are two classes of such deformations.

(1) There are relations similar to the defect commutation relation such as Eq. (3.5).
(2) There are relations similar to the solid torus crossing relation as in Fig. 20.

These two kinds of deformations of configurations are swapped when we replace active
site/link and inactive site/link. More detailed understanding of this phenomenon is left for fu-
ture work.

In Sect. 3.4, we compute the expectation values of S3 and S1 × S2 duality defects. However,
we do not compute those of other topologies such as T3. These values are defined in this paper
and computable in principle. Finding some nice way to compute these values and obtaining
explicit values are subjects for future work. Since these expectation values are invariants of
the embedding of a 3D closed oriented manifold into R4, this is also an important issue for
mathematical implications.

In Sect. 3.1, we only consider the solution D(a, ã) = (−1)aã for simplicity, although we find
that there are seven other solutions:

D(a, ã) = −(−1)aã, D(a, ã) = ±(−1)(1−a)(1−ã), (4.1)

D(a, ã) = ±(−1)(1−a)ã, D(a, ã) = ±(−1)a(1−ã). (4.2)

The solutions (4.1) satisfy D(a, ã) = D(ã, a), while the solutions (4.2) do not. The same junction
weights are obtained for the solutions (4.1), while the junction weights are different for the
solutions (4.2):

J(a) = −(−1)a, J̃(b, c) = σ x
b,c. (4.3)

These solutions are completely equivalent to each other as long as one considers closed defect
configurations in R4 since they are related by a gauge transformation in such defect configu-
rations. However, once one considers the space-time with non-trivial topology and defect con-
figurations winding on the space-time, there may be some sign difference between the above
solutions. Such a very slight difference may be useful to find a new characterization of topo-
logical phases.

Obtaining an operator formalism expression or a transfer matrix as described in Refs. [1,
27,28] is an important future problem. Since there is gauge symmetry in lattice gauge theory,
developing the operator formalism is not straightforward. It involves subtleties such as gauge
fixing.

It has been found that a non-invertible symmetry exists at the critical point of the Z2 gauge
theory in Ref. [16]. This non-invertible symmetry is denoted by Z (1)

2 ∨ Z̃ (1)
2 in Ref. [16]. It is

different from the non-invertible symmetry found in this paper since Z (1)
2 ∨ Z̃ (1)

2 in Ref. [16]
only includes codimension-2 defects while our non-invertible symmetry includes codimension-1
duality defects.
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In this model, the phase transition is first order, and thus the continuum limit of this theory is
a topological field theory. Therefore, it is an important problem to find non-invertible topolog-
ical defects such as duality defects in non-topological continuous quantum field theories. The
structure of the non-invertible symmetry that we find in this paper should be quite universal.
Thus we expect the same non-invertible symmetry to appear in some continuum quantum field
theories. For example, N = 4 SU(2) super Yang–Mills theory has 1-form Z2 center symmetry
and duality similar to those in the pure Z2 lattice gauge theory. Therefore we expect that the Z2

symmetry defects and the duality defects of N = 4 SU(2) super Yang–Mills theory form the
same non-invertible symmetry as that studied in this paper.

There are other interesting issues such as the analysis of QFT with non-invertible symmetry,
the mathematical structure that covers the crossing relations in Sect. 3.4, and the anomaly of
non-invertible symmetry.
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