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We study some properties of generalized global symmetry for the charge-q Schwinger model
in the Hamiltonian formalism, which is the (1 + 1)D quantum electrodynamics with a
charge-q Dirac fermion. This model has the Zq 1-form symmetry, which is a remnant of
the electric U (1) 1-form symmetry in the pure Maxwell theory. It is known that, if we put
the theory on closed space, then the Hilbert space is decomposed into q distinct sectors,
called universes, and some states with higher energy density do not decay to the ground
state due to the selection rule of the 1-form symmetry. Even with open boundaries, we can
observe the stability of such states by seeing a negative string tension behavior, meaning
that opposite charges repel each other. In order to see negative string tensions, the vacuum
angle θ has to be large enough and the standard path-integral Monte Carlo method suffers
from the sign problem. We develop a method based on the adiabatic state preparation to see
this feature with digital quantum simulation and confirm it using a classical simulator of
quantum devices. In particular, we measure the local energy density and see how it jumps
between the inside and outside of the insertion of the probe charges. We explicitly see that
the energy density inside is lower than that outside. This is a clear signature of the negative
string tension.
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1. Introduction
Quantum field theory (QFT) is the fundamental framework for the study of both particle
physics and quantum many-body physics. For weakly coupled theories, we can perform pertur-
bative expansion to compute physical quantities with sufficiently good accuracy, while strongly
coupled QFTs are still very far from complete understanding. To understand the properties of
strongly coupled theories, we typically take one of the following two approaches, or a combina-
tion if various methods work well. One way is to constrain their possible properties from various
consistencies, such as unitarity and locality, symmetry, anomaly, monotonicity of renormal-
ization group, and so on. The other way is to perform the numerical computation by putting
QFTs on computers; the most typical one would be the lattice Monte Carlo simulation. Every
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technique has its pros and cons, and we must choose an appropriate one for each problem of
interest. Obviously, we need to develop new techniques to extend the applicability and useful-
ness of QFTs.

Quantum simulation is one such promising technique. A universal quantum computer pro-
vides us with a potential way to efficiently simulate a quantum system that is intractable with
classical hardware [1], and its application to QFTs may uncover new aspects of strongly cou-
pled many-body phenomena.1 The rapid advance in the development of quantum computing
hardware, which we have witnessed recently, further motivates us to design strategies to tackle
these classically hard problems. For example, when the Boltzmann weight of the path integral
has complex phases, the lattice Monte Carlo simulation encounters the sign problem and we
cannot efficiently simulate such QFTs with a classical algorithm. This problem always occurs
when we study real-time dynamics using path-integral formulations. Also, the imaginary-time
path integral can encounter the sign problem for many interesting setups, and revealing the
static properties of such a QFT is an important task.

While a tremendous amount of effort has been made to develop numerical techniques to
tackle these problems with classical computers, their quantum counterparts are far less ex-
plored. This is partly because the Hamiltonian formalism is more suitable for quantum simu-
lations, but this is not the current mainstream for the study of nonperturbative QFTs. Instead
of treating the Hilbert space directly, we usually consider the Euclidean correlation functions
using the path-integral formalism. In particular, there has been huge development in general-
ized symmetries as a formal aspect of Euclidean QFTs [42–47], which clarifies the existence of
unconventional selection rules. One of our motivations in this study is to decode these features
of Euclidean QFTs in the Hamiltonian formalism, so that those notions can also be used in
future quantum simulations.

As a first step, we study (1 + 1)D quantum electrodynamics with a charge-q electron, which we
refer to as the charge-q Schwinger model. This theory has Zq 1-form symmetry, denoted as Z[1]

q ,
and it is one of the simplest models that enjoy generalized symmetries [48–51]. Furthermore,
when we take the fermion mass to be zero, this system has the Zq chiral symmetry, and there
is a mixed ’t Hooft anomaly between Z[1]

q and (Zq)chiral. This shows a nontrivial commutation
relation between the Wilson loop and the chiral operator, and anomaly matching requires the
existence of q degenerate vacua as long as the system is gapped. Since the massless Schwinger
model can be solved exactly, we can confirm these features by explicit computations: The system
is gapped due to the axial anomaly [52,53], and the partition function has been computed on
various 2D manifolds [54–56].

When the mass term is added, the system is no longer exactly solvable, but we can apply the
mass perturbation to compute physical quantities. It is expected to be valid if the fermion mass
is smaller than the photon mass. Since they break (Zq)chiral explicitly, q degenerate vacua are
lifted, and generically we obtain the unique ground state. Then, let us ask the following ques-
tion: What would be the fate of other vacua? They are stable within the mass perturbation, but
they have larger energy density compared with the ground state. Without having any selection
rules, it would be natural to guess that they eventually experience vacuum decay to the ground
state.

1See Refs. [2–26] for digital quantum simulations and Refs. [27–41] for analogue quantum simulations
of QFTs.
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This naive guess turns out to be incorrect, and there is indeed an unconventional selec-
tion rule due to Z[1]

q . In general, if d-dimensional QFTs enjoy (d − 1)-form symmetry, the
Hilbert space is completely decomposed by the eigenvalues of the (d − 1)-form symmetry gen-
erator [57,58], and our example is a special case with d = 2. This selection rule is stronger
than the superselection rule associated with spontaneous symmetry breaking, since it is true
without the infinite volume limit. This property is called the decomposition of QFTs [42–
46], or, more recently, universes [57–60]: A state in one of the universes cannot jump/decay
to another universe. In other words, any dynamical processes have to be closed within one
universe.

We can check the existence of such an exotic state by observing the negative string tension.
String tension defines the slope of linear confinement potential of electric test particles, and
it is usually positive since the confining string costs some energy. In 2D QFTs, however, the
Wilson loop completely separates the spacetime into two regions. If the universe inside the
Wilson loop has lower energy density than the outside, the string tension becomes negative.
Depending on the vacuum angle, it has been suggested that such negative string tension indeed
appears [51,57]. To see negative string tensions, we have to take a large enough vacuum angle
θ , so the conventional Monte Carlo approach suffers from the sign problem.

In this paper, we consider the charge-q Schwinger model on the open interval and relate it
to a spin chain by a Jordan–Wigner transformation. We prepare the ground state with test
electric charges at nonzero vacuum angles, which are expected to have negative string tension,
by adiabatic state preparation. In order to detect the negative string tension explicitly, it is useful
to have a local energy density operator and we measure the position-dependent energy density
to confirm theoretical expectations. We shall show that our observation about the Hilbert space
is consistent with the selection rule of the generalized symmetry, Z[1]

q .
This paper is organized as follows. In Sect. 2, we review the charge-q Schwinger model in

the continuum formulation. In Sect. 3, we write down the lattice formulation of the charge-q
Schwinger model. In Sect. 4, we describe our simulation strategy. Section 5 shows our simula-
tion results. Section 6 is devoted to the summary and discussion. In Appendix A, we discuss
these features for the 2D pure Maxwell theory by explicit computations of the path integral and
the canonical quantization. In Appendix B, we investigate how the adiabatic schedule affects
the adiabatic error.

2. Continuum theory of the charge-q Schwinger model
In this section, we give a review of the charge-q Schwinger model in the continuum formulation.
This theory has the Zq 1-form symmetry [42–47], and this leads to the fact that the Hilbert space
on closed space decomposes into q distinct universes [57]. In Appendix A, we discuss these
features for the 2D pure Maxwell theory by explicit computations of the path integral and the
canonical quantization.

2.1 Charge-q Schwinger model on S1
L and Zq 1-form symmetry

The Lagrangian density of the charge-q Schwinger model is given as2

L = 1
2g2

F 2
01 + θ0

2π
F01 + ψ i γ μ(∂μ + i q Aμ)ψ − m ψψ, (1)

2We take the gamma matrices as γ 0 = σ 3, γ 1 = iσ 2, and γ 3 = σ 1.
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where q is a positive integer and we take m > 0. Here, F = dA (F01 = ∂0A1 − ∂1A0 in com-
ponents) is the field strength of the U(1) gauge field A, and we normalize it so that the Dirac
quantization is given by

∫
M2

dA ∈ 2πZ for any closed 2-manifolds M2. Equivalently, the U(1)
gauge transformation is imposed by the invariance under

A �→ A − i e−iλ d eiλ = A + dλ, (2)

where the gauge transformation parameter λ is a 2π -periodic compact scalar field. When λ is
well defined as R-valued functions, we call it the small gauge transformation, and others are
called the large gauge transformation.

We first take the space as S1 for the canonical quantization. For the Hamiltonian formulation,
the temporal gauge A0 = 0 is convenient. When imposing this condition, we must also impose

δL
δA0(x)

= 0, (3)

which gives the Gauss law constraint:

∂1F01 = q ψ†ψ (x). (4)

The canonical momentum for A1 is

� = δL

δȦ1
= 1

g2
Ȧ1 + θ

2π
. (5)

Therefore the Hamiltonian density becomes

H (x) = g2

2

(
� − θ0

2π

)2

− ψ̄ i γ 1(1+i qA1)ψ + mψ̄. (6)

With the canonical variables, the Gauss law constraint (4) is rewritten as

∂1�(x) = q ψ†ψ (x). (7)

Furthermore, we also impose the invariance under the large gauge transformation on the phys-
ical Hilbert space.

Because of the presence of the charge-q electric matter, the U (1) 1-form symmetry in the pure
Maxwell theory is explicitly broken. Still, this model has Zq 1-form symmetry, generated by

A �→ A + �, ψ (x) �→ e−iq
∫ x

0 �ψ (x), (8)

with d� = 0 and
∮

� ∈ 2π
q Z. This quantization of

∮
� is important to have the single-valuedness

for ψ after the transformation. For example, we can choose

� = 2π

qL
dx (9)

as a nontrivial generator for Z[1]
q . Note that q� = dφ, where φ = 2π

L x is a 2π -periodic scalar, and
thus it is part of the large gauge transformation, which explains why this is a Zq transformation.

The generator of Z[1]
q is given by

U (x) = exp
(

2π i
q

�(x)
)

. (10)

Therefore, U(x) does not depend on x for physical states. To see this, let � be a physical state
that satisfies the Gauss law. Then,

U (x)U (y)−1� = exp
(

2π i
q

· q
∫ x

y
dx′ ψ†ψ (x′)

)
� = �. (11)
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Moreover, U(x) commutes with the Hamiltonian. The nontrivial part is the covariant derivative
in the fermion kinetic term, so let us only check that part:

U (x)(d + i qA)yU (x)−1 = (d + i qA + 2π i d�(y − x))y

= e−2π i �(y−x) (d + i qA)y e2π i �(y−x). (12)

As exp (2π i �(y − x)) = 1 almost everywhere, we have checked the commutation relation. In
the lattice regularized formulation, we can see this more explicitly without any subtlety.

Because of Z[1]
q in (1 + 1)D, the Hilbert space decomposes into q sectors,

H =
q−1⊕
k=0

Hk, (13)

where each Hilbert space Hk is defined by

Hk =
{
� ∈ H |U (x)� = e

2π ik
q �

}
. (14)

We note that, due to the topological nature of U(x), the condition does not depend on x. Here,
the label k is identified in mod q, i.e., k ∼ k + q.

We can fix the label k by gauging the 1-form symmetry. Since the 1-form symmetry is Zq ⊂
U (1), the 2-form gauge field B is now subject to the constraint

qB = dC, (15)

where C is an auxiliary U (1) 1-form gauge field. Now, the 1-form gauge transformation is given
by

A �→ A + �, B �→ B + d�, C �→ C + q �, (16)

and thus the gauge-invariant combinations are given as F − B and q A − C. Using this 1-form
gauge transformation, we can set A = 0 as a gauge-fixing condition, which effectively replaces A
with 1

qC. Then, we obtain the replacement g2 → q2g2 and θ0 → (θ0 + 2πk)/q, where k is the label
for the discrete θ term. In this way, we can extract the Hilbert space Hk by gauging Zq including
the discrete θ term. That is, the U(1) gauge theory with charge-q matters can be identified as
the discrete sum of U(1) gauge theories with charge-1 matters with rescaled coupling q2g2 and
with different fractionalized θ angles (θ0 + 2πk)/q. Each sector Hk of the decomposition has
recently been called a universe [57–60].

These different universes can be connected by introducing Wilson line operators. When a
charge-qp Wilson loop is introduced in the kth universe, its string tension σ is given by

σqp,k = Ek−qp (θ0) − Ek(θ0), (17)

where Ek(θ0) describes the ground-state energy density3 for Hk, k = 1, …, q. When the fermion
mass m2 is small enough compared with the photon mass μ2 = q2g2/π , the ground-state energy
density can be approximated as

Ek(θ0) = −m
eγ qg
2π3/2

cos
(

θ0 − 2πk
q

)
+ O(m2). (18)

When the fermion mass m is large enough, the theory is approximately the pure Maxwell theory
with theta angle θ0 and the ground-state energy density behaves as

Ek(θ0) = g2

2
min
�∈Z

(
k + q� − θ0

2π

)2

+ O
(
m−2) . (19)

3This is the lowest eigenvalue of H(x) and is independent of x for the periodic boundary condition
because of translational invariance.
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When q = 1, the Wilson loop does not change the universe, and thus any integer electric charge
can be screened by the pair creation. When q > 1, this is not the case, and the Wilson loop obeys
an area law for generic values of θ0 and qp 	∈ qZ.

Let us point out that the string tension does not have to be positive semi-definite, and the
appearance of negative string tensions is suggested by the formula (17) with Eqs. (18) or (19).
However, one might think at first sight that this is counter-intuitive: the string tension in (1
+ 1)D is the difference between the energy densities inside and outside the Wilson loop, and,
since the outside of the loop is the ground state, we necessarily have a positive string tension.
How can we create states that have lower energy density than the ground state? Here, the notion
of the universe [57–60] plays an important role. Since U(x) is a topological local operator, any
physical process cannot change its value as long as the 1-form symmetry is preserved. This
means that any processes are closed inside one of the universes. In particular, if we have a
ground state of a specific universe, then it never decays even if it has a larger energy density
than another universe. Since the Wilson loop connects different universes as we have discussed,
it is possible to have negative string tensions. We also comment on when the string tension
changes its sign. From Eqs. (18) and (19), we see that the sign of the string tension changes at
the same (q, qp, θ0), at least in small and large mass regimes. Therefore it would be natural to
expect that the condition for having negative string tension is independent of m as long as it is
nonzero.

When we take the massless limit of the fermion, m = 0, the formula (18) suggests the presence
of q degenerate vacua and the deconfinement of the Wilson loops. In this limit, the charge-q
Schwinger model enjoys Zq chiral symmetry, ψ �→ e

2π
2q iγ3ψ and ψ �→ ψ e

2π
2q iγ3 . This transforma-

tion may look to be Z2q instead of Zq, but we note that the fermion parity is part of the U(1)
gauge redundancy, so the proper symmetry transformation is just Zq. The vacuum degener-
acy is the consequence of its spontaneous breaking, and it is required to match the ’t Hooft
anomaly between Z[1]

q and Zq chiral symmetry with nonzero mass gap [48–51].
Even with nonzero m, we have an ’t Hooft anomaly, and/or global inconsistency [61–67], to

constrain the θ0 dependence of low-energy physics of the charge-q Schwinger model [51]. As we
can see explicitly in the formula (18) of the ground-state energy, each ground state Ek(θ0) does
not have the 2π periodicity of θ0. Instead, it satisfies Ek(θ0 + 2π ) = Ek − 1(θ0), and thus the
energy spectrum has 2π periodicity thanks to the multi-branch structure of the ground states.
This nicely imitates the situation of the (3 + 1)D pure Yang–Mills theory [68–70].4 This level
crossing of the ground states is required to satisfy the anomaly and/or global inconsistency
matching conditions.

2.2 Charge-q Schwinger model on [0, L] and θ periodicity
Now, let us discuss what happens if we consider the theory on the interval [0, L]. As discussed
in the following sections, our strategy of quantum computation for the Schwinger model is

4However, there is an important difference between the 2D charge-q Schwinger model and 4D SU(N)
pure Yang–Mills (YM) theory regarding the selection rule. As we have emphasized above, the charge-q
Schwinger model has Z[1]

q , and its Hilbert space on S1 is decomposed into q universes. Each branch of
the q vacua belongs to a different universe, so they are stable. On the other hand, the 4D YM theory also
has Z[1]

N , but 4D QFTs with 1-form symmetries do not have such decomposition. Therefore, only the true
ground state is stable, and the other (N − 1) vacua experience vacuum decay by the creation of domain
walls.
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designed for the open boundary condition, not for the periodic boundary condition. We need
to understand how the physics changes by the choice of the boundary condition.5

To discuss gauge theories with the boundaries, we have to specify the charges at the bound-
aries. When external charges ±k ∈ Z are put on the boundaries, the Gauss law constraint is
given by

∂1�(x) + k (δ(x − L) − δ(x)) = q ψ†ψ (x). (20)

Let us denote the corresponding Hilbert space as H(open)
k . The Gauss law above tells us that the

1-form symmetry generator U (x) = exp
(

2π i
q �(x)

)
is now completely fixed upon acting on the

physical states and its value is given by

U (x) = exp
(

2π i
q

k
)

, (21)

as we do not introduce any test charges except at the boundaries. This point is drastically differ-
ent from the case with the periodic boundary condition. In the periodic boundary condition,
U(x) can take q distinct values, and the Hilbert space is decomposed into q universes by the
eigenvalue of U(x). In some sense, on the open interval, the projection to the single universe is
automatically selected by the choice of the boundary condition.

Let us discuss how these properties affect the θ -angle periodicity, θ0 ∼ θ0 + 2π . For
the periodic boundary condition, we can use the spatial Wilson loop operator, W(S1) =
exp (i

∮
A1(x)dx), as the gauge-invariant unitary operator, and we can relate θ0 + 2π and θ0 by

the unitary transformation of W(S1). This ensures the 2π periodicity of the spectrum for any
U(1) gauge theories with the periodic boundary condition, and the formula (18) gives an explicit
realization. For the open boundary condition, however, we do not have such a gauge-invariant
unitary operator. Therefore, nothing ensures that physical quantities have 2π periodicity with
respect to θ0. Indeed, we can see that 2π periodicity is completely lost, θ0 	∼ θ0 + 2π , when we
consider the charge-q Schwinger model with the open boundary.

For the charge-q Schwinger model, the θ -angle periodicity can be found for a single sec-
tor Hk for bulk local observables, and that periodicity is given by θ0 ∼ θ0 + 2πq. This
is a natural expectation based on the fact that the 1-form symmetry group is just Zq and
we do not have other 1-form symmetries. For example, let us find the ground-state energy
density:

E (open)
k (x, θ0) = 〈GS, k|H (x)|GS, k〉. (22)

Since U(x)|GS, k〉 = e2π ik/q|GS, k〉, |GS, k〉 should behave as the ground state of the kth
universe if the volume is sufficiently large. When the location x is sufficiently far from both
ends, i.e., 0 � x � L, it is given by the same formula (18) or (19) up to exponentially small
corrections:

E (open)
k (x, θ0) = Ek(θ0) + O(e−μ|x|, e−μ(L−|x|)), (23)

where μ denotes the mass gap of the theory, which is given by μ = qg/
√

π in the massless
fermion limit, m → 0. The exponentially small terms represent the boundary effects and need
not have any θ0 periodicity. Only when we can neglect the boundary contributions can we ob-
serve the manifest 2πq periodicity, Ek(θ0 + 2πq) = Ek(θ0).

5In Appendix A.3, this problem is discussed for a simpler setup, the (1 + 1)D pure Maxwell theory.
Much of the following discussion is made more explicit thanks to the exact solvability of the model.
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Here, we would like to emphasize the importance of using the local density H(x). Another
popular way to compute the energy density is that we calculate the total energy first and divide
it by the volume; however, the result becomes exponentially worse. In order to see this, let us
compute the total energy

E total
k (θ0) =

∫ L

0
dx E (open)(x, θ0) =

∫ L

0
dx

(
Ek(θ0) + O(e−μ|x|, e−μ(L−|x|))

)
= LEk(θ0) + O(1), (24)

where the second term on the right-hand side represents the localized energy around the bound-
ary. If we try to obtain the energy density as

1
L

E total
k (θ0) = Ek(θ0) + O(L−1), (25)

then we really have to take the infinite volume limit to suppress the boundary effect, O(L−1).
However, since the system is generically gapped including the massless point, m = 0, we should
be able to calculate Ek(θ0) using the open boundary condition with exponentially good accu-
racy, and Eq. (23) realizes this physical intuition. The same comment also applies for other
quantities, such as chiral condensates.

3. Lattice formulation of the charge-q Schwinger model
Now, let us consider a lattice formulation of the charge-q Schwinger model on the finite interval
[0, L]. Here, we rewrite the Hamiltonian (6) in terms of the spin operators acting on the qubits.
In this and subsequent sections, we basically follow the notation and strategy of Ref. [26], where
the Schwinger model with q = 1 is discussed.

3.1 Charge-q Schwinger model using a staggered fermion
Let us put the theory on a lattice with N sites and lattice spacing a. We realize the two-
component Dirac fermion ψ(x) using the staggered fermion χn, where n labels the lattice site
(x = na). Here, χn is a single-component complex fermionic operator, and the Dirac fermion
at x extends over two sites on the lattice:

1√
a

(
χ2�n/2�

χ2�n/2�+1

)
↔ ψ (x). (26)

The gauge field and its canonical momentum are represented by the link variables,

Un ↔ eiaA1(x), Ln ↔ −�(x), (27)

which are defined on the link between the sites n and n + 1. We will take open boundary con-
ditions for the fields.

The lattice discretization of the Hamiltonian (6) is given by

H = J
N−2∑
n=0

(
Ln + θ0

2π

)2

− iw
N−2∑
n=0

[
χ †

n (Un)qχn+1 − h.c.
]

+ m
N−1∑
n=0

(−1)nχ †
nχn, (28)

where the parameters J and w are defined as

J = g2a
2

, w = 1
2a

. (29)

The θ term is realized by a constant shift of link variable Ln, so that it can be interpreted as
an constant electric flux. No additional difficulty appears in the performance of the numerical
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simulation in the nonzero θ0 regime in contrast to the conventional Monte Carlo approach.6

The field operators obey the canonical commutation relations:

[Ln,Um] = Umδnm, {χn, χ
†
m} = δnm. (30)

On a lattice, the Gauss law (7) takes the form

Ln − Ln−1 = q

[
χ †

nχn − 1 − (−1)n

2

]
. (31)

With the open boundary condition, we can solve it as

Ln = L−1 + q
n∑

j=1

(
χ
†
j χ j − 1 − (−1) j

2

)
. (32)

Note that the q dependence appears in the Gauss law. We impose a boundary condition on the
electric field operator by setting L−1 = 0, which corresponds to the choice k = 0 in Eq. (21).
Upon fixing the gauge so that Un = 1 for all n, we have the Hamiltonian as follows:

H = −iw
N−1∑
n=1

[
χ †

nχn+1 − h.c.
]

+ m
N∑

n=1

(−1)nχ †
nχn + J

N∑
n=1

[
θ0

2π
+ q

n∑
j=1

(
χ
†
j χ j − 1 − (−1) j

2

)]2

.

(33)

Notice that this Hamiltonian only contains the fermionic operators and thus the local Hilbert
space is finite dimensional.

We note that the 2π periodicity of θ0 is lost by taking the open boundary condition. If we
take the periodic boundary condition instead, then we can define the gauge-invariant unitary
operator, W = ∏

nUn, which is nothing but the spatial Wilson loop, and we have H |θ0+2π =
W −1(H |θ0 )W . For the periodic boundary condition, however, we necessarily have an infinite-
dimensional local Hilbert space, and we cannot map to the system only with fermions.7 Since
we would like to realize this system on the quantum computer, locally finite Hilbert space is
more natural, so we take the open boundary condition in the following.

3.2 Insertion of the probes
We introduce the two probe charges +qp and −qp on the �̂0th and (�̂0 + �̂)th sites, respectively.
Here, �̂ (�̂0) denotes the dimensionless quantity, �̂ ≡ �/a (�̂0 ≡ �0/a). This gives a constant shift
for the link variable between the �̂0th and (�̂0 + �̂)th sites, which corresponds to the insertion
of a long rectangular Wilson loop with width � as shown in Fig. 1.

This is realized by introducing the position-dependent θ angle:

ϑn =
{

θ0 + 2πqp for �̂0 ≤ n < �̂0 + �̂

θ0 otherwise
. (34)

For open boundary conditions, it would be appropriate to take

�̂0 = N − �̂ − 1
2

, (35)

6In the usual Wilson lattice formulation of the Euclidean path integral, the topological θ term gives an
imaginary phase to the Boltzmann weight, and we suffer from the sign problem. For (1 + 1)D U(1) gauge
theories, this problem has recently been resolved by the combination of a Villain lattice formulation and
the worm algorithm for the worldline method [71].

7For such a case, we need to make a further truncation on the Hilbert space.
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Fig. 1. Correspondence between the insertion of the probe charge and the Wilson loop.

with odd �̂ for even N and even �̂ for odd N. In this way, we equally separate the probe charges
from both boundaries, so that the boundary effect is suppressed as much as possible in the
simulation with finite volumes.

In the presence of the probes, the lattice Hamiltonian is

H = −iw
N−1∑
n=1

[
χ †

nχn+1 − h.c.
]

+ m
N∑

n=1

(−1)nχ †
nχn + J

N∑
n=1

[
ϑn

2π
+ q

n∑
j=1

(
χ
†
j χ j − 1 − (−1) j

2

)]2

,

(36)

where θ0 in Eq. (33) is replaced by the position-dependent one, ϑn, in Eq. (34). Using the Jordan–
Wigner transformation,

χn = Xn − iYn

2

(
n−1∏
i=1

−iZi

)
, χ †

n = Xn + iYn

2

(
n−1∏
i=1

iZi

)
, (37)

we obtain the Hamiltonian in terms of spin operators,

H = J
N−2∑
n=0

[
q

n∑
i=0

Zi + (−1)i

2
+ ϑn

2π

]2

+ w
2

N−2∑
n=0

[
XnXn+1 + YnYn+1

] + m
2

N−1∑
n=0

(−1)nZn, (38)

where (Xn, Yn, Zn) stands for the Pauli matrices (σ 1, σ 2, σ 3) at site n. Here, we have dropped
irrelevant constants independent of ϑn in the Hamiltonian. The form of the spin Hamiltonian
indicates the convenient relation,

H (q, J, ϑn) = H
(

1, q2J,
ϑn

q

)
, (39)

which enables us to relate the q = 1 case to the general q case. We would like to emphasize that
this translation to q = 1 is possible because we take the open boundary condition. When we
take the periodic boundary condition, we cannot eliminate the spatial link variables completely
by gauge fixing. Then, the spatial hopping term, χ

†
n (Un)qχn+1, genuinely depends on the choice

of q ≥ 1, and we cannot relate them by simple replacements of coupling constants. As we have
discussed in Sect. 2.1, the results for charge q can be technically translated in the language of
the q = 1 case with a fractional probe charge, but this necessarily accompanies the projection
to the single universe. It requires extra modification of the large gauge invariance to keep the
global information of the theory with a periodic boundary condition.
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4. Simulation strategy
We would like to study the expectation values of physical operators O,

〈O〉 = 〈GS|O|GS〉, (40)

where |GS〉 denotes the ground state of the full Hamiltonian. In this section, we will first explain
how to obtain |GS〉 using the adiabatic state preparation and also show the outline to design its
quantum circuit. After that we discuss the way to measure observables such as the total energy
and local energy density in the framework of digital quantum simulation.

4.1 Adiabatic state preparation of a vacuum
In the adiabatic state preparation, the first step is to choose an initial Hamiltonian H0 whose
ground state |GS0〉 is unique and known. The second step is to choose a time-dependent adia-
batic Hamiltonian HA(t) such that

HA(0) = H0, HA(T ) = H. (41)

Then the adiabatic theorem claims that we can construct the ground state of the target Hamil-
tonian H: if the system with the Hamiltonian HA(t) has a unique gapped ground state for any
t ∈ [0, T], then the ground state |GS〉 is obtained by [72,73]

|GS〉 = lim
T→∞

T exp
(

−i
∫ T

0
dt HA(t)

)
|GS0〉. (42)

Here, the symbol T indicates the time ordering of subsequent operators.
In the present study, we choose the initial Hamiltonian as

H0 = H |J=w=ϑn=0, m=m0
(43)

for some m0 > 0. The ground state of H0 is given by the Néel ordered state,

|GS0〉 = |1010 · · · 〉 := |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ · · · , (44)

with Z|0〉 = +|0〉 and Z|1〉 = −|1〉, and it can be easily constructed by

|GS0〉 =
� N−1

2 �∏
j=0

X2 j |00 · · · 〉. (45)

Here, �x� is the floor function of x, which denotes the largest integer no greater than x.
We express the unitary evolution in Eq. (42) using the Suzuki–Trotter product formula. Con-

sidering the following decomposition of the Hamiltonian turns out to be useful [26]:

H = H (0)
XY + H (1)

XY + HZ + C, (46)
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where, for odd N, each term is

H (0)
XY = w

2

N−3
2∑

n=0

(
X2nX2n+1 + Y2nY2n+1

)
,

H (1)
XY = w

2

N−1
2∑

n=1

(
X2n−1X2n + Y2n−1Y2n

)
,

HZ = q2J
2

N−3∑
n=0

N−2∑
k=n+1

(N − k − 1)ZnZk + q2J
2

N−2∑
n=0

1 + (−1)n

2

n∑
i=0

Zi

+ qpqJ
�̂0+�̂−1∑

k=0

(�̂0 + �̂ − k)Zk − qpqJ
�̂0−1∑
k=0

(�̂0 − k)Zk

+ qθ0

2π
J

N−2∑
k=0

(N − k − 1)Zk + m
2

N−1∑
n=0

(−1)nZn,

C = qpqJ
2

(
�̂ + (−1)�̂0

1 − (−1)�̂

2

)
+ qp

(
qp + θ0

π

)
J �̂

+ qθ0J
4π

(
N − 1 + 1 + (−1)N

2

)
+

(
θ0

2π

)2

J(N − 1). (47)

Here, C is just a constant, but it is important to compute the θ0 dependence of the ground-
state energy. The summands of H (0)

XY commute with one another, and thus we can obtain

the unitary operator, exp
(
−iεH (0)

XY

)
, by taking the product of local unitary operations,

exp
(−iε w

2 (X2nX2n+1 + Y2nY2n+1)
)
, without care about ordering. The same is true for H (1)

XY

and HZ.
Combining the adiabatic theorem and the product formula, we find the approximate form of

the ground state:

|GSA〉 :=
M∏

r=1

(
e−iH (0)

XY,r
δt
2 e−iH (1)

XY,r
δt
2 e−iHZ,rδte−iH (1)

XY,r
δt
2 e−iH (0)

XY,r
δt
2

)
|GS0〉. (48)

Here, M := T/δt is a positive integer, which should be taken to be large in practice for good
approximation. This is the second-order Suzuki–Trotter approximation, and its error is esti-
mated as O(Mδt2) for the whole operator for fixed T [74,75]. Here, H (0)

XY,r, H (1)
XY,r, and HZ, r are

obtained by the following replacements in Eq. (47):

w → w f
( r

M

)
, θ0 → θ0 f

( r
M

)
,

qp → qp f
( r

M

)
, m → m0

(
1 − f

( r
M

))
+ m f

( r
M

)
, (49)

where the function f(s) called the adiabatic schedule is smooth and satisfies

f (0) = 0, f (1) = 1. (50)

There are infinitely many choices of f(s) and any choice of f(s) works in principle as long as the
setup satisfies the assumptions of the adiabatic theorem and T is sufficiently large. However, the
choice of f(s) affects the accuracy of the approximation in practice. In Appendix B, we study
various choices of adiabatic schedules at various values of the parameters and identify the best
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one among them. As a conclusion, we choose the adiabatic schedule as

f (s) = tanh(s)
tanh(1)

. (51)

4.2 Quantum simulation protocol for Hamiltonian evolution
In this subsection, let us quickly mention the quantum circuits to obtain |GSA〉. The universality
theorem tells that one can approximate any unitary operations on multiple qubits by a combi-
nation of simple qubit gates and the controlled NOT (CNOT) gate. Indeed, our expression (48)
only contains two-quibit unitary transformations, so we just have to express them. Here, we use
the following three operations as elementary gates to realize the unitary evolution (48):

� Hadamard gate

(52)

� Z-rotation gate

(53)

� CNOT (CX) gate

(54)

where I stands for the identity operator.

For notational convenience, we also introduce a circuit diagram of the S gate, which is defined
by

(55)

The last equality holds up to an overall phase, which does not affect the following discussion.
When trying to generate the ground state by Eq. (48), the only nontrivial step is to realize the

two-qubit operations, e−iα(XnXn+1+YnYn+1 ) and e−iαZnZn+1 , using the above elementary gates. These
operations can be expressed as

(56)

(57)

Here the top and bottom lines correspond to the sites n and n + 1, respectively, and α is a real
parameter.
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4.3 Measurements of physical observables
4.3.1 Measurements of total energy. We discuss how to extract the vacuum expectation value
of the Hamiltonian and its statistical uncertainty by closely following Appendix B.2 of Ref. [26]
for the sake of self-containedness. We note that, as discussed in Sect. 2.2, the total energy is
contaminated by the boundary effect, and it is less useful for the discussion of bulk properties.
Still, this quantity is useful to compute the inter-particle potential of the probe charges. In the
next subsection, we shall discuss the way to measure the local densities.

We aim to compute the quantity

E total(qp, �, θ0) = 〈GSA|H (qp, �, θ0)|GSA〉, (58)

which approximates the ground-state energy. This involves three independent measurements to
compute the expectation values of H (0)

XY , H (1)
XY , and HZ in Eq. (46). Each of them measures

a set of operators within which any operator commutes to another. We execute the circuit for
each measurement nshots times, which leads to the statistical uncertainties in the simulation. The
potential between the probe charges is obtained as

V (qp, �, θ0) = E total(qp, �, θ0) − E total(0, 0, θ0). (59)

We spell out the measurement protocol used to compute the Hamiltonian expectation value
and its statistical uncertainty given a desired quantum state has been prepared. We consider
the case where the state is a 5-qubit state. The corresponding lattice sites are labeled by n ∈ {0,
1, 2, 3, 4}.

The term H (0)
XY consists of the operators

{X0X1,Y0Y1, X2X3,Y2Y3}. (60)

These operators can be simultaneously measured by noting that

XiXj = CXi jHi(ZiIj )Hi CXi j,

YiYj = −CXi jHi(ZiZj )Hi CXi j . (61)

The measurement is done with the following circuit:

The input state is supposed to be the state of interest. The four operations at the right end are
classical measurements on the Z basis. Having obtained the count of each bit string “b0b1b2b3”
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with bi ∈ {0, 1} from the measurements, we calculate the expectation values as

〈X0X1〉 =
∑

b0,b1,b2,b3

(1 − 2b0)
countsb0b1b2b3

nshots
,

〈Y0Y1〉 = −
∑

b0,b1,b2,b3

(1 − 2b0)(1 − 2b1)
countsb0b1b2b3

nshots
,

〈X2X3〉 =
∑

b0,b1,b2,b3

(1 − 2b2)
countsb0b1b2b3

nshots
,

〈Y2Y3〉 = −
∑

b0,b1,b2,b3

(1 − 2b2)(1 − 2b3)
countsb0b1b2b3

nshots
.

Here, countsb0b1b2b3 denotes the number of times that the bit string “b0b1b2b3” is observed.
Defining

h(0)
XY (b0, b1, b2, b3) := w

2

∑
n=0,2

[
(1 − 2bn) − (1 − 2bn)(1 − 2bn+1)

]
(62)

for each bit string, we have the expectation value of H (0)
XY in a concise form:〈

H (0)
XY

〉
=

∑
b0,b1,b2,b3

h(0)
XY (b0, b1, b2, b3)

countsb0b1b2b3

nshots
. (63)

The same numerical data also allow us to compute the expectation value of
(

H (0)
XY

)2
,〈(

H (0)
XY

)2
〉

=
∑

b0,b1,b2,b3

(h(0)
XY (b0, b1, b2, b3))2 countsb0b1b2b3

nshots
, (64)

which is used to estimate the statistical uncertainty.
The term H (1)

XY consists of the operators

{X1X2,Y1Y2, X3X4,Y3Y4} . (65)

Hence, the following measurement will do for the computation of their expectation values:

Given the counts of each bit string “b1b2b3b4”, the expectation values of H (1)
XY and

(
H (1)

XY

)2
are

respectively given by 〈
H (1)

XY

〉
=

∑
b1,b2,b3,b4

h(1)
XY (b1, b2, b3, b4)

countsb1b2b3b4

nshots
, (66)

〈(
H (1)

XY

)2
〉

=
∑

b1,b2,b3,b4

(
h(1)

XY (b1, b2, b3, b4)
)2 countsb1b2b3b4

nshots
, (67)

with

h(1)
XY (b1, b2, b3, b4) := w

2

∑
n=1,3

[
(1 − 2bn) − (1 − 2bn)(1 − 2bn+1)

]
. (68)
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For HZ, the measurement in the computational basis allows us to compute

〈HZ〉 =
∑

b0,b1,b2,b3,b4

hZ(b0, b1, b2, b3, b4)
countsb1b2b3b4

nshots
(69)

〈
(HZ )2

〉
=

∑
b0,b1,b2,b3,b4

(hZ(b0, b1, b2, b3, b4))2 countsb0b1b2b3b4

nshots
(70)

where hZ(b0, b1, b2, b3, b4) is obtained by replacing Zi with 1 − 2bi in HZ (47). Combining these
results leads to the expectation value of the total Hamiltonian (46):

E total := 〈H〉 =
〈
H (0)

XY

〉
+

〈
H (1)

XY

〉
+ 〈HZ〉 + C. (71)

The unbiased statistical uncertainty δstatEtotal is computed as

(
δstatE total

)2
=

〈(
H (0)

XY −
〈
H (0)

XY

〉)2
+

(
H (1)

XY −
〈
H (1)

XY

〉)2
+ (HZ − 〈HZ〉)2

〉
nshots − 1

. (72)

4.3.2 Measurement of local energy density. Let us move on to the discussion of local densities.
We first consider the local behavior of the energy (E(n)) at each site (n). Naively, one may think
that its expectation value is identical to the total energy Etotal divided by the volume L, but
this is not the case for the open boundary condition as Etotal/L is affected by the boundary. On
the other hand, if we measure the local energy density E(n), then the effect of the boundary
is exponentially suppressed as long as the site n is far from boundaries. Moreover, we can see
how the energy density changes when we go across probe charges, so this gives more detailed
information to investigate local behaviors.

Taking into account the even–odd inequality of the staggered fermion, we have to take a suit-
able average over neighboring sites to obtain the local energy density with a smooth continuum
limit. In this paper, we define the energy density at site n as

E (n) =
(

hM
n−1

4
+ hM

n

2
+ hM

n+1

4

)
+

(
hXY

n−1

2
+ hXY

n

2

)
+

(
hJ

n−1

2
+ hJ

n

2

)
, (73)

where

hM
n = (−1)nm

2
〈Zn〉, hXY

n = w
2

〈XnXn+1 + YnYn+1〉,

hJ
n = Jq2

〈(
n∑

i=0

Zi + (−1)i

2
+ θn

2πq

)2〉
. (74)

5. Simulation results
According to Eqs. (17) and (18), a negative string tension can appear in the charge-q Schwinger
model because of the Zq 1-form symmetry if q > 1. Here, we numerically investigate these
properties in detail. As simulation parameters, we take the dynamical charge q = 3 with probe
charges qp = −1 and qp = 2, and see how the string tension changes as a function of θ0. We
also see how the Zq 1-form symmetry emerges in the comparison of the potential and local
quantities between the qp = −1 and qp = 2 cases.

In numerical simulations, we implement all the operators using combinations of quantum
elementary gates (52)–(54) provided by the IBM Qiskit library. Here, we consider a fixed volume
simulation gL = ga(N − 1) = 9.6 and take the lattice volume N = 17–25 and set g = 1.0. We
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Fig. 2. θ0 dependence of the potential V(�)/g between the two probe charges in the charge-q Schwinger
model with q = 3. Here we take N = 25, ga = 0.40, m = 0.15, and qp = −1. The error bars denote
statistical errors.

Fig. 3. The potentials V(�)/g in the charge-3 Schwinger model for qp = −1 and θ0 = 2π are plotted for
various values of (a, N) with a fixed physical volume (ga(N − 1) = 9.6).

take the mass of the dynamical fermion in the range of m = 0.05–0.25. As for the parameters
of the adiabatic preparation, we take the Trotter step, adiabatic time, and initial mass to be δt
= 0.3, T = 99–198, and m0 = 0.35–0.40, respectively. The number of shots in the measurement
process is 1 million (nshots = 106), and the typical size of the statistical error for 〈H〉 is O(10−3)%
for 1 million shots.

5.1 Emergence of negative string tension
We first demonstrate that the slope of the potential between the probes can change its sign
on varying the parameters. Figure 2 shows the potential V(�)/g as a function of g� for sev-
eral values of θ0. Here, we take q = 3, m = 0.15, and qp = −1. We can see clear linear po-
tentials where the string tension is positive in 0 ≤ θ0 < π while it is negative in π < θ0 ≤
2π . At θ = π , the potential is consistent with zero in all g� and this indicates the screening
property.

Next we focus on the negative string tension case and compare it with the continuum re-
sults. Here we take θ0 = 2π as a representative. In Fig. 3, we plot the potential V(�)/g
against the probe distance g� for various values of (a, N) keeping the physical volume as

17/30

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/3/033B01/6507570 by guest on 25 April 2024



PTEP 2022, 033B01 M. Honda et al.

Table 1. Values of the string tensions σ /g2 for qp = −1 and θ0 = 2π with the physical volume ga(N − 1)
= 9.6 obtained by the fitting of the potentials in Fig. 3.

N ga σ (m = 0.05)/g2 σ (m = 0.15)/g2 σ (m = 0.25)/g2

17 0.600 00 −0.380(3) −0.397(3) −0.416(3)
19 0.533 33 −0.354(2) −0.377(2) −0.399(2)
21 0.480 00 −0.332(3) −0.359(3) −0.380(3)
23 0.436 36 −0.311(2) −0.341(3) −0.367(2)
25 0.400 00 −0.294(3) −0.325(3) −0.348(3)

Fig. 4. Continuum extrapolations of the string tensions σ /g2 in the charge-3 Schwinger model for qp =
−1 and θ0 = 2π at the physical volume ga(N − 1) = 9.6. The linear and quadratic fits in terms of ga
are considered (shown with red dot–dashed lines and blue dotted curves, respectively). The theoretical
predictions in the continuum limit are based on the first- (green dashed line) and second- (magenta solid
line) order approximations of the mass perturbation theory. The error bars associated with the black
circles denote the fitting errors in finding the string tensions from Fig. 3.

ga(N − 1) = 9.6 in order to find the string tension for various values of a at a fixed phys-
ical volume. To obtain the string tension (σ ), we fit the potential for each (a, N) and mass
using a linear function of � of V(�) = σ� + c0. We take a fitting range of 3.0 ≤ g� ≤ 7.0
to remove the boundary effect on the finite lattice extent with the open boundary condition.
Consequently, we find that the χ2/d.o.f. values for all the fitting processes are reasonable,
namely χ2/d.o.f. ≈ 1. We summarize the obtained values for the string tension by the fitting in
Table 1.

In terms of the values of σ in Table 1, we do a continuum extrapolation for m = 0.05, 0.15,
and 0.25 as shown in Fig. 4. All the fit qualities, namely the χ2/d.o.f., in both the linear and
quadratic extrapolations are reasonable. Now we compare the obtained values of the negative
string tension with the analytic predictions given by the mass perturbation theory up to O(m2)
in infinite volume. The energy density of the second-order mass perturbation theory is given
by8 [76]

Ek(θ0) = −m
eγ qg
2π3/2

cos
θ0 − 2πk

q
+ m2 e2γ

16π2

(
C+ cos

2(θ0 − 2πk)
q

+ C−

)
+ O(m3), (75)

8More precisely, Ref. [76] computed the energy density for the q = 1 case, which was given in their
Eq. (68). One can find the result for general q by making the replacement g → qg, θ → (θ − 2πk)/q in
that for q = 1.
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Fig. 5. Comparison between the potentials V(�)/g for qp = −1 (black circles) and qp = 2 (red squares) in
the charge-3 Schwinger model for N = 25, ga = 0.40, and m = 0.15 at various values of θ0.

where9 C+ � −8.9139 and C− � 9.7384. In the small mass cases (m = 0.05 and m = 0.15), the
extrapolated values by the quadratic extrapolation in terms of a are consistent with the analytic
predictions by the mass perturbation theory in the continuum limit. In the larger mass case
(m = 0.25), the quadratic extrapolation starts to deviate from the mass perturbation results.
One possibility for the deviation is that the approximations by the mass perturbation are no
longer reliable in this regime. Indeed, at m = 0.25, we see a non-negligible difference between
the O(m) and O(m2) results, which may suggest the importance of higher-order terms in the
mass perturbation theory. The other possibility is systematic errors in our simulation. If we
include systematic errors coming from the fitting ansatz of the extrapolation, however, then
the extrapolated value is consistent, so we cannot say much within this numerical setup. The
main source of the large systematic error is the smallness of N in the present simulation. If
we perform a simulation for large N, say N ≈ 100, ga ≈ 0.1 in the near future, then we can
numerically obtain the string tension in such a large mass regime using this simulation strategy,
and we may obtain a clearer signal that goes beyond the mass perturbation regime.

5.2 Check of Zq 1-form symmetry
Now, let us confirm the transformation property under the Zq 1-form symmetry in our nu-
merical simulation. In the previous subsection, we observed the stability of the negative string
tension, which suggests the existence of an unconventional selection rule, and it is natural to
interpret this as a consequence of the 1-form symmetry. Here, we would like to see if the 1-form
symmetry group is actually Zq. To this end, we carry out simulations with qp = 2 and compare
the results with qp = −1. Since the dynamical charge is set to q = 3, the two probe charges qp =
−1 and 2 are the same mod q = 3 and therefore in the same sector of the Z3 1-form symmetry.
This naturally predicts that they should have the same string tension unless an unknown selec-
tion rule exists. In numerical simulations, we take a longer adiabatic time T = 198 for qp = 2,
because we find that the adiabatic error for the qp = 2 simulation is larger than that for qp = −1
(see Appendix B for details). In this subsection, the mass is always set to m = 0.15.

Figure 5 shows a comparison between the potentials for qp = −1 (black circles) and qp =
2 (red squares) for representative values of the positive (θ0 = 0, left panel), zero (θ0 = π ,

9The precise definitions of C+ and C− (denoted as μ2E+ and μ2E− in Ref. [76] respectively) are C+ =
2π

∫ ∞
0 dr

[
r
(
e−2K0(r) − 1

)]
and C− = 4π

∫ ∞
0 dr

[
r log r

(
(rK1(r) − 1)e2K0(r) + 1

)]
.
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Table 2. The string tensions σ /g2 for N = 25, ga = 0.40, and m = 0.15 obtained by the fitting of the
potentials shown in Fig. 5.

Fit range g� ∈ [4, 6] qp σ (θ0 = 0)/g2 σ (θ0 = π )/g2 σ (θ0 = 2π )/g2

2 0.322(3) −0.006(5) −0.310(2)
−1 0.322(7) −0.007(4) −0.316(2)

Fit range g� ∈ [3, 7] qp σ (θ0 = 0)/g2 σ (θ0 = π )/g2 σ (θ0 = 2π )/g2

2 0.325(3) −0.002(2) −0.303(5)
−1 0.319(2) −0.005(1) −0.325(3)

Fig. 6. Comparison between the local energies for qp = 2 (red squares) and qp = −1 (black circles) in the
charge-3 Schwinger model for N = 25, ga = 0.40, m = 0.15, and θ0 = 2π . The Wilson loop is extended
in the shadow regime.

middle panel), and negative (θ0 = 2π , right panel) string tension cases. Clearly, we can see
that the slope for qp = 2 is similar to that for qp = −1 in the large g� regime if we remove a few
data points near the boundary of the lattice extent. The string tension obtained by the linear fit
in terms of � is summarized in Table 2. We can see a good agreement between qp = −1 and qp

= 2 as expected from the Zq=3 1-form symmetry, although it depends more or less on the fitting
range.

Lastly, we study what causes the difference between the potentials V(�)/g for qp = −1 and qp

= 2. To see this, we investigate the local energy density of each site. Figure 6 shows the local
energy density E(n)/g defined in Eq. (73) for qp = −1 (black circles) and qp = 2 (red squares)
at each site in the case of �/a = 10, 12, 14. The gray regime in each panel depicts the regime
inside the insertion points of the probe charges or, equivalently, the Wilson loop. We can see
that E(n)/g with qp = −1 and qp = 2 are almost consistent with each other inside and outside
the Wilson loop, respectively. Thus, the discrepancy in the potential between qp = −1 and qp

= 2 comes only from the boundary contributions of the Wilson loop. Moreover, Fig. 6 clearly
shows that the energy density inside the Wilson loop is lower than that outside, as suggested by
the negative string tension. For qp = −1, the energy excess at the probe charges is not so large.
For qp = 2, on the other hand, the energy excess at the probe charges becomes much bigger. We
see that the difference in the probe charges is localized near the insertion points, and the local
energies for qp = −1 and qp = 2 give the same values in the bulk. Because of this difference
in the localized energy at the probe charges, the qp = 2 case has a larger offset for the linear
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potential compared with the qp = −1 case. If we remove the boundary effects, then it confirms
the Zq=3 selection rule as predicted by the 1-form symmetry on the lattice.

Let us discuss the structure of the site-dependent energy density in more detail. In the limit
of the massless fermion, the mass gap is given by μ = qg/

√
π � 1.7g. Since the fermion mass

makes the mass gap larger, the correlation length ξ can be estimated as

ξ � μ−1 � 0.6
g

. (76)

The lattice constant for N = 25 is set to ga = 0.40, and this suggests that only a few sites around
the edges of the Wilson loop are affected by the boundary effect. This is roughly consistent
with Fig. 6.

6. Summary and discussion
Recent generalizations of symmetries have provided us with new systematic understandings of
nonperturbative QFTs, as those kinematical constraints are often realized quite nontrivially
in actual strongly correlated phenomena. However, these formal developments of QFTs are
usually presented in the language of the path-integral formulation, not in the Hamiltonian
formalism. If we consider simulating the strongly coupled QFTs with quantum computers,
then the most natural language to be used is the Hilbert space and quantum operations acting
on it. Thus, it is an important task to understand various aspects of QFTs in the Hamiltonian
formalism.

In this paper, we have considered the charge-q Schwinger model on the open boundary con-
dition, and designed a strategy to understand its properties related to the Zq 1-form symmetry
using digital quantum simulation. When we take the periodic boundary condition, this model
has Zq 1-form symmetry and Zq chiral symmetry with a mixed ’t Hooft anomaly, so there have
to be q degenerate gapped vacua in the massless limit. In order to map the lattice Hamiltonian to
the spin system for quantum computations, the local Hilbert space has to be finite dimensional.
To achieve this criterion, it is convenient to take the open boundary condition, but some of the
above features, such as q degeneracy or the 2π periodicity of the θ angle, are lost. Still, there are
interesting features as a remnant of Zq 1-form symmetry, such as the stability of negative string
tensions, the Zq selection rule for the string tensions, nontrivial commutations between the Wil-
son loop and the chiral condensates, and so on. In particular, we have paid special attention
to the negative string tension in this paper to confirm the prediction of Zq 1-form symmetry,
as this would be one of the most exotic features of 1-form symmetry in (1 + 1)D QFTs. To
observe these features such as negative string tensions, we have to take a large enough vacuum
angle θ , so the conventional Monte Carlo approach suffers from the sign problem. Therefore,
our quantum algorithmic approach is quite useful for this purpose.

It would be an interesting future study to look at the behavior of local chiral condensates in
the presence of the probe charges. One of the most important features of the massless charge-
q Schwinger model is the mixed ’t Hooft anomaly between the Z[1]

q and (Zq)chiral symmetries,
and the anomaly matching concludes q degenerate vacua on closed space. In order to have
a nontrivial check of the ’t Hooft anomaly in the Hamiltonian formalism, we need to find a
Wilson–’t Hooft-type commutation relation between the Wilson loop and chiral condensate
operators [48–51]. In order to observe such a commutation relation, we have to see how the
condensates jump across the probe charge in the massless limit of the theory, so the use of
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position-dependent condensates is crucial for this purpose. We leave the detailed study of chiral
condensates and the ’t Hooft anomaly for future work.

From a quantum algorithmic perspective, our strategy based on the adiabatic state prepara-
tion is promising, especially in the early stages of the fault-tolerant era. This is because the log-
ical errors are expected to be well controlled at the cost of a large number of physical qubits, re-
sulting in a relatively small number of available logical qubits. Our careful study indeed implies
that interesting physical properties that are likely to be intractable by classical computers can be
extracted with this limited number of (logical) qubits. While extensions to higher-dimensional
and more general gauge theories should be addressed in future studies,10 we believe that our
method presented here provides a key ingredient for such works.
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Appendix A. 2D Maxwell theory and U (1) 1-form symmetry
In this appendix, let us discuss the 1-form symmetry in the 2D pure Maxwell theory. This
is supplemental material for Sect. 2 to explain the theoretical backgrounds using a simpler
model. Compared with the charge-q Schwinger model, this theory has a larger 1-form sym-
metry, U(1)[1], whose conservation law is equivalent to the equation of motion. In order to
understand the properties of 2D U(1) gauge theories from various perspectives, we perform
Euclidean path-integral quantization, canonical quantization on S1, and canonical quantiza-
tion on the interval [0, L]. This is a useful exercise to understand the 1-form symmetry in the
operator formalism.

A.1 Euclidean theory on � = T2

We first discuss the (1 + 1)D pure Maxwell theory in the path-integral formalism. The Euclidean
action is

S = 1
2g2

∫
F ∧ �F − iθ

2π

∫
F =

∫
d2x

(
1

2g2
F 2

12 − iθ
2π

F12

)
. (A1)

The classical equation of motion gives

∂μFμν = 0, (A2)

and thus F12 must be constant. Let us assume that the Euclidean spacetime is a 2-torus, T 2 =
S1

L × S1
T . Due to the restriction of Dirac quantization, we obtain

F = 2πn
T L

dx1 ∧ dx2, (A3)

10The D-theory approach looks promising for such extensions [77–79].
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for some n ∈ Z, and this label n refers to the topological charge. The classical action for this
field configuration is given as

Sn = 2π2

g2T L
n2 − iθn. (A4)

Using the Poisson summation formula, we find

Z ∝
∑

n

exp(−Sn) ∝
∑

k

exp

(
−g2T L

2

(
k − θ

2π

)2
)

. (A5)

As a result, we find the energy spectrum to be

Ek(θ ) = g2

2

(
k − θ

2π

)2

, (A6)

where k ∈ Z labels the eigenstates.
Let us revisit this result from the viewpoint of the U (1) 1-form symmetry, denoted as U(1)[1].

The Noether charge is given by

j(x) = i
g2

F12 + θ

2π
, (A7)

and the conservation law is given by the equation of motion

∂μ j = i
g2

∂μF12 = 0. (A8)

This means that j defines a topological, point-like operator in the sense that the correlation
functions including j(x) do not depend on x. As a result, this operator j does not act on any
gauge-invariant local operator. However, as we shall see in the operator formalism, this has
a nontrivial commutator with the extended object, called a Wilson loop, W(C) = exp (i

∫
CA).

That is, the 1-form symmetry is a symmetry transformation acting on the test electric charge.
We can promote this U(1)[1] symmetry to the local gauge redundancy, and this gives a simpler

derivation for the energy eigenvalues. The corresponding gauge field is aU (1) 2-form gauge field
B, and the gauged action is given as

S[A,B] = 1
2g2

∫
|F − B|2 − iθ

2π

∫
(F − B) − ik

∫
B

= S[A] + i
∫

( j(x) − k) ∧ B + O(B2). (A9)

The first two terms of the first line are obtained by the minimal coupling procedure, and the
last one is the discrete θ term with k ∈ Z. The second line is the expansion in terms of B and
it suggests that B appears as an auxiliary field, constraining the Noether charge j(x) = k. This
action is invariant under the U (1) 1-form gauge transformation,11

A �→ A + �, B �→ B + d�, (A10)

where the gauge transformation parameter � itself is a U(1) gauge field. Here, � is not neces-
sarily a flat connection. Using this gauge transformation, we can set F = 0 as a gauge-fixing

11Although the discrete theta term is not manifestly invariant, because of the Dirac quantization∫
d� ∈ 2πZ, exp ( − S) is invariant when k ∈ Z.
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condition, and then we find

Zk(θ ) :=
∫

DB
∫

DA exp
(

− 1
2g2

∫
|F − B|2 + iθ

2π

∫
(F − B) + ik

∫
B

)

=
∫

D′B exp
(

− 1
2g2

∫
|B|2 + i

(
k − θ

2π

) ∫
B

)
= exp (−T LEk(θ )) . (A11)

Thus, gauging of U (1) 1-form symmetry with the discrete θ term gives the projection to the kth
branch of ground states, Ek(θ ), given in Eq. (A6).

A.2 Canonical quantization on S1
L × Rt

Let us reproduce the result obtained by the path-integral method in the Hamiltonian formula-
tion. In this subsection, we take the space manifold as S1

L. In the Minkowski formulation, the
Lagrangian is

L = 1
2g2

F 2
01 + θ

2π
F01. (A12)

In the temporal gauge, the Hamiltonian density is given by

H = �Ȧ1 − L = g2

2π

(
� − θ

2π

)2

, (A13)

where the physical states must satisfy the Gauss law constraint

∂x� = 0. (A14)

In the canonical quantization, we replace � with −i δ
δA1(x) .

Now, we have obtained the Hamiltonian, so let us specify the Hilbert space. Let �[A1] be a
wave functional. In order for this to be physical, it must satisfy the Gauss law (A14),

∂x
δ�

δA1(x)
= 0, (A15)

which means that � is invariant under A1(x) → A1(x) + ∂xε(x) for some small ε(x), which is
thus periodic on S1

L as R-valued functions. Therefore, the Hilbert space should be spanned by
“spatial Wilson loops”:

�k[A1] = exp
(

ik
∫ L

0
A1(x)dx

)
. (A16)

At this stage, the label k can be an arbitrary real number. By also requiring the invariance under
the large gauge transformation, A1(x) → A1(x) + 2π

L , we obtain

k ∈ Z. (A17)

As this is the eigenvalue of �, ��k = k�k, we obtain

Ek(θ ) = g2

2

(
k − θ

2π

)2

, (A18)

and the path-integral result is reproduced. We note that the quantization of k comes out of
the Dirac quantization of the topological charge in the path-integral method, while it is the
consequence of invariance under the large gauge transformation in the operator formalism.

Let us rephrase these results in terms of the U(1)[1] symmetry. We note that the 1-form sym-
metry generator j(x) in Eq. (A7) becomes �(x) in Eq. (5) by the Wick rotation. Let us consider
the operator

Uα(x) = exp (i α�(x)) ; (A19)
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then we find

Uα(x)�k[A1] = eiαk�k[A1]. (A20)

As �k is obtained by multiplying the Wilson loop along S1, this result shows that Uα(x) and
the Wilson loop Wk(S1) have a nontrivial commutation relation, and gives a phase factor eiαk,
where k is the charge of the Wilson loop. We also note that α = 2π corresponds to a large gauge
transformation. As we have required the invariance of the whole states under the large gauge
transformation, U2π (x) acts trivially, and we can regard U2π (x) = 1. This gives the periodicity
of the transformation parameter, α ∼ α + 2π , which confirms that the 1-form symmetry group
is actually U(1), not R.

A.3 Canonical quantization on [0, L] × Rt

As we formulate our lattice Schwinger model with the open boundary condition, let us also
consider the open interval [0, L] instead of S1 as the spatial manifold.

The Hamiltonian operator is the same as before, so the eigenfunctions take the same
form (A16). Under the gauge transformation, A1(x)�→A1(x) + ∂xλ(x), the wave functional be-
haves as

�k[A1] �→ exp
(

ik
∫ L

0
∂xλdx

)
�k[A1]

= exp(ikλ(L) − ikλ(0))�k[A1]. (A21)

Thus, only when k = 0 is the “naive” Gauss law (A14) satisfied.
We note, however, that the violation of gauge invariance occurs at the boundaries, and that

this does not mean that �k[A1] is unphysical for k 	= 0. By putting a charge-k Wilson loop on
the boundary, the Lagrangian is affected as follows:

L = 1
2g2

F 2
01 + θ

2π
F01 + kA0(x = L) − kA0(x = 0). (A22)

The Hamiltonian operator is not affected as we will eventually take the temporal gauge, but
the Gauss law is modified as

∂x�(x) + k (δ(x − L) − δ(x)) = 0, (A23)

and �k[A1] satisfies this modified version of the Gauss law constraint. Therefore, �k[A1] is a
physical ground state for the system with the test charge k at the boundaries, or at infinities in
the limit L → ∞.

We note that, on a closed spatial manifold S1
L, the θ angle shows 2π periodicity by the level

crossing phenomenon. On the other hand, the θ periodicity is completely lost for the fixed open
boundary condition. If we would like to recover it, then we must consider the distinct sectors,
distinguished by the charges at the boundaries. The 1-form symmetry generator � measures
those charges as �(x)�k = k�k.

Appendix B. Choice of the adiabatic schedule and adiabatic error
We investigate how the adiabatic schedule (f(s) in Eq. (49)) affects the adiabatic error. The adi-
abatic theorem guarantees that the desired ground state is obtained under the assumption that
the adiabatic Hamiltonian has a unique ground state along the adiabatic path if the adiabatic
time T is taken to be infinity (42). However, in practice, we should take the adiabatic time T to
be finite and this results in a systematic (adiabatic) error [72].
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Fig. B1. Left: We investigate several functions of f(s) here. Right: The potential values for several choices
of adiabatic schedule function f(s). Open circles denote the data calculated by the Python package QuS-
pin (exact diagonalization) [81,82]. The other symbols denote the data with a shorter adiabatic time T =
99 for several choices of function f(s) using the same colors as in the left panel.

Suppose that an adiabatic Hamiltonian HA(s) possesses a unique ground state for all s ∈ [0,
1]. If we wish to prepare a state |GSA〉 that approximates the ground state |GS〉 of H = HA(T)
with the precision ε, i.e.,

‖|GSA〉 − |GS〉‖ ≤ ε, (B1)

then the adiabatic time is roughly lower-bounded as

T � 1
ε

max
s

d
ds HA(s)

|E1(s) − E0(s)|2 . (B2)

Here, E0(s) and E1(s) are the ground and first excited states of HA(s) respectively (see, e.g.,
Ref. [80] for a more elaborate analysis of the adiabatic error). Hence, the adiabatic error cru-
cially depends on the energy gap between the ground and first excited states along the evolution
as well as the adiabatic time T.

In the present work, we introduce the s dependence of HA(s) by changing the parameters of
the model as follows:

w → w f (s), θ0 → θ0 f (s), qp → qp f (s), m → m0 (1 − f (s)) + m f (s). (B3)

Here, we suppose that the schedule function f(s) is a smooth function in s ∈ [0, 1] and satisfies
f(0) = 0 and f(1) = 1. In this appendix, we numerically investigate how the ground state obtained
with the adiabatic evolution depends on the choice of the interpolating function f(s) by trying
several functional forms of f(s).12

Figure B1 depicts the adiabatic schedule functions (left panel) and the corresponding data for
the potential (right panel). Here, we take N = 17, ga = 0.40, m = 0.20, qp = 2, θ0 = 2π , but we
obtain similar results for other lattice sizes as well if we fix qp = 2, θ0 = 2π . In the right panel, the
open circles denote the data calculated by the Python package QuSpin (exact diagonalization).

12In this appendix, we use the “snapshot”functionality of Qiskit for quantum simulation without statis-
tical uncertainties. This utilizes the function of a quantum simulator and the corresponding calculation
does not exist in a real quantum computer. However, the snapshot data correspond to the average of an
infinite number of shots and do not suffer from statistical fluctuations. Therefore, it is useful to see the
systematic uncertainty of a quantum simulation.
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Fig. B2. Instantaneous energy eigenvalues of the ground and first excited states of the adiabatic Hamil-
tonian.

The other filled symbols denote the data obtained by an adiabatic state preparation with the
adiabatic time T = 99 using several schedule functions using the same colors as in the left panel.
The difference between each filled symbol and open symbol at each g� represents its adiabatic
error and Trotter error. Here, we fix the size of the Trotter step as δt = 0.3, and we find that the
adiabatic error is dominated in this simulation setup. In the left panel of Fig. B1, we find that
the data with f(s) = tanh (s)/tanh (1) (magenta squares) have the smallest error.

As we mentioned in Sect. 5.2, we find that the adiabatic error for qp = 2 is larger than that
for qp = −1 and therefore we take a longer adiabatic time for qp = 2 in the main text. One
might expect that, if we change the value of the probe charge from qp = 2 to qp = −1, we
would also see similar behavior because of the Zq symmetry. However, we could not see such
a strong dependence on the choice of f(s) in the qp = −1 case. To investigate the origin of the
difference, we calculate the instantaneous energy gap between the ground and first excited states
of the adiabatic Hamiltonian using exact diagonalization as shown in Fig. B2. Here, we take
the linear adiabatic schedule function, f(s) = s. The left-triangles (red) and up-triangles (green)
denote g� = 4 and g� = 12 in the case of qp = −1, respectively. We can see that the energy gap
E(n)/g is more than 2.0 and is almost constant during the adiabatic time evolution. On the other
hand, the circles (blue) and crosses (orange) denote g� = 4 and g� = 12 in the case of qp = 2,
respectively. The energy gap is smaller than that in the case of qp = −1. This may be attributed
to the evolution of total electric flux ϑ = θ0 + 2πqp in Eq. (B3). The total electric flux remains
ϑ = 0 in the time evolution s = 0 → s = 1 if we take qp = −1 with θ0 = 2π . On the other
hand, it changes as ϑ = 0 → ϑ = 6π if we take qp = 2 with θ0 = 2π . Thus, the magnitude of
the change of the total electric flux is small in the qp = −1 case, and this reduces the adiabatic
error.

Furthermore, we can see that the energy gap of g� = 12 with qp = 2 has a local minimum
around s = 0.5. The other symbols also have an inflection around s = 0.5. This reminds us
that there is a phase transition at θ0/(2π ) = 0.5 in the q = 1 massive Schwinger model [83,84].
The local minimum of the energy gap may indicate the existence of a similar phase transition
around ϑ/(2πq) = 0.5, which is realized at s = 0.5 in the charge-q massive Schwinger model.
That expectation is related to the periodicity of θ0 in the charge-q Schwinger model as discussed
in Sect. 2.2; we will report on this in the near future.
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