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The Lefschetz-thimble method, i.e., integration along the steepest descent cycles, is a way to
avoid the sign problem by complexifying the theory. We discuss that such steepest descent cycles
can be identified as ground-state wave functions of a supersymmetric Hamilton dynamics, which
is described with a framework akin to the complex Langevin method. We numerically construct
the wave functions on a grid using a toy model and confirm their well-localized behavior.
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1. Introduction A first-principles approach to solving the theory is the ultimate goal of
theoretical investigations. The quantum Monte Carlo simulation for the functional integral is a power-
ful ab initio technique to reveal the nonperturbative features of various physical systems. Successful
applications include the lattice QCD (quantum chromodynamics) simulation, the lattice Hubbard
model, the path-integral representation of spin systems, etc.

The Monte Carlo algorithm is based on importance sampling, so it is required that the integrand
should be positive semidefinite, i.e., eS ≥ 0, where S is the classical action. This positivity condi-
tion is often violated in systems of interest to us and then we can no longer rely on Monte Carlo
simulations [1,2]. In QCD, a finite baryon or quark density introduces a mixture of Hermitian and
anti-Hermitian terms in the action, and then eS acquires a complex phase. In the repulsive Hubbard
model away from half-filling or, generally, in fermionic systems with spin imbalance, the sign of the
integrand may fluctuate. It is also a notorious problem of the complex phase that appears from the
Berry curvature in the path-integral representation of spin systems; this phase cannot be removed for
frustrated situations such as the XY model on the Kagomé lattice.

Moreover, to approach real-time quantum phenomena, eS is an oscillating function by definition
and the sign problem is unavoidable. Although the Monte Carlo simulation is useful to compute phys-
ical observables in equilibrium in the imaginary-time formalism, analytical continuation is necessary
to access real-time information. In general, however, analytical continuation is quite a costly proce-
dure, and some additional information on the system, such as the pole and the branch-cut structures,
would be necessary.

Many ideas have been proposed so far to overcome the sign problem; unfortunately, the applicabil-
ity of each method is severely limited. Recently, new techniques to complexify the theory have been
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attracting more and more theoretical interest; these techniques include the path integral on Lefschetz
thimbles [3–14] and the complex Langevin approach [15–21]. Except for several formal arguments,
theoretical foundations for the complex Langevin method are not fully established, and not much
is known about its reliability [16–18]. In the context of real-time quantum systems, the numeri-
cal simulation works for some initial density matrices [19,20]; however, it was recently reported in
Ref. [21] that the real-time anharmonic oscillator at zero temperature converges to a wrong answer
with unphysical width.

In contrast, the Lefschetz-thimble method has a solid mathematical foundation at least for finitely
multiple integrals [3–5]; however, its practical applicability is still in the developing stage. This
method decomposes the original integration cycle into several steepest descent ones, called Lefschetz
thimbles, using complexified field variables. Picking up a single Lefschetz thimble, one can employ
importance sampling [6–8] and avoid the sign problem since the oscillatory factor in eS totally
disappears on each Lefschetz thimble. On the other hand, 0D model studies have exemplified the
importance of structures of multiple Lefschetz thimbles [10–13]. For further applications, it is
necessary to deepen our understanding on more aspects of Lefschetz thimbles.

The purpose of this letter is to shed new light on the Lefschetz-thimble method in a form of
Hamilton dynamics, which was first elucidated in Ref. [5]. In this reformulation, the Lefschetz
thimbles can be identified as ground-state wave functions of a supersymmetric topological quantum
system. After reviewing this modified Lefschetz-thimble method, for a quartic potential problem
at zero dimensions, we solve the Hamilton dynamics concretely to find the corresponding wave
functions. Based on our analytical and numerical observations, we discuss the advantages of this
reformulation for the numerical computation.

2. Lefschetz thimble and SUSY quantum mechanics Let us consider an N -dimensional real
integral as a “quantum field theory” defined by a (complex) classical action S(x). In this theory, our
goal is to compute an expectation value of an “observable” O(x) defined by

〈O〉 = N
∫ ∞

−∞
d N x eS(x)O(x), (1)

where x = (
x (1), x (2), . . . , x (N )

) ∈ R
N and the normalization N is chosen such that 〈1〉 = 1.

The starting point in our discussion is to reformulate this theory in an equivalent and more treatable
way using a complexified representation:

〈O〉 =
∫

d N z d N z̄ P(z, z̄)O(z). (2)

Here z(i) = x (i)1 + i x (i)2 and z̄(i) = x (i)1 − i x (i)2 , with x (i)1 , x (i)2 ∈ R, and
∫
dzdz̄ represents the inte-

gration over the whole complex plane; i.e.,
∫ ∞
−∞ dx1

∫ ∞
−∞ dx2. The choice of the generalized weight

function P(z, z̄)may not be unique. Indeed, a trivial example is P(z, z̄) = N eS(z)∏
i δ

(
z(i) − z̄(i)

)
.

At the cost of complexifying the variables, nevertheless, it is often the case that P(z, z̄) could
be endowed with more desirable properties for analytical and numerical computation than the
original eS(x).

A clear criterion to simplify the integral is to find P(z, z̄) such that the phase oscillation can be
suppressed along integration paths as much as possible, while, in the complex Langevin method,
P(z, z̄) is optimized to become a real probability. To suppress the phase oscillation, let us pick up a
saddle point zσ satisfying S′(zσ ) = 0. The steepest descent cycle or the Lefschetz thimble Jσ of the
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saddle point zσ is defined with a fictitious time t as

Jσ =
{

z(0) = x1(0)+ i x2(0)

∣∣∣∣
dx (i)j (t)

dt
= −∂Re S

∂x (i)j

, lim
t→−∞(x1(t)+ i x2(t)) = zσ

}
. (3)

This is a multi-dimensional generalization of the steepest descent path in complex analysis, which
we will refer to as the downward path. The original integration path on the real axis in Eq. (1)
can be deformed as a sum of contributions on Jσ weighted with an integer mσ ; i.e.,

∫
RN d N x =∑

σ mσ

∫
Jσ d N z. In mathematics it is established how to determine mσ from the intersection pat-

tern between the steepest ascent (upward) path from zσ and the original integration path [3–5]. It is
important to note that Im S is a constant on each Lefschetz thimble for the application to the sign
problem [6,8].

In the following, let us restrict ourselves to N = 1 for simplicity, because the generalization is
straightforward. So far, the Lefschetz thimble is constructed as a line; let us find a 2D smooth dis-
tribution P(z, z̄) according to Ref. [5]. For that purpose, we define the “delta-functional one-form”
δ(Jσ ) supported on the Lefschetz thimble so that

∫
Jσ
O(z)eS(z)dz =

∫
C

δ(Jσ ) ∧ O(z)eS(z)dz. (4)

For instance, δ(R) = δ(y)dy. Such delta-functional forms δ(Jσ ) (on a Kähler manifold) have a path-
integral expression from the supersymmetric quantum mechanics [22–24] (see also Sects. 2.8 and 4
of Ref. [5] for more details in this context). Integration (4) can be represented as

〈O〉 = N
∫

D[x, p, π, ψ] exp

[
i
∫ 0

−∞
dtpi

(
dxi

dt
+ ∂ReS

∂xi

)]

× exp

[
−

∫ 0

−∞
dt πi

(
d

dt
δi j + ∂2Re S

∂xi∂x j

)
ψ j

]
O(z(0)) eS(z(0)) (ψ1+iψ2)(0). (5)

Here x, p are bosonic fields, π,ψ are fermionic ghost fields, and z(t) → zσ as t → −∞. We should
note that an integration in terms of z is promoted to the path integral on z(t) for t ≤ 0, while the
observable and the weight O(z(0)) exp S(z(0)) are functions of z(0) only. Let us outline how these
two expressions (4) and (5) are equivalent [5,22–24]. We first integrate out p(t) to get the Dirac delta
function:

∫
Dp exp

[
i
∫ 0

−∞
dtpi

(
dxi

dt
+ ∂ReS

∂xi

)]
= δ

(
dxi

dt
+ ∂ReS

∂xi

)
. (6)

This delta function constrains the path integral on x(t) to a gradient-flow line defining Lefschetz
thimbles. Since z(−∞) → zσ , this path integral for t < 0 gives a delta-functional support on Jσ .
However, the delta function produces an unwanted determinant factor. As is well known, the path
integral on ghost fields π(t), ψ(t) for t < 0 can eliminate that factor as

∫
Dπ Dψ exp

[
−

∫ 0

−∞
dtπi

(
d

dt
δi j + ∂2Re S

∂xi∂x j

)
ψ j

]
= Det

(
d

dt
δi j + ∂2Re S

∂xi∂x j

)
. (7)
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Now, we obtain an integration over surface variables x(0), ψ(0), and denote them by x, ψ . Locally,
the Lefschetz thimble Jσ can be expressed as zeros of a certain function f ; then we can find that the
path integral (5) eventually gives

∫
d2xd2ψ δ( f )

∂ f

∂xi
ψi ∧ O(z) eS(z) (ψ1+iψ2) =

∫
δ( f (x))d f (x) ∧ O(z) eS(z) dz, (8)

which is nothing but the local expression of the original integration (4). Going back to (5), this shows
that the so-called residual sign problem comes from the fermionic surface term ψ1(0)+ iψ2(0)
because one can identify ψi (0) = dxi as above.

Importantly, with these added fields, pi , πi , ψi , the action is BRST exact under a transformation:
δ̂xi = ψi , δ̂ψi = 0, δ̂πi = −i pi , δ̂ pi = 0. By definition, the nilpotency δ̂2 = 0 is obvious. Thanks to
the boundary fermionic operator in (5), the surface term is BRST closed so long as the observables
are holomorphic. This makes a sharp contrast to the complex Langevin method, which could also
acquire BRST symmetry, but this symmetry is violated by the surface term. Because of the BRST
symmetry, we can add any BRST-exact terms without changing the original integral, and it is useful
to insert εi

2

∫
dt p2

i . In summary, the effective Lagrangian that describes the fictitious time evolution
is given by the following topological theory:

Leff = −εi

2
p2

i + i pi

(
dxi

dt
+ ∂ReS

∂xi

)
+ πi

(
d

dt
δi j + ∂2ReS

∂xi∂x j

)
ψ j

= −δ̂
{
πi

(
i
εi

2
pi + dxi

dt
+ ∂ReS

∂xi

)}
,

(9)

which is nothing but a Legendre transform of an effective Hamiltonian:

Heff =
∑

i

[
εi

2
p̂2

i − i

2

(
∂ReS

∂xi
p̂i + p̂i

∂ReS

∂xi

)]
−

∑
i, j

1

2

∂2ReS

∂xi∂x j

[
π̂i , ψ̂ j

]
(10)

with [xi , p̂ j ] = iδi j and {π̂i , ψ̂ j } = δi j . The fermion number F = π̂1ψ̂1 + π̂2ψ̂2 is a conserved
quantity of this Hamiltonian. After the time evolution from t = −∞, only the ground state with
the lowest-energy eigenvalue remains, so that the generalized weight is given by P(z, z̄)dz dz =
�(z, z̄) ∧ eS(z)dz, where �(z, z̄) is the ground-state wave function and converges to δ(Jσ ) in the
limit εi → +0. Note that the weight factor exp S(z) is necessary in this formula, since the wave
function designates only the integration cycle Jσ . We can further simplify this Hamilton problem by
choosing ε = ε1 = ε2. Performing the conjugate transformation� = e−Re S/ε� ′, the first derivative
terms are eliminated as

H ′
eff =

∑
i

[
ε

2
p̂2

i + 1

2ε

(
∂ReS

∂xi

)2]
−

∑
i, j

1

2

∂2ReS

∂xi∂x j

[
π̂i , ψ̂ j

]
. (11)

This describes supersymmetric quantum mechanics with the superpotential ReS [5].
Before applying this method to an interacting model, let us convince ourselves of its perturbative

correctness. For this purpose, we consider the simple Gaussian case:

S0(x) = −ω
2

x2, (12)
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where x ∈ R is a one-component variable and ω ∈ C. One can regard this Gaussian integral as an
elementary building block of perturbative quantum field theory; in a noninteracting theory of the
scalar field φ, the action is decomposed into −1

2 [� − i(k2 − m2)]φ(−k)φ(k) for each Fourier mode.
In this case, we immediately find that the bosonic wave function should be the ground state of a
harmonic oscillator with the ground-state energy |ω|. The fermionic ground-state energy −|ω| can-
cels the bosonic energy thanks to supersymmetry. As a result, unoccupied fermions point in the
direction of the Lefschetz thimble; i.e., the supersymmetric vacuum belongs to the F = 1 sector.
Let us see this in the simplest example, ω ∈ R and ω > 0. The fermionic part of the Hamiltonian

is ω
2

([
π̂1, ψ̂1] − [π̂2, ψ̂2

])
, and thus the 1 and 2 fermions are unoccupied and occupied, respec-

tively. This leads to the fermionic ground-state energy −ω, which cancels the bosonic ground-state
energy ω. Therefore, the unoccupied fermion is tangent to the Lefschetz thimble J = R.

The final result of P0(z, z̄) for ω ∈ C together with eS · e− 1
ε

ReS is

P0(z, z̄) = N exp

[
−|ω|

2ε
zz̄ + 1

4ε

(
ωz2 + ω̄z̄2

)
− ω

2
z2

]
, (13)

which reproduces the original integral (1) with the action (12). To see this for a polynomial O(x),
it is sufficient to require 〈z2〉 = 1/ω, which is nothing but the free propagator and can be explicitly
confirmed with Eq. (13). For the exponentially fast convergence of P0, the parameter ε needs to be
0 ≤ ε < 2. We here emphasize that the theory is equivalent to the original (1) for 0 ≤ ∀ε < 2 and
the conventional Lefschetz-thimble method is retrieved in the ε → 0 limit. Actually, in this limit of
ε → 0, only a path of 2|ω|zz̄ − ωz2 − ω̄z̄2 (≡{2Im(

√
ωz)}2) = 0 contributes, which is nothing but

a condition to guarantee Im S0(z) = 0 on the Lefschetz thimble. At finite ε, this restriction is smeared
and P0 may have a distribution around J with a width of the order of ε where a complex phase arises
in general. The nonpositivity of P0 is a big difference between this Lefschetz-thimble approach and
the complex Langevin method, in which the distribution must be semipositive definite.

In the model with quartic interaction, S = −ω
2 z2 − λ

4 z4, the vacuum structure is drastically differ-
ent from that of the Gaussian case (13). With λ �= 0, there are three classical saddle points and the
Morse index for each saddle point is 1. The Witten index is tr(−1)F = −3, and thus there are three
supersymmetric vacua in this interacting model for any ε [25,26]. In the path-integral expression (5),
we can distinguish these three vacua by specifying the boundary condition at t = −∞, as we will
discuss below in detail.

3. Lefschetz thimbles at ε → 0 We define our 0D model with the quartic interaction by

S(x) = −ω
2

x2 − λ

4
x4, (14)

and, hereafter, we will specifically choose the model parameters as

ω = 1 − i =
√

2e−iπ/4, λ = 1.5i. (15)

This choice is motivated by the application to real-time problems. As we have already mentioned,
Reω corresponds to the width � or ε in the iε prescription, and Imω corresponds to −(k2 − m2).
Therefore, the parameters (15) represent a situation at k2 = m2 + � in quantum field theory.

When ε is small enough, the Hamilton dynamics should become equivalent to the conventional
formulation of the integral on the Lefschetz thimble, which means that P(z, z̄) should have a
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Fig. 1. Changes of the Lefschetz thimbles forω = 1 − 0.9i (left) andω = 1 − 1.1i (right) with λ = 1.5i fixed.
(Left) One of three thimbles contributes to the integral, as shown by the solid line, and two are to be dropped
when ω = 1 − 0.9i . (Right) All three thimbles contribute to the integral when ω = 1 − 1.1i .

peak along the Lefschetz thimble only. This makes the analytic treatment very accessible, since
we do not have to solve the quantum-mechanical problem in this 0D toy model. To identify the
Lefschetz thimble, we should integrate the flow equation in Eq. (3) and find the upward and
downward paths. We show the numerical results in Fig. 1 for parameters slightly changed from
Eq. (15).

For our theory (14), three saddle points are located at z0 = 0, z± = ±√−ω/λ. The latter is, for our
choice of parameters (15), z± = ±(0.897 + 0.372i), and S(z±) = −1/3. We can see that ω = 1 − i
is a critical value at which the destinations of the downward flows from the saddle points change
drastically, known as the Stokes phenomenon, as is clear from the two panels for ω = 1 − 0.9i (left)
and ω = 1 − 1.1i (right) in Fig. 1. In general, we can show that the Stokes phenomenon occurs at
Im (ω2/λ) = 0, and, when λ is pure imaginary, this condition gives arg (ω) = −π/4. Importantly,
not only the downward flows but also the upward flows change, and the intersection number of the
original and upward paths changes accordingly [4,5]. In the case withω = 1 − 0.9i , only one upward
path from z0 crosses the real axis, as seen in the left panel of Fig. 1, and so the Lefschetz thimble
going through z0 contributes to the integral. In the case with ω = 1 − 1.1i , on the other hand, three
upward paths from z0 and z± all cross the real axis, and all three Lefschetz thimbles contribute to
the integral.

Keeping the potential application to real-time physics in mind, we need a deeper understanding of
the Stokes phenomenon. In fact, it occurs at k2 = m2 + � and so the thimble structure may fluctuate
depending on the frequency k0, while in Euclidean theory it never happens because k2 − m2 is always
negative (except for an unstable potential with m2 < 0). It should be an interesting future problem
to clarify the treatment of the Stokes phenomenon in real-time systems [10].

For the same model with a different set of parameters, the Stokes phenomenon has been discussed
in Refs. [27,28] and the probability distribution P(z, z̄) in the complex Langevin method has been
numerically computed. The important insight obtained there is that P(z, z̄) in the complex Langevin
method looks localized but has a power decay at large |z|, which causes a convergence problem.
Hence, it would be an intriguing question to see how P(z, z̄) in the modified Lefschetz-thimble
method for ε �= 0 should behave, especially at large |z|.
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4. Wave functions at finite ε As an application of the modified Lefschetz-thimble method with
a regulator ε, let us compute the wave function� ′ for the ε = ε1 = ε2 case, from which P(z, z̄) is to
be constructed immediately. We can readily find the eigenstate in terms of ψi for the last term in the
Hamiltonian (11). By restricting ourselves to the F = 1 sector, we can define the effective potential
in the form of a 2 × 2 matrix-valued function that amounts to

Veff = 1

2ε

[(
∂ReS

∂x1

)2

+
(
∂ReS

∂x2

)2]
−

(
∂2ReS/∂x2

1 ∂2ReS/∂x1∂x2

∂2ReS/∂x1∂x2 −∂2ReS/∂x2
1

)
, (16)

and then the Hamiltonian is

H ′
eff = −ε

2

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
+ Veff. (17)

Let us solve the ground state of the above H ′
eff at finite ε; we specifically adopt ε = 1 unless stated

explicitly.
When we solve the Hamilton dynamics, we should set initial conditions to select proper Lefschetz

thimbles out. We choose the semiclassical ground state in the limit ε → +0 as our initial con-
dition. Since � ′ = eReS/ε� and �(zσ ) → δ(Jσ ) in ε → +0, � ′(zσ ) ∼ eReS/εδ(Jσ ) for small ε.
Considering the Lefschetz thimble around z0, for instance, its tangential direction at z0 is given
by x2 = tan (π/8)x1, as also seen from Fig. 1. The initial wave function is thus proportional to

eReS(z)/εδ(−sin(π/8)x1 + cos(π/8)x2) · (−sin(π/8)dx1 + cos(π/8)dx2). (18)

The bosonic part is well localized at z0, which justifies the following choice of the initial wave func-
tion, � ′(zσ )(t = −∞) = δ(z − z0)(− sin(π/8)dx1 + cos(π/8)dx2). Similarly, we can fix the initial
wave function for z± as � ′(z±) = δ(z − z±)(cos(π/8)dx1 + sin(π/8)dx2).

For the numerical procedure, we smear the delta function in the initial wave function by a Gaussian
as δ(z − zσ ) → exp{−20[(x1 − x1σ )

2 + (x2 − x2σ )
2]}. Then we discretize x1 and x2 from −2.5 to

+2.5 with dx = 5 × 10−2. We then numerically integrate d
dt�

′(zσ ) = −H ′
eff�

′(zσ ) using the Euler
method with dt = 10−4 until the wave function converges. The convergence is fast and stable and
the wave function hardly changes after t = 1–2. We also mention that we utilize the Crank–Nicolson
algorithm to improve the numerical stability when we compute the Laplacian.

With this prescription, we find three independent ground-state wave functions � ′(zσ ) =
�

′(zσ )
1 dx1 +�

′(zσ )
2 dx2, shown in Fig. 2. Panels (a) and (b) in Fig. 2 show two components of � ′(z0)

and (c) and (d) show those of � ′(z+). Since our system is symmetric under the reflection z �→ −z,
we can easily read � ′(z−) from the panels of � ′(z+). Remarkably, these ground-state wave functions
are linearly independent of each other, which means that supersymmetry is unbroken. We have also
verified that the Dyson–Schwinger equation,

λ
〈
z4

〉
+ ω

〈
z2

〉
= 1, (19)

is satisfied within 1% accuracy. This clearly shows that the supersymmetric quantum mechanics
provides a suitable framework to compute Lefschetz thimbles.

Let us comment on the convergence of the wave functions in the present modified Lefschetz-
thimble method. In the effective potential (16), the first term gives the dominant binding potential in
our toy model for large |z| because the first term is a polynomial up to the sixth order, while the sec-
ond term is up to the quadratic order. Therefore, the convergence in the present numerical approach
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(a) (b)

(c) (d)

Fig. 2. SUSY ground state � ′(zσ ) corresponding to the saddle points z0 = 0 and z+ = √−ω/λ with ε = 1,
ω = 1 − i , and λ = 10−3 + 1.5i . Denoting � ′(zσ ) = �

′(zσ )
1 dx1 +�

′(zσ )
2 dx2, (a) and (b) represent � ′(z0), while

(c) and (d) represent � ′(z+).

is noticeably improved and there is no power-decay problem, unlike the complex Langevin method.
One might think that the remaining eiImS is still oscillating, but this is not a problem in practice.
We have numerically verified that the effect of eiImS is very small in the region where the profile of
� ′(zσ ) is localized.

We also checked the robustness of the numerical results against small variations of the
central position and the smearing width in the initial conditions. If the smearing width of the
initial wave function is changed, the overall normalization would naturally also be changed, but,
once we normalize the wave functions in the same manner (in Fig. 2 we normalized them as∫

dx1 dx2

[(
�

′(zσ )
1

)2 +
(
�

′(zσ )
2

)2
]

= 1), then we eventually get the same result. Such insensitivity

implies that each wave function is well localized and the overlap at the saddle point is small. However,
the overlap at the saddle point is not completely zero. To see this effect, let us skew the relative weight
of the initial conditions so that the initial wave functions are not orthogonal. In Fig. 3, we show �̃ ′(z0)

1
and �̃ ′(z0)

2 starting with the same relative weights, namely, �̃ ′(z0)(−∞) = δ(z − z0)(dx1 + dx2) at
the initial time, for demonstration purposes. The result �̃ ′(z0) in Fig. 3 is given a natural interpretation
as a superposition of the three ground states shown in Fig. 2. Because of this overlap among wave
functions, our prescription for the initial wave function needs further refinement in order to extract
one Lefschetz thimble at ε = 1.

In order to see the importance of such refinements from another viewpoint, we checked the behav-
iors of distributions P for small ε. Setting ε = 0.2 with ω = 1 − i and λ = 1.5i , we obtain Figs. 4(a)
and (b). Here, the normalization is given by

∫
d2x P = 1. Although it is localized around the saddle

point z0 = 0, its shape is still far from the 1D line shown in Fig. 1. For comparison, we also show the
result for ε = 0.2 with ω = 1 + i and λ = 1.5i in Figs. 4(c) and (d). For this case, P is well localized
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(a) (b)

Fig. 3. SUSY ground state �̃ ′(z0), which is obtained starting with the saddle point z0 but with the initial relative
weight equal to both components.

(a) (b)

(c) (d)

Fig. 4. Weight functions P(x1, x2) corresponding to the saddle point z0 with ε = 0.2. (a) and (b) show the
result for ω = 1 − i , and λ = 10−3 + 1.5i . (c) and (d) show the result for ω = 1 + i , and λ = 10−3 + 1.5i .

to a 1D line, which is nothing but the Lefschetz thimble J0 at this parameter. We numerically observe
that the weight function P is well localized around a Lefschetz thimble if Stokes phenomena do not
occur and ε is sufficiently small. Expectation values of operators, such as 〈z2〉, also give correct num-
bers within the numerical accuracy with such parameters. However, as ε becomes larger, the wave
functions spread as 2D distributions, and the expectation values of operators do not necessarily give
correct values. Since the Dyson–Schwinger equation (19) is satisfied, this problem must come from
superpositions of the wave function with other ground states.

An important future study would be to clarify the dependence on this initial condition more sys-
tematically, in order to take an appropriate linear combination of these wave functions giving each
Lefschetz thimble. This would be a key step in studying how the Stokes phenomenon is realized at
ε = 1. It would also open a new possibility to take into account multiple Lefschetz thimbles, since
ground-state wave functions can be superposed by changing the initial conditions.
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5. Discussions and conclusions In this letter, the supersymmetric reformulation of the
Lefschetz-thimble integration was studied and its practical computation was discussed. Lefschetz
thimbles are now regarded as the ground states of a supersymmetric Hamiltonian. Our computational
scheme for the Hamiltonian system is essentially the same as that for the Fokker–Planck equation in
the complex Langevin method. These supersymmetric wave functions are numerically computed for
a 0D toy model with the classical action S = S0 + Sint, where S0 = −ω

2 x2 and Sint = −λ
4 x4. Since

the Morse indices of all the saddle points are the same, the number of saddle points must be the same
as that of linearly independent ground states.

For the Gaussian model with S0 only, the above-mentioned situation is clearly true; this is explicitly
checked by computing the wave function analytically and constructing one supersymmetric ground
state. From this almost trivial example, one can learn an important lesson about the 2D smooth
distribution P0(z, z̄). In the “semiclassical” limit of ε → 0, we recover a delta-functional support
along the Lefschetz thimble in the original formulation. For nonzero ε, the phase oscillation arises
away from the Lefschetz thimble, and the formulation nevertheless reproduces the correct expectation
value.

For the interacting model with Sint, we performed numerical computations for the supersymmetric
quantum mechanics, and confirmed the existence of three linearly independent ground states by
restricting ourselves to the F = 1 sector. Since the wave function in the F = 1 sector consists of
two components, we must set them in the proper initial conditions. We started from a localized wave
function in the vicinity of each saddle point, and our numerical computation shows remarkable sta-
bility under small modifications of the initial conditions. This reflects the fact that all the saddle
points are attractive, unlike the complex Langevin method. At the same time, we also found substan-
tial dependence on the initial relative weight of these two components. This clearly indicates that we
need a careful refinement of the initial conditions to use the modified Lefschetz-thimble method for
numerical simulations, but it also opens a new possibility for some convenient scheme to take into
account multiple Lefschetz thimbles.

In the case of the Fokker–Planck system, the ground state is often uniquely determined and the
initial-condition dependence does not appear, as in the case in ordinary quantum mechanics without
any special symmetry. The Fokker–Planck operator of the complex Langevin method can be written
as a functional integral in a similar manner, and it also shows the same type of BRST symmetry.
There are, however, several important differences between these two formalisms: First of all, the
diffusion term in the complex Langevin equation does not give the gradient flow because the sign
is different. Because of this difference, the BRST invariance cannot be promoted to the supersym-
metric system satisfying 2H = {Q, Q̄} with supercharges Q, Q̄. Moreover, the fermionic sector
should be restricted to F = 2 instead of F = 1. Therefore, it is not straightforward to relate these
two formalisms yet. If one could establish a firm relationship between the two methods, it would
be great progress and the present modified Lefschetz thimble could provide us with an opportu-
nity for a fully complementary approach to the sign problem together with the complex Langevin
method.
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