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The black hole firewall conjecture is based on the Page curve hypothesis, which claims that
entanglement between a black hole and its Hawking radiation is almost maximum. Adopting
canonical typicality for nondegenerate systems with nonvanishing Hamiltonians, we show the
entanglement becomes nonmaximal, and energetic singularities (firewalls) do not emerge for
general systems. An evaporating old black hole must evolve in Gibbs states with exponentially
small error probability after the Page time as long as the states are typical. This means that the
ordinarily used microcanonical states are far from typical. The heat capacity computed from the
Gibbs states should be nonnegative in general. However, the black hole heat capacity is actually
negative due to the gravitational instability. Consequently the states are not typical until the last
burst. This requires inevitable modification of the Page curve, which is based on the typicality
argument. For static thermal pure states of a large AdS black hole and its Hawking radiation, the
entanglement entropy equals the thermal entropy of the smaller system.
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1. Introduction

The interesting possibility of black hole firewalls was proposed from the viewpoint of quantum
information [1,2] and has attracted much attention. In the firewall conjecture, a black hole horizon is
not a smooth region even for free-fall observers who attempt to pass through it. On the horizon the
observers see highly energetic quantum walls (firewalls) before they collide against it and burn up.

Essentially the firewall conjecture is based on the Page curve hypothesis of black hole evapora-
tion [3,4], and the hypothesis comes from the Lubkin–Lloyd–Pagels–Page theorem (LLPP theorem)
[5–7]. According to the LLPP theorem, quantum entanglement between two macroscopic systems SI

and SI I is almost maximum in a typical pure state |�〉I,I I of the composite Hilbert space HI ⊗ HI I ,
assuming that dimension NI I of HI I is much larger than dimension NI of HI . The reduced density
operator (quantum state) ρ̂I = TrI I

[|�〉I,I I 〈�|I,I I
]

of SI almost equals Î/NI , where Î is the unit
matrix acting on HI . Inspired by this theorem, Page came up with a fascinating scenario for informa-
tion leakage from evaporating black holes. He thinks that evaporation of a macroscopic black hole
in an initial pure state is modeled by two quantum systems B and R with finite, but time dependent,
dimensions NB and NR . B represents internal degrees of freedom of the black hole, and R represents
the Hawking radiation out of the black hole. It may be possible that the finiteness of NB and NR is
justified if quantum gravity is taken account of. Such a quantum effect may truncate the degrees of

© The Author(s) 2015. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

21

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2015/12/123B04/2606808 by guest on 23 April 2024



PTEP 2015, 123B04 M. Hotta and A. Sugita
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Fig. 1. Schematic figure of Page curve. In the conjecture, entanglement entropy between black hole and
Hawking radiation equals thermal entropy of the smaller system and attains almost the maximum value at
each time.

freedom in a higher energy scale than Planck energy, like string theory. In condensed matter physics,
the total energy E is quite low. Thus high-energy density of states around the cutoff scale of the
system becomes irrelevant. So it is enough to treat a finite-dimensional Hilbert space to describe the
physics.

The essence of Page’s hypothesis is summarized in the following propositions for entanglement
between B and R:

(I) When NR � NB (or NR � NB), B and R in a typical pure state of quantum gravity share
almost maximal entanglement. In other words, a typical quantum state of the smaller system
among B and R is almost proportional to the unit matrix Î .

(II) The entanglement entropy SE E of the smaller system among B and R is equal to its thermal
coarse-grained entropy.

Proposition (I) is clearly motivated by the LLPP theorem. Combining (I) and (II), it is deduced
that SE E between B and R takes almost the maximum value and equals the Bekenstein–Hawking
entropy of black holes SB = A/(4G) after the Page time, at which decreasing SB equals increasing
thermal entropy SR of the Hawking radiation. The Page time is estimated as about 53% of the lifetime
of evaporating black holes, and the mass at the Page time is about 77% of initial mass [3,4]. Thus
the black hole remains macroscopic at the Page time, and its semi-classical picture is valid. Black
holes after the Page time are referred to as “old.” Before the Page time, SE E is equal to SR , and
the black holes are referred to as “young.” Since the time evolution of SB and SR is computed in an
established semi-classical way, this argument provides a prediction for the time curve of SE E during
the evaporation. This is the Page curve. Its schematic figure is given in Fig. 1.

The firewall conjecture arises basically from (I). For an old black hole, Hawking radiation R is
decomposed into A, which is emitted after the Page time, and C , which is emitted before the Page
time. This is depicted in Fig. 2 for the gravitational collapse of a massless shell. The dimensions of
sub-Hilbert spaces for A and C are denoted by NA and NC . Due to the old age of the black hole,
NC � NA NB is satisfied. From (I), the AB system is almost maximally entangled with C . Thus a
typical quantum state of AB can be approximated as ρ̂AB ≈ ÎAB/(NA NB). Since the unit matrix ÎAB
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Fig. 2. Early Hawking radiation emitted before the Page time and late radiation emitted out of an old black
hole after the Page time.

is written as ÎA ⊗ ÎB , no correlation exists between A and B [8,9]. Consequently, for example, kinetic
energy terms of quantum fields for the Hawking radiation diverge on the horizon. Let us denote an
inside point xB near the horizon, and an outside point xA. Then a kinetic term

(
∂x ϕ̂

)2
of a scalar field

ϕ̂(x) is given by
(
ϕ̂(xA) − ϕ̂(xB)

)2
/ε2, where ε is the ultraviolet cutoff (lattice spacing). Apparently,

when ε → 0, this diverges like 1/ε2 on the horizon for the typical state ρ̂AB ∝ ÎA ⊗ ÎB because of
the correlation loss, and a firewall emerges.

Also, the strong subadditivity paradox [1,2,10] is often worried about in the context of the firewall
paradox. Let us suppose a strong subadditivity inequality of the von Neumann entropy for an old
black hole A, late radiation B, and early radiation C :

SAB + SAC ≥ SA + SABC . (1)

Assuming the no-drama conditions SAB = 0 and SABC = SC in Refs. [1,2,10] yields

SAC ≥ SA + SC .

As long as the old black hole continuously emits the stored information after the Page time, the
purity of the AC system increases, and SAC decreases in time. Thus SA > SAC holds. This leads to an
apparent contradiction that SC ≤ 0. Actually the early radiation has positive thermal entropy SC > 0.
This seems to mean a breakdown of the no-drama condition and suggests the existence of firewalls.
However it is already known that the paradox is clearly avoided in moving mirror models [11] and
long-lived remnant models [12]. In [11], it is pointed out that spacial locality among the subsystems
A, B, and C is ill-defined. Consequently the AB system inevitably has nonvanishing entanglement
with zero-point fluctuation of the radiation field, and SAB = 0 does not hold even if we postulate
the no-drama condition for the horizon in a physical sense. This remains true in black hole evapora-
tion. For the long-lived remnant models, SAC does not decrease even after the Page time, but rather
increases until the last burst of the evaporating black hole. Thus SA > SAC is not satisfied and the
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paradox is evaded. Similarly, any evaporation scenario, in which no information is emitted out of
the black hole until the last burst, is free of the strong subadditivity paradox at least. Though the
strong subadditivity paradox can be avoided, the long-lived remnant models [13–15] are supposed to
have other flaws [16]. The energy of the remnant is of the order of the Planck mass, but in order to
store the huge amount of information, the remnants seem to possess almost infinite degeneracy. The
tremendous degeneracy may break the past great success of many experiments and observations via
loop effects in particle scattering processes and species summation in partition functions for thermal
equilibrium in the early universe [15,16]. In this paper, in order to avoid those flaws and firewalls
simultaneously, we consider an alternative scenario. In the scenario, all the information comes out at
the last burst. Of course, the total energy of the last ray out of the black hole is merely of the order
of the Planck mass and very tiny. However, as stressed first by Wilczek [17], an outgoing zero-point
fluctuation flow of quantum fields, which is adjacent to the last ray, can share a huge amount of entan-
glement with the Hawking radiation emitted before. This fluctuation flow in a local vacuum region
has zero energy, but transports the information to the future null infinity without any contradiction.
At the last burst, quantum gravity critically affects the horizon. Hence the no-drama condition is
no longer required. Thus we do not need to care about the strong subadditivity paradox even if the
entropy SAC suddenly decreases at the last burst.

In this paper, first of all, it is pointed out that proposition (I) does not hold if nondegeneracy of
energy eigenstates of the total system is taken account of. The typical states have to be exponentially
close to Gibbs states with finite temperatures. The entanglement between AB and C becomes non-
maximal. Therefore, without breaking monogamy of entanglement, A is able to share entanglement
with B, and simultaneously with C . The entanglement between A and B yields a correlation that
makes the horizon smooth, and no firewall appears. Though it has been proven that such nonmaxi-
mal entanglement prevents the emergence of firewalls in moving mirror models [11], more stringent
arguments are provided for general systems in this paper. Our result means that the ordinarily used
microcanonical states in the arguments of [1–4] are far from typical for quantum entanglement
between a black hole and its Hawking radiation. In Sect. 2, we briefly review a general formula-
tion of canonical typicality with nonzero Hamiltonians [18–23]. Our discussion is based on [19,20].
From the rigorous results, it turns out that proposition (I) does not hold for general systems which
satisfy natural conditions. Therefore it turns out that, after the Page time, the evaporating old black
hole must evolve in Gibbs states with high precision as long as the pure state of the black hole and the
Hawking radiation is typical. In general, heat capacity computed from a partition function Z(1/T )

of a Gibbs state must be nonnegative, as

d
〈
Ĥ
〉

dT
= 1

T 2

〈(
Ĥ −

〈
Ĥ
〉)2

〉
≥ 0,

where Ĥ is the Hamiltonian of the system, T is temperature, and 〈·〉 = Tr
[
· exp

(
−Ĥ/T

)]
/Z(1/T ).

However, the black hole heat capacity is actually negative due to the gravitational instability. For
instance, for a Schwarzschild black hole, the energy E is its mass M and equals (8πGT )−1. The
heat capacity is computed as negative: d E

dT = − (
8πGT 2

)−1
< 0. Thus the pure state of the system

is never typical until the last burst. This leads to inevitable modification of the Page curve. In Sect. 3,
we discuss proposition (II). In black hole evaporation, the proposition is implausible. From the view-
point of semi-classical general relativity, it looks more fascinating to take an alternative for the Page
curve. The entanglement entropy continues to increase even after the Page time. At the last burst, it
suddenly goes to zero and all the information is retrieved. Finally, it is commented that the typical
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entanglement entropy of a large AdS black hole and its Hawking radiation equals the thermal entropy
of the smaller system. We adopt natural units, c = � = kB = 1.

2. Nonmaximality of entanglement in canonical typicality

In this section, we claim that proposition (I) is not satisfied for general systems with nondegenerate
Hamiltonian. When pure states are randomly sampled in a sub-Hilbert space with fixed total energy,
a typical state is not maximally entangled. Then the corresponding state of the smaller subsystem
is not the completely mixed state which is proportional to the unit matrix, but a Gibbs state. Let
us consider two finite quantum systems S1 and S2, whose dimensions of Hilbert spaces H1 and H2

are denoted by D1 and D2, respectively. Let us consider a pure state |�〉12 in H1 ⊗ H2. Its density
operator ρ̂12 = |�〉12〈�|12 is a D1 D2 × D1 D2 Hermitian matrix. Thus it can be expanded uniquely

in terms of a basis of U (D1 D2) Hermitian generators
{

Î ⊗ Î , Ĝnμ

}
:

ρ̂12 = 1

D1 D2

(
Î ⊗ Î +

∑
nμ

〈
Ĝnμ

〉
Ĝnμ

)
,

where Ĝnμ are traceless and satisfy Tr
[
ĜnμĜn′μ′

]
= D1 D2δnn′ and

〈
Ĝnμ

〉
= Tr

[
ρ̂12Ĝnμ

]
=
〈
�
∣∣
12Ĝnμ

∣∣�〉
12

.

The set of Ĝnμ consist of basis generators T̂n and R̂μ for each sub-Hilbert space. T̂n and R̂μ are
traceless and Hermitian, and obey the following normalization:

Tr
1

[
T̂n T̂n′

]
= D1δnn′,

Tr
2

[
R̂μ R̂μ′

]
= D2δμμ′ .

For n = 1 ∼ D2
1 − 1, Ĝn0 is defined as

Ĝn0 = T̂n ⊗ Î .

Similarly, for μ = 1 ∼ D2
2 − 1, Ĝ0μ is defined as

Ĝ0μ = Î ⊗ R̂μ.

The remaining generators are given by

Ĝnμ = Ĝn0Ĝ0μ = T̂n ⊗ R̂μ.

The reduced quantum state ρ̂1 for S1 is computed as

ρ̂1 = Tr
2

[|�〉12〈�|12] .

It is worth noting that ρ̂1 is uniquely fixed by measuring only D2
1 − 1 expectation values of Ĝn0 with

respect to |�〉12. This is because〈
Ĝn0

〉
=
〈
�

∣∣∣
12

Ĝn0

∣∣∣�〉
12

=
〈
�

∣∣∣12

(
T̂n ⊗ Î

)∣∣∣�〉
12

= Tr1

[
ρ̂1T̂n

]
=
〈
T̂n

〉
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holds. In fact, ρ̂1 is written as

ρ̂1 = 1

D1

(
Î +

∑
n

〈
T̂n

〉
T̂n

)
= 1

D1

(
Î +

∑
n

〈
Ĝn0

〉
T̂n

)
.

In order to analyze the smaller system S1, expectation values of other components of Ĝnμ are not
required.

Next let us consider a nondegenerate Hamiltonian Ĥ for the composite system. Ĥ takes its general
form of

Ĥ = Ĥ1 ⊗ Î + Î ⊗ Ĥ2 + V̂12,

where Ĥ1 and Ĥ2 are free Hamiltonians, and V̂12 is an interaction term between the subsys-
tems. For simplicity, we ignore ⊗ and Î in later equations such that Ĥ1 ⊗ Î is abbreviated as Ĥ1.
The normalized eigenstates of Ĥ with eigenvalue E j are denoted by |E j 〉:

Ĥ
∣∣E j

〉 = E j
∣∣E j

〉
.

We define a set 	(E) of energy indices for a macroscopically large total energy E and a positive
number δ as

	(E) = {
j |E j ∈ [E − δ, E]

}
.

Let us introduce a sub-Hilbert space H	(E), which is spanned by
{∣∣E j

〉| j ∈ 	(E)
}

and its dimen-
sion is denoted by D. A microcanonical energy shell is defined as the set of pure states in H	(E).
It should be stressed that H	(E) is not a tensor product HB ⊗ HR of any sub-Hilbert spaces HB

of H1 and HR of H2. In order to understand this, let us suppose a case in which V̂12 is negligibly
small. Then H	(E) is spanned by {|E1〉1|E − E1〉2}, where |E1〉1 is the eigenstate with eigenvalue
E1 of Ĥ1, and |E − E1〉2 is the eigenstate with eigenvalue E − E1 of Ĥ2. However, |E1〉1|E − E ′

1〉2

with E1 �= E ′
1 is not included by H	(E). This clearly implies H	(E) �= HB ⊗ HR . Hence, the ten-

sor product structure assumption of the Page curve hypothesis is not appropriate for descriptions of
black hole evaporation.

For ordinary physical systems with large volume V , D becomes exponentially large like exp (γ V )

with a positive constant γ . Taking a small value of δ gives us a naive picture of the energy shell,
which often appears in standard textbooks of statistical mechanics. Note that δ-dependence for the
final results of statistical mechanics is irrelevant in general. In fact, δ does not necessarily have to be
small in the later discussion, since the density of states eS(E), where S is the entropy, is a very rapidly
increasing function and the eigenstates close to the upper bound E give a dominant contribution, as
depicted in Fig. 3. Therefore, for simplicity, it is also possible to take an energy shell, say, [0, E] for
	(E) instead of [E − δ, E].

Any pure state in H	(E) is written as

|�〉12 =
∑

j∈	(E)

c j
∣∣E j

〉
, (2)

where c j satisfy the normalization condition
∑

j∈	(E)

∣∣c j
∣∣2 = 1. In order to analyze canonical

typicality for H	(E), let us introduce a uniform probability distribution for c j as

p (c1, . . . , cD) = � (D)

π D
δ

⎛
⎝ ∑

j∈	(E)

∣∣c j
∣∣2 − 1

⎞
⎠ ,

6/20

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2015/12/123B04/2606808 by guest on 23 April 2024



PTEP 2015, 123B04 M. Hotta and A. Sugita

Fig. 3. Behavior of entropy in ordinary systems. When we focus on an energy shell [E − δ, E], the cutoff
dependence becomes irrelevant for the canonical typicality argument.

such that
∫

p (c1, . . . , cD) d Dc = 1. The ensemble average value of a function f of c j with respect
to a unit sphere of H	(E) (microcanonical energy shell) is computed as

f =
∫

f (c1, . . . , cD) p (c1, . . . , cD) d Dc.

The ensemble average of a quantum expectation value
〈
Ô
〉

of an observable Ô in |�〉12 in Eq. (2) is

denoted by
〈
Ô
〉
. The statistical deviation from

〈
Ô
〉

is given by

δ
〈
Ô
〉
=
〈
Ô
〉
−
〈
Ô
〉
.

As proven in the Appendix, the ensemble mean square error of
〈
Ô
〉

is bounded above as

(
δ
〈
Ô
〉)2 =

〈
Ô
〉2 −

〈
Ô
〉2

≤

∥∥∥Ô2
∥∥∥

D + 1
, (3)

where the operator norm
∥∥∥Ô2

∥∥∥ represents the maximum absolute value of the eigenvalues of Ô2.

By taking Ô = Ĝn0, we have [19,20]

(
δĜn0

)2 ≤

∥∥∥Ĝ2
n0

∥∥∥
D + 1

. (4)

It should be stressed that
∥∥∥Ĝ2

n0

∥∥∥ (= ∥∥∥T̂ 2
n

∥∥∥) is independent of D2, though D grows exponentially
as exp (γ V2(D2)) with respect to the volume V2(D2) of S2. Hence the right-hand side in Eq. (4)
becomes negligibly small as exp (−γ V2(D2)) for large D2 with D1 fixed. Because the statistical

fluctuation is so small, typical values of
〈
Ĝn0

〉
are very close to the central value

〈
Ĝn0

〉
. This implies

that ρ̂1 for typical |�〉12 in H	(E) coincides with its ensemble average state ρ̂1 almost certainly. In
fact, we are able to prove that the ensemble deviation of ρ̂1 is estimated [19,20] as

Tr
1

[(
ρ̂1 − ρ̂1

)2
]

≤ 1

D1 (D + 1)

∑
n

∥∥∥Ĝ2
n0

∥∥∥ , (5)

the right-hand side of which decays rapidly due to D divergence as D2 becomes large. Note that ρ̂1 is
given by

ρ̂1 = 1

D1

(
Î +

∑
n

〈
Ĝn0

〉
T̂n

)
.

7/20

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2015/12/123B04/2606808 by guest on 23 April 2024



PTEP 2015, 123B04 M. Hotta and A. Sugita

1S

2S 12
Ψ

12V̂

Eδ+

Eδ−

Fig. 4. A canonical typicality setup for two general systems that preserves total energy and allows energy
transportation between subsystems bidirectionally.

Due to V̂12, energy is exchanged between S1 and S2 as shown in Fig. 4. If the contribution of V̂12 is
negligibly small compared to Ĥ1 and Ĥ2, the sum, Ĥ1 + Ĥ2, is approximately conserved. Then, as
proven in many textbooks of statistical mechanics, ρ̂1 becomes a Gibbs state with a fixed temperature
with high precision for D2 � D1:

ρ̂1 ≈ 1

Z(β)
exp

(
−β Ĥ1

)
, (6)

for ordinary physical systems. The difference between the typical state and the Gibbs state must be

exponentially small: Tr1

[(
ρ̂1 − ρ̂1

)2
]

≤ C exp (−γ V ). The inverse temperature β is determined

by the total energy E , which is much less than the cutoff energy scale for black hole evaporation.
Contrary to proposition (I), Eq. (6) shows that ρ̂1 is not proportional to Î1 if the temperature is finite,
unless Ĥ1 = 0. Note that a microcanonical state ρ̂m , which is proportional to the projection operator
ÎE onto the microcanonical energy shell, is far from typical, even though its von Neumann entropy Im

is O(V ) and the difference from the Gibbs state entropy Ic is merely O(ln V ). For the von Neumann
entropy It of a typical state, |It − Ic| is not O(ln V ), but exponentially small as O(exp (−γ V )).1 The
entropy difference |Im − Ic| = O(ln V ) is too large to regard the microcanonical state as a typical
state. Nondegeneracy of Ĥ provides nonmaximal entanglement between S1 and S2 to elude the strong
subadditivity paradox. It has been pointed out [11] that such a nonmaximal entanglement appears in
moving mirror models and avoids firewalls. The above argument extends the moving mirror result to
general ones. This completely removes the reason for black hole firewall emergence in Refs. [1,2].

For evaporating old black holes, Eq. (6) implies that state superposition of different energy black
holes emerges in the total pure state of B and R, and generates much more entanglement, compared
to a single black hole contribution with a fixed energy in the Page curve hypothesis. It should be noted
that when the Gibbs state in Eq. (6) is thermodynamically unstable due to the emergence of negative
heat capacity, just like for asymptotically flat black hole spacetimes [25], the typicality argument itself
is unable to be applied to black hole evaporation, and never provides any correct insight. Quantum
states in the evaporation are nontypical all the time, and proposition (I) loses its reasoning.

The result of canonical typicality with Eq. (6) has already been commented on by Harlow for a
weak interaction limit [9]. However, it should be emphasized that Harlow does not give any proof
of the typicality. Harlow also pointed out [9] that there remains a subtlety for the firewall removal

1 Note that ρ̂1 is not exactly the same as the Gibbs state e−β Ĥ1/Z , because of a small correction due to the
interaction term V̂12. Therefore, precisely speaking, Ic should be regarded as the von Neumann entropy of ρ̂1.
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even if we accept the canonical typicality. Let us recall the setup of gravitational collapse in Fig. 2.
Naively, it may be expected that the quantum state ρ̂AB of late radiation A and black hole B for a
typical state is approximated by

1

Z(β)
exp

(
−β

(
ĤA + ĤB

))
= 1

Z(β)
exp

(
−β ĤA

)
⊗ exp

(
−β ĤB

)
. (7)

The above tensor product structure of the state means no correlation between A and B even after
taking account of Ĥ nondegeneracy. Therefore, just as for the original story of firewalls, the expec-
tation value of the kinetic energy density of radiation fields might be divergent. However, we claim
that the worry is useless. In order to see no divergence, we go back to the above general formulation.
The system Hamiltonian is given by

Ĥ = ĤA + ĤB + ĤC + V̂AB + V̂AC + V̂BC + V̂ABC ,

where ĤA, ĤB, ĤC are free Hamiltonians for the late radiation, the black hole, and the early radia-
tion, V̂AB, V̂AC , V̂BC are two-body interactions among A, B, C , and V̂ABC is a three-body interaction
(if we have any). The setup is depicted in Fig. 5. Let us consider that V̂AC + V̂BC + V̂ABC are negli-
gibly small as usual in statistical mechanics setups. However, we do not necessarily assume that V̂AB

is small. Then ρ̂AB does not take the form of Eq. (7), but instead

ρ̂AB =
exp

(
−β

(
ĤA + ĤB + V̂AB

))
TrAB

[
exp

(
−β

(
ĤA + ĤB + V̂AB

))] . (8)

The expression of Eq. (8) is correct irrespective of the interaction strength between A and B. The
expectation value of V̂AB , which includes the kinetic energy term of radiation fields on the horizon,
does not diverge at all: ∣∣∣TrAB

[
ρ̂AB V̂AB

]∣∣∣ < ∞.

It can be easily understood if we notice that the decomposition of the AB system into two parts
(A and B) is arbitrary. If we choose the boundary of the two systems differently, we have different
subsystems A′ and B ′ and different free Hamiltonians Ĥ ′

A′, Ĥ ′
B′ and interaction V̂ ′

A′ B′ between them.
But the physics of the composite system does not change at all because

ĤA + ĤB + V̂AB = Ĥ ′
A′ + Ĥ ′

B′ + V̂ ′
A′ B′

holds in Eq. (8). From the viewpoint of A′ and B ′, V̂AB is an ordinary local operator of A′ or B ′.
There is no cause to make TrAB

[
ρ̂AB V̂AB

] (
= TrA′ B′

[
ρ̂A′ B′ V̂AB

])
diverge. This remains true even

if we take the limit of V̂AB → 0 and recover the expression in Eq. (7). After all, we have no reasoning
for firewall emergence on the horizon from the viewpoint of quantum information.

Here it is worth emphasizing that the LLPP theorem can be regarded as a special case of the
canonical typicality. When we consider a nondegenerate Hamiltonian with a cutoff, the density of
states eS(E) has the maximum value at an energy close to the cutoff (see Fig. 3), and the tempera-
ture is infinite at this point since T −1 = β = ∂S

∂ E = 0. If we choose a state randomly from the whole
Hilbert space without any energy condition, we almost always get a state with energy correspond-
ing to the maximum density of states. Then the subsystem has the Gibbs state with β = 0, which is
proportional to the identity operator. This is exactly what the LLPP theorem claims. Consequently,
we obtain a very high energy state with infinite temperature. Therefore the firewall argument based
on the LLPP theorem actually says that not only the horizon, but also the whole space is on fire.
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B

A
C

ABV̂

AĤ

BĤ
CĤ

ACV̂

BCV̂
ABCV̂

Fig. 5. A canonical typicality setup for an old black hole, early radiation, and late radiation, which allows all
energy exchange among them, preserving total energy.

12
Ψ

12Û

Fig. 6. Fast scrambling into typical states uniformly distributed all over the energy shell.

(Note that the argument in [1,2] does not use any special property of the horizon. Therefore it can be
applied to an arbitrary partition of the space.) This wrong conclusion teaches us the importance of
introducing a physical Hamiltonian and the energy conservation law to consider this problem.

3. Possible modification of the Page curve

In this section, we revisit Page’s proposition (II). In Sect. 2, we explained that the quantum state ρ̂1 of
the smaller system S1 in a typical state |�〉12 of H	(E) equals a Gibbs thermal state. Because entan-
glement entropy is defined as SE E = −Tr1

[
ρ̂1 ln ρ̂1

]
, SE E is actually the same as thermal entropy

when S1 and S2 exchange energy via the boundary, and interaction V̂12 is negligibly small compared
to the free Hamiltonians. This condition of small V̂12 really holds in nearest-neighbor interaction
cases, because the free Hamiltonians are proportional to the volumes of S1 and S2, and V̂12 is merely
proportional to the boundary area. Thus proposition (II) might sound convincing. However, we should
not forget a crucial condition which makes ρ̂1 a typical state. Energy has to be transported not only
from S1 to S2, but also from S2 to S1. In such a situation, all the energy eigenstates in H	(E) are able
to contribute on the same footing with each other, as depicted in Fig. 6.

Û12 is expected to generate very complicated time evolution, and may yield fast scrambling of
the system in H	(E). Here, “scrambling” means relaxation of nontypical initial states with zero
entanglement into typical states with high entanglement. After the relaxation, it is very unlikely to
find the system in a nontypical state again for ordinary systems. This makes the canonical typicality
method in Sect. 2 promising for late time. Finding typical ρ̂1 makes sense after the relaxation. How
about cases in which energy is transferred only from S1 to S2? In these cases, the energy transportation
does not happen from S2 to S1, as depicted in Fig. 7.
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1S

2S 12
Ψ

12V̂
Eδ+

Fig. 7. An actual setup for black hole evaporation, in which energy is transferred only from the black hole to
radiation. The energy transportation from outgoing Hawking radiation to the black hole does not take place.

Fig. 8. A slow relaxation into typical states, which is generated by fast-scrambling inside the black hole and
semi-classical radiation emission.

This actually arises in black hole evaporation, because the outgoing Hawking radiation emitted
by black holes does not come back. The radiation is not able to give any amount of energy to the
black holes without putting a mirror outside the horizon, or assuming thermal equilibrium. As well
as the negative heat capacity of evaporating black holes, the one-way energy transportation is caused
by the gravitational instability. Such a one-way dynamics of energy transportation makes the system
remain in nontypical states before the last burst of the black hole. Generation of the Hawking radiation
takes place in an outside region (a few times the black hole radius away from the horizon) with very
small spacetime curvature. In an ordinary sense, the semi-classical treatment of the generation is
justified, and the process is not random at all. Time evolution of B and R is described essentially
by fast scrambling ÛB ⊗ ÎR of black holes and the nonrandom process Û (emission)

B R of the Hawking
radiation emission. ÛB ⊗ ÎR does not change the entanglement between B and R due to its locality.
No fast scrambling for R happens. This nonchaotic setup does not ensure that the relaxation of
the BR system finishes before the last burst. Therefore, in realistic evaporations, the validity of the
typical state postulate becomes dubious. The system may always evolve among nontypical states as
depicted in Fig. 8. Therefore the quantum state of the old black hole is able to be far from Gibbs
states after the Page time. Hence SE E can be totally different from thermal entropy, as opposed to
Page’s proposition (II).

Taking account of the possibility without (II), it is important to discuss modification of the Page
curve. Moving mirror models, which mimic gravitational collapse and Hawking radiation emission
out of black holes, may be a good device to see the possibilities. Let us consider a massless scalar
field in 1 + 1 dimensions. Adopting light cone coordinates x± = t ± x , the mirror trajectory is
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expressed as

x+ = f
(
x−) ,

where f is a monotonically increasing function of x−. Even if the vacuum state is set as the initial
state of the field, the mirror excites the field and emits radiation, whose expectation value of the
outgoing energy flux is computed [26] as

〈
T̂−−(x−)

〉
= − 1

24π

⎡
⎣∂3

x− f (x−)

∂x− f (x−)
− 3

2

(
∂2

x− f (x−)

∂x− f (x−)

)2
⎤
⎦ . (9)

A trajectory given by

fo(x−) = − ln
(

1 + e−κx−)
(10)

describes a mirror which is at rest in the past, and accelerates with constant acceleration κ in the
future. This trajectory is related to a realistic 1 + 3-dimensional gravitational collapse, which makes
an eternal black hole without the back reaction of radiation emission [17]. Eventually the mirror emits
constant thermal flux with temperature T = κ/(2π). In fact, substitution of Eq. (10) into Eq. (9)
yields the correct thermal flux, 〈

T̂−−(x−)
〉
= π

12
T 2

for x− � 1/κ . Now let us consider mirror trajectories which may approximately describe black hole
evaporation with its back reaction. The first candidate is the following:

fκ(x−) = − ln

(
1 + e−κx−

1 + eκ(x−−h)

)
, (11)

where h is a very large real constant, and controls the lifetime of the corresponding black hole.
The trajectory is depicted in Fig. 9. Due to the trajectory deformation, the mirror stops in the future.
The time evolution of radiation emission is given by the plot in Fig. 10 for κ = 1 and h = 500. During
the evaporation, almost constant flux is emitted, though real black holes increase the temperature and
flux of radiation. It is interesting to compute the entanglement entropy SE E between the field degrees
of freedom inside

[
x−

1 , x−
2

]
and those outside

[
x−

1 , x−
2

]
. There exists an ultraviolet divergence in SE E

due to the infinite number of degrees of freedom of the quantum field [27]. To remove the divergence,
a renormalized entanglement entropy 	SE E is introduced by substituting the vacuum contribution
[28]. 	SEE is given by

	SE E = 1

12
ln

( (
f (x−

2 ) − f (x−
1 )
)2

(
x−

2 − x−
1

)2
∂x− f (x−

2 )∂x− f (x−
1 )

)
.

In Fig. 11, a plot of 	SEE as a function of x−
2 is provided for κ = 1, h = 500, and x−

1 = −2.
The curve is almost symmetric and looks like the Page curve.2 This aspect comes from the fact
that the order of the mirror deceleration, which is expected due to back reaction of the radiation

2 We thank Daniel Harlow for pointing out that the trajectory in Eq. (11) yields a Page-like curve for 	SE E .

12/20

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2015/12/123B04/2606808 by guest on 23 April 2024



PTEP 2015, 123B04 M. Hotta and A. Sugita

Fig. 9. Schematic figure of mirror trajectory described by Eq. (11).
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Fig. 10. Energy flux of Hawking radiation out of a mirror for the trajectory of Eq. (11) with κ = 1 and h = 500.

emission, is equal to κ of the acceleration in Eq. (11). However, this means locality breaking of
dynamics for the evaporation and seems unlikely. κ corresponds to the scale of surface gravity of
the 1 + 3-dimensional black hole, and is considered as of the order of M2

pl/MB H , where Mpl is
the Planck mass and MB H is the black hole mass. Thus κ is very small compared to Mpl and the
inverse of κ provides a cosmologically long time scale. The macroscopic black hole, whose evolution
is described by Eq. (11), needs to estimate by itself its destiny, how much time remains before its
death, and when the deceleration must start. At the half of its lifetime (x−∼250), the black hole
decides to emit its quantum information, which is stored inside the horizon, so as to finish leaking all
the information before the last burst. In order to achieve this, the black hole has to slightly change its
evolution at its Page time, which is long before its death, in a different way from those of other black
holes with the same mass. For example, let us consider two black holes with the same mass MB H , as
depicted in Fig. 12. The left black hole in the figure is just born and very young. It has not begun the
emission of Hawking radiation yet and is almost in a pure state. The right black hole in Fig. 12 was
born with mass 1.3MBH (∼MBH/0.77), and has decreased the mass to MBH via radiation emission.
Thus it is an old black hole around the Page time. It is worth stressing that the classical geometries
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Fig. 11. Time curve of renormalized entanglement entropy between degrees of freedom in [−2, x2] and outside
ones for the trajectory of Eq. (11) with κ = 1 and h = 500.

Fig. 12. Young and old black holes with the same mass. The entanglement evolutions are quite different from
each other in the Page curve hypothesis.

of the two macroscopic black holes are the same. Nevertheless, only the old black hole begins to
change its evolution at x− ∼ 250. The young black hole will change in a similar way further in the
future. To perform such a cooperative motion, all quantum microscopic ingredients of the black hole
must watch each other carefully and preserve the long-term memory. Each part must estimate the
black hole age by use of the memory. This dynamics is non-Markovian and non-local, at least in time.
If their dynamics can be approximated by the semi-classical general relativity, which is Markovian,
such non-local evolution does not emerge. One might expect that the small back reaction of the
Hawking radiation to the black hole geometry becomes a trigger to leak the information for the old
black hole. However, if the black hole has such a sensitivity, the geometrical perturbation induced
by a small amount of in-falling matter must also drastically change the time schedule of information
leakage and completely modify the Page curve. This implies that the Page curve is unstable and
useless for realistic situations.

Of course, we are able to consider a more natural mirror trajectory, which is consistent with semi-
classical general relativity. One example is given by

fκ,λ(x−) = − ln

(
1 + e−κx−

1 + eλ(x−−h)

)
. (12)
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Fig. 13. Schematic figure of the mirror trajectory described by Eq. (12).
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Fig. 14. Time curve of renormalized entanglement entropy between degrees of freedom in [−2, x2] and outside
ones for the trajectory of Eq. (12) with κ = 1, λ = 100, and h = 500.

Here, two different scale parameters κ, λ are introduced. κ is the acceleration parameter for the emis-
sion of Hawking radiation. λ is the deceleration parameter, which is of Planck scale order Mpl and
describes the sudden stop of the mirror due to the last burst of the black hole. Thus λ � κ holds.
The schematic behavior is given in Fig. 13. Clearly, the last burst region should be described by
quantum gravity. In Fig. 14, 	SE E is plotted as a function of x−

2 for κ = 1, λ = 100, h = 500, and
x−

1 = −2. Note that, until just before the last burst, 	SE E is estimated by the semi-classical results
of the outside Hawking radiation without use of knowledge about quantum black holes. This aspect
circumvents the uncertainty of quantum gravity, and strengthens the plausibility of this scenario. All
the information is retrieved by the last burst. It is often commented that a huge amount of energy is
required for such information leakage. However, it may be possible to attain it by use of entangle-
ment with zero-point fluctuation of quantum fields [11,17,24], as already emphasized above. Hence
energy of Planck mass order is enough to leak the information. In order to see the possibility, let
us consider an entangled particle pair in the vacuum state [24], as depicted in Fig. 15. One of the
particles becomes a Hawking particle with positive energy after scattering by the mirror. However,
the partner particle is scattered by the mirror at rest and has no energy even after the scattering. Thus
an enormous amount of quantum information, which makes the system state pure, is shared among
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+x

−x

Fig. 15. Entangled particles scattered by mirror.

the Hawking radiation and the outgoing zero-point fluctuation flow of quantum fields in the future
null infinity. When this scenario is applied to realistic black hole evaporation, we would expect that
quantum gravity generates higher-derivative corrections to the Einstein equation and the smeared
would-be singularity inside the black hole horizon becomes timelike and preserves the information
of falling matter.

Here we add some comments. The famous qualitative bound for the information leakage time of
Carlitz and Willey [14] is unable to be applied to the sudden stop case in Fig. 15, because their
bound is derived by assuming a slow change of the acceleration of the mirror and ignoring emission
of negative energy flux, which is generated with the informational zero-point fluctuation. Recently,
Bianchi and Smerlak found an interesting identity between the energy flux emitted from moving
mirrors and the entanglement entropy of the radiation [29]. They also argue that when applied to two-
dimensional models of black hole evaporation, this identity implies that unitarity is incompatible with
monotonic mass loss. However, it should be stressed that they assume the Page curve as a unitary
model of black hole evaporation for the argument. Thus the outgoing zero-point fluctuation flow
scenario, as well as the long-lived remnant scenario, is consistent with their claim. It seems natural
that the singular sudden stop of the mirror trajectory in Fig. 15 may be smoothed around the Planck
length scale by quantum gravity, as depicted in Fig. 16. Then a gravitational shock wave induced by
the last burst ray may trap the entangled partner particle with zero energy for a while, just like in a
high-energy gravitational scattering in a Minkowski vacuum. Even after re-emission of the particle
from the shock wave, the energy of the partner particle may remain zero [30]. Thus the possibility
is still alive that the information leakage by the last burst does not need a huge amount of energy in
quantum gravity. This totally differs from the Page curve hypothesis, but is one interesting possibility.

Before closing this section, we add an interesting comment about a thermal equilibrium for the BR

system. Instead of black hole evaporation, let us suppose a pure state which describes a static and
stable thermal equilibrium of the composite system in a coarse-grained meaning [31,32]. In asymp-
totically anti-de Sitter spacetimes, there exist thermal equilibriums for a large black hole B and its
Hawking radiation R. They exchange energy bidirectionally. By adiabatically slowly changing sys-
tem parameters, including external forces and the position and pressure of a mirror surrounding R
(if we have a mirror), various sizes of the black hole may appear. From the general results in Sect. 2,
it turns out that each equilibrium state is typical, and the reduced state for the smaller subsystem
among B and R is a Gibbs state with finite temperature, though no firewall emerges. Plotting entan-
glement entropy as a function of the inverse of black hole size generates a Page-like curve, in which
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+x

−x

Fig. 16. Gravitational shock wave induced by the last burst ray and spacetime shift of zero-point fluctuation.

entanglement entropy equals thermal entropy for the smaller subsystem. This may become rele-
vant in the future research of quantum black holes, though it is merely a side story for the original
information loss problem.

4. Summary

In this paper, we revisit the Page curve hypothesis. Adopting a general formulation of canonical
typicality with nondegenerate Hamiltonian, it is proven that Page’s proposition (I) is not actually
satisfied for ordinary systems. The typical states are exponentially close to Gibbs states with finite
temperatures. The entanglement between subsystems becomes nonmaximal and removes firewalls.
The microcanonical state, which is proportional to ÎE , is far from typical for the entanglement
between a black hole and its Hawking radiation. In the dynamical situation of black hole evapo-
ration, proposition (II) is also unlikely. We have no strong reason to expect that the entanglement
entropy equals the thermal entropy for the smaller subsystem in the evaporation. Taking account of
semi-classical general relativity, a conservative scenario becomes more fascinating in which all the
information inside the black hole is emitted by the last burst of the black hole. Finally, it is pointed
out, using the general results in Sect. 2, that for static thermal pure states of the B R system in the
sense of canonical typicality, entanglement entropy between B and R certainly coincides with the
thermal entropy of the smaller system. This holds for large AdS black holes.
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Appendix A. Proof of Eqs. (3) and (5)

Let us take a uniform distribution in the microcanonical energy shell H	(E) as

p (c1, . . . , cD) = �
(
D − 1

2

)
2π D−1/2 δ

⎛
⎝ ∑

j∈	(E)

∣∣c j
∣∣2 − 1

⎞
⎠
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and introduce the ensemble average of a function of c j as

f (c1, . . . , cD) =
∫

f (c1, . . . , cD) p (c1, . . . , cD) d Dc.

Using invariant tensors of U (D), it is easy to show that

c∗
j c j ′ = 1

D
δ j j ′, (A1)

c∗
j c j ′c∗

k ck′ = 1

D(D + 1)

(
δ j j ′δkk′ + δ jk′δk j ′

)
. (A2)

A pure state of H	(E) is given by

ρ̂ (c1, . . . , cD) = |�〉〈�| =
∑

j, j ′∈	(E)

c j c
∗
j ′ |E j 〉〈E j ′ |.

Using Eq. (A1), the ensemble average of the expectation value of observable Ô is computed as

〈
Ô (c1, . . . , cD)

〉
= 1

D

∑
j∈	(E)

〈
E j

∣∣Ô∣∣E j
〉
.

For the ensemble deviation,

δ
〈
Ô (c1, . . . , cD)

〉
=
〈
Ô (c1, . . . , cD)

〉
−
〈
Ô (c1, . . . , cD)

〉
,

the mean square error is given by

(
δ
〈
Ô (c1, . . . , cD)

〉)2 =
〈
Ô (c1, . . . , cD)

〉2 −
(〈

Ô (c1, . . . , cD)
〉)2

.

Using Eq. (A2), we have

〈
Ô (c1, . . . , cD)

〉2 =
∑

j, j ′∈	(E)

∑
k,k′∈	(E)

c∗
j c j ′c∗

k ck′
〈
E j

∣∣Ô∣∣E j ′
〉〈

Ek
∣∣Ô∣∣Ek′

〉

= 1

D(D + 1)

∑
j,k∈	(E)

(〈
E j

∣∣Ô∣∣E j
〉〈

Ek
∣∣Ô∣∣Ek

〉 + 〈
E j

∣∣Ô∣∣Ek
〉〈

Ek
∣∣Ô∣∣E j

〉)

= D

D + 1

〈
Ô (c1, . . . , cD)

〉2
+ 1

D(D + 1)

∑
j,k∈	(E)

∣∣∣〈E j
∣∣Ô∣∣Ek

〉∣∣∣2 .

Thus the mean square error is estimated as

(
δ
〈
Ô (c1, . . . , cD)

〉)2 = 1

D(D + 1)

∑
j,k∈	(E)

∣∣∣〈E j
∣∣Ô∣∣Ek

〉∣∣∣2 − 1

D2 (D + 1)

⎛
⎝ ∑

j∈	(E)

〈
E j

∣∣Ô∣∣E j
〉⎞⎠

2

.
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Because
(∑

j∈	(E)

〈
E j

∣∣Ô∣∣E j
〉)2

and
∑

k /∈	(E)

∣∣∣〈E j
∣∣Ô∣∣Ek

〉∣∣∣2are nonnegative, we get

(
δ
〈
Ô (c1, . . . , cD)

〉)2 ≤ 1

D(D + 1)

∑
j∈	(E)

∑
k∈	(E)

∣∣∣〈E j
∣∣Ô∣∣Ek

〉∣∣∣2

≤ 1

D(D + 1)

∑
j∈	(E)

D1 D2∑
k=1

∣∣∣〈E j
∣∣Ô∣∣Ek

〉∣∣∣2 (A3)

= 1

D(D + 1)

∑
j∈	(E)

〈
E j

∣∣Ô2
∣∣E j

〉

= 1

D + 1

〈
Ô (c1, . . . , cD)2

〉
. (A4)

Here we have used
D1 D2∑
k=1

∣∣∣〈E j
∣∣Ô∣∣Ek

〉∣∣∣2 = 〈E j |Ô
(D1 D2∑

k=1

|Ek〉〈Ek |
)

Ô
∣∣E j

〉 = 〈
E j

∣∣Ô2
∣∣E j

〉
.

Because an expectation value does not exceed its operator norm,〈
Ô (c1, . . . , cD)2

〉
≤
∥∥∥Ô2

∥∥∥ (A5)

is always satisfied. Combining Eqs. (A4) and (A5) yields Eq. (3).
The ensemble average state for S1 is given by

ρ̂1 = 1

D1

(
Î +

∑
n

〈
Ĝn0 (c1, . . . , cD)

〉
T̂n

)
.

The mean square error is computed as

Tr
1

[(
ρ̂1 (c1, . . . , cD) − ρ̂1

)2
]

= 1

D2
1

Tr
1

⎡
⎣(∑

n

(〈
Ĝn0 (c1, . . . , cD)

〉
−
〈
Ĝn0 (c1, . . . , cD)

〉)
T̂n

)2
⎤
⎦

= 1

D1

∑
n

(〈
Ĝn0 (c1, . . . , cD)

〉
−
〈
Ĝn0 (c1, . . . , cD)

〉)2

.

Therefore we can manipulate it as follows:

Tr
1

[(
ρ̂1 (c1, . . . , cD) − ρ̂1 (c1, . . . , cD)

)2
]

= 1

D1

∑
n

(〈
Ĝn0 (c1, . . . , cD)

〉2 −
〈
Ĝn0 (c1, . . . , cD)

〉2)

≤ 1

D1

∑
n

(
δ
〈
Ĝn0 (c1, . . . , cD)

〉)2

= 1

D1 (D + 1)

∑
n

∥∥∥Ĝ2
n0

∥∥∥ .

In the last step, we used Eq. (3). Thus, Eq. (5) is proven.
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