Abstract

The SO(11) gauge–Higgs grand unification in the Randall–Sundrum warped space is presented. The 4D Higgs field is identified as the zero mode of the fifth-dimensional component of the gauge potentials, or as the fluctuation mode of the Aharonov–Bohm phase θH along the fifth dimension. Fermions are introduced in the bulk in the spinor and vector representations of SO(11). SO(11) is broken to SO(4)×SO(6) by the orbifold boundary conditions, which is broken to SU(2)L×U(1)Y×SU(3)C by a brane scalar. Evaluating the effective potential Veff(θH), we show that the electroweak symmetry is dynamically broken to U(1)EM. The quark–lepton masses are generated by the Hosotani mechanism and brane interactions, with which the observed mass spectrum is reproduced. Proton decay is forbidden thanks to the new fermion number conservation. It is pointed out that there appear light exotic fermions. The Higgs boson mass is determined with the quark–lepton masses given; however, it turns out to be smaller than the observed value.

1. Introduction

Up to now almost all observational data at low energies are consistent with the standard model (SM) of electroweak interactions. Yet it is not clear whether the Higgs boson discovered in 2012 at LHC is precisely what is introduced in the SM. Detailed study of interactions of the Higgs boson is necessary to pin down its nature. From the theory viewpoint the Higgs boson sector of the SM lacks a principle that governs and regulates the Higgs interactions with itself and other fields, quite in contrast to the gauge sector in which the gauge principle of SU(3)C×SU(2)L×U(1)Y completely fixes gauge interactions among gauge fields, quarks, and leptons. Further, the mass of the Higgs scalar boson mH generally acquires large quantum corrections from much higher energy scales, which have to be canceled by fine-tuning bare masses in a theory. This is called the gauge hierarchy problem.

Many proposals have been made to overcome these problems. Supersymmetric generalization of the SM is among them. There is an alternative scenario of gauge–Higgs unification in which the 4D Higgs boson is identified with a part of the extra-dimensional component of gauge fields defined in higher dimensional spacetime [1–5]. The Higgs boson, which is massless at the tree level, acquires a finite mass at the quantum level, independent of a cutoff scale and regularization scheme. The SO(5)×U(1)X gauge–Higgs electroweak (EW) unification in the five-dimensional Randall–Sundrum (RS) warped space has been formulated [6–12]. It gives almost the same phenomenology at low energies as the SM, provided that the Aharonov–Bohm (AB) phase θH in the fifth dimension is θH0.1. In particular, cubic couplings of the Higgs boson with other fields, W, Z, quarks, and leptons, are approximately given by the SM couplings multiplied by cosθH [8,13–16]. The corrections to the decay rates Hγγ,Zγ, which take place through one-loop diagrams, turn out finite and small [12,17]. Although infinitely many Kaluza–Klein (KK) excited states of W and top quark contribute, there appears to be miraculous cancelation among their contributions. In the gauge–Higgs unification the production rate of the Higgs boson at LHC is approximately that in the SM times cos2θH, and the branching fractions of various Higgs decay modes are nearly the same as in the SM. The cubic and quartic self-interactions of the Higgs boson show deviations from those in the SM, which should be checked in future LHC and ILC experiments. Further, the gauge–Higgs unification predicts the Z bosons, namely the first KK modes of γ, Z, and ZR, around 6 to 8 TeV with broad widths for θH=0.11 to 0.07, which awaits confirmation at the 14 TeV LHC in the near future [18,19].

With a viable model of gauge–Higgs EW unification at hand, it is natural and necessary to extend it to gauge–Higgs grand unification to incorporate the strong interaction. Since the idea of grand unification was proposed [20], a lot of grand unified theories based on grand unified gauge groups in spaces with four and higher dimensions have been discussed. (See, e.g., Refs. [21–52] for recent works and Refs. [53,54] for reviews.) The mere fact of the charge quantization in the quark–lepton spectrum strongly indicates grand unification. Such an attempt to construct gauge–Higgs grand unification has been made recently: SO(11) gauge–Higgs grand unification in the RS space with fermions in the spinor and vector representations of SO(11) has been proposed [55–57]. The model carries over good features of the SO(5)×U(1)X EW unification. In this paper we present a detailed analysis of the SO(11) gauge–Higgs grand unification. In particular, we present how to obtain the observed quark–lepton mass spectrum in the combination of the Hosotani mechanism and brane interactions on the Planck brane. It will be shown that proton decay can be forbidden by the new fermion number conservation.

There have been many proposals for gauge–Higgs grand unification in the literature, but they are not completely satisfactory with regard to a realistic spectrum and the symmetry breaking structure [58–63]. In the current model, SO(11) symmetry is broken to SO(4)×SO(6) by orbifold boundary conditions, which breaks down to SU(2)L×U(1)Y×SU(3)C by a brane scalar on the Planck brane. Finally, SU(2)L×U(1)Y is dynamically broken to U(1)EM by the Hosotani mechanism. The quark–lepton mass spectrum is reproduced. However, unwanted exotic fermions appear. Further elaboration of the scenario is necessary to achieve a completely realistic grand unification model. We note that there have been many advances in gauge–Higgs unification both in electroweak theory and grand unification [64–70]. A mechanism for dynamically selecting orbifold boundary conditions has been explored [71]. The gauge symmetry breaking by the Hosotani mechanism has been examined not only in the continuum theory, but also on the lattice by nonperturbative simulations [72–74].

This paper is organized as follows. In Sect. 2 the SO(11) model is introduced. The symmetry-breaking structure and fermion content are explained in detail. The proton stability is also shown. In Sect. 3 the mass spectrum of gauge fields is determined. In Sect. 4 the mass spectrum of fermion fields is determined. With these results the effective potential Veff(θH) is evaluated in Sect. 5. Conclusions and discussion are given in Sect. 6.

2. The SO(11) model

The SO(11) gauge theory is defined in the Randall–Sundrum (RS) space whose metric is given by  
ds2=GMNdxMdxN=e2σ(y)ημνdxμdxν+dy2,
(2.1)
where M,N=0,1,2,3,5, μ,ν=0,1,2,3, y=x5, ημν=diag(1,+1,+1,+1), σ(y)=σ(y+2L)=σ(y), and σ(y)=ky for 0yL. The topological structure of the RS space is S1/2. In terms of the conformal coordinate z=eky (1zzL=ekL) in the region 0yL,  
ds2=1z2(ημνdxμdxν+dz2k2).
(2.2)
The bulk region 0<y<L (1<z<zL) is anti-de Sitter (AdS) spacetime with a cosmological constant Λ=6k2, which is sandwiched by the Planck brane at y=0 (z=1) and the TeV brane at y=L (z=zL). The KK mass scale is mKK=πk/(zL1)~πkzL1 for zL1.

2.1. Action and boundary conditions

The model consists of SO(11) gauge fields AM, fermion multiplets in the spinor representation Ψ32 and in the vector representation Ψ11, and a brane scalar field Φ16 [55]. In each generation of quarks and leptons, one Ψ32 and two Ψ11s are introduced. Φ16(x), in the spinor representation of SO(10), is defined on the Planck brane.

The bulk part of the action is given by  
Sbulk=d5xdetG[tr{14FMNFMN+12ξ(fgf)2+Lgh}+a=13{Ψ¯32aD(cΨ32a)Ψ32a+Ψ¯11aD(cΨ11a)Ψ11a+Ψ¯11aD(cΨ11a)Ψ11a},D(c)=γAeAM(M+18ωMBC[γB,γC]igAM)cσ(y),
(2.3)
where M,N,A,B,C=0,1,2,3,5. a=1,2,3 stands for the generation index, and cΨ32a, cΨ11a, cΨ32a represent bulk mass parameters. We employ the background field method, separating AM into the classical part AMc and the quantum part AMq: AM=AMc+AMq. The gauge-fixing function and the associated ghost term are given, in the conformal coordinate, by  
fgf=z2{ημνDμcAνq+ξk2zDzc(1zAzq)},Lgh=c¯{ημνDμcDν+ξk2zDzc1zDz}c,
(2.4)
where DMcANqMANqigA[AMc,ANq], DMcMcig[AM,c], etc. We adopt the convention {γA,γB}=2ηAB, ηAB=diag(1,1,1,1,1), GMN=eAMeAN, and Ψ¯=iΨγ0.
Generators Tjk=Tkj of SO(11) are summarized in Appendix A in the vectorial and spinorial representations. We adopt the normalization AM=21/2j<kAM(jk)Tjk and FMN=MANNAMig[AM,AN]=21/2j<kFMN(jk)Tjk. With this normalization the SU(2)L weak gauge-coupling constant is given by gw=g/L. The orbifold boundary conditions for the gauge fields are given, in the y-coordinate, by  
(AμAy)(x,yjy)=Pj(AμAy)(x,yj+y)Pj1,AM(x,y+2L)=UAM(x,y)U1,U=P1P0,
(2.5)
where (y0,y1)=(0,L). The ghost fields, c and c¯, satisfy the same boundary conditions as Aμ. Pj=Pj=Pj1 is given in the vectorial representation by  
P0vec=diag(I10,I1),P1vec=diag(I4,I7),
(2.6)
and in the spinorial representation by  
P0sp=σ0σ0σ0σ0σ3=I16σ3,P1sp=σ0σ3σ0σ0σ0=I2σ3I8.
(2.7)
The SO(11) symmetry is broken down to SO(10) by P0 at y=0, and to SO(4)×SO(7) by P1 at y=L. With these two combined, there remains SO(4)×SO(6)SU(2)L×SU(2)R×SU(4) symmetry, which is further broken to GSM=SU(2)L×SU(3)C×U(1)Y by Φ16 on the Planck brane as described below. SU(2)L×U(1)Y is dynamically broken to U(1)EM by the Hosotani mechanism. Fermion fields obey the following boundary conditions:  
Ψ32a(x,yjy)=γ5PjspΨ32a(x,yj+y),Ψ11a(x,yjy)=(1)jγ5PjvecΨ11a(x,yj+y),Ψ11a(x,yjy)=(1)j+1γ5PjvecΨ11a(x,yj+y).
(2.8)
Eigenstates of γ5 with γ5=±1 correspond to right- and left-handed components in four dimensions. For Ψ11a and Ψ11a one might impose alternative boundary conditions given by  
Ψ11a(x,yjy)=γ5PjvecΨ11a(x,yj+y),Ψ11a(x,yjy)=γ5PjvecΨ11a(x,yj+y).
(2.9)
It turns out that the model with (2.8) is easier to analyze in reproducing the mass spectrum of quarks and leptons.
On the Planck brane (at y=0) the brane scalar field Φ16 has an SO(10)-invariant action given by  
SΦ16=d5xdetGδ(y){(DμΦ16)DμΦ16λΦ16(Φ16Φ16w2)2},DμΦ16=(μigAμSO(10))Φ16={μig2j<k10Aμ(jk)Tjksp}Φ16.
(2.10)
Φ16 develops the VEV. Without loss of generality one can take  
Φ16=(0404v404),v4=(000w).
(2.11)
On the Planck brane, SO(10) symmetry is spontaneously broken to SU(5) by Φ160. With the orbifold boundary condition P1, SO(11) symmetry is broken to the SM symmetry GSM=SU(3)C×SU(2)L×U(1)Y.
To see this more explicitly, we note that mass terms for gauge fields are generated from (2.10) in the form g2Φ16ημνAμSO(10)AνSO(10)Φ16. Making use of (A3) and (A4) for Tjksp, one obtains  
formula
(2.12)
In all, 21 components in SO(10)/SU(5) acquire large brane masses by Φ16, which effectively alters the Neumann boundary condition at y=0 to the Dirichlet boundary condition for their low-lying modes (mngw/L), as will be seen in Sect. 3. It follows that the SU(5) generators are given, up to normalization, by Twelve components of the gauge fields Aμ in class (iv) have no zero modes by the boundary conditions. This leaves SU(2)L×SU(3)C×U(1)Y symmetry.
  • (i) SU(2)L:  
      TL1=12(T23+T14),TL2=12(T31+T24),TL3=12(T12+T34),
  • (ii) SU(3)C:  
    8(T57+T68T58T67),(T59+T610T510T69),(T79+T810T710T89),T56T78,T56+T782T910,
  • (iii) U(1)Y:  
      QY=12(T12T34)13(T56+T78+T910),
  • (iv) SU(5)/SU(3)C×SU(2)L×U(1)Y:  
    (T15+T26T16T25),(T17+T28T18T27),(T19+T210T110T29),(T35T46T36+T45),(T37T48T38+T47),(T39T410T310+T49).
    (2.13)
It will be seen later that SU(2)L×U(1)Y symmetry is dynamically broken to U(1)EM by the Hosotani mechanism. The AB phase θH associated with Az4,11 becomes nontrivial so that Aμ34 picks up an additional mass term. Consequently, the surviving massless gauge boson, the photon, is given by  
AμEM=32Aμ1212Aμ0C,Aμ0C=13(Aμ56+Aμ78+Aμ910),QEM=T1213(T56+T78+T910)=TL3+TR313(T56+T78+T9,10),
(2.14)
where TRa are generators of SU(2)R. The orthogonal component A˜μ=12Aμ12+32Aμ0C and Aμ34 mix with each other for θH0. More rigorous and detailed reasoning is given in Sect. 3 in the twisted gauge. The U(1)Y gauge boson, BμY, is given by  
BμY=35Aμ3R25Aμ0C,Aμ3L,3R=12(Aμ12±Aμ34).
(2.15)
The gauge couplings become  
gAμ=g{Aμ3LT3L+Aμ3RT3R+12(Aμ56T56+Aμ78T78+Aμ910T910)+}=g{322AμEMQEM+}=g{Aμ3LT3L+35BμYQY+}.
(2.16)
In other words, 4D gauge couplings and the Weinberg angle are given, at the grand unification scale, by  
gw=gL,e=38gw,gY=35gw,sin2θW=gY2gw2+gY2=38.
(2.17)
The content Ψ32, Ψ11, and Ψ11 is determined with the EM charge given by (2.14). In the spinorial representation,  
QEM=12σ3σ0σ0σ0σ0  16σ0{σ3σ3σ0σ0+σ0σ3σ3σ0+σ0σ0σ3σ3}.
(2.18)
We tabulate the content of Ψ32 in Table 1. We note that zero modes appear only for particles with the same quantum numbers as quarks and leptons in the SM, but not for anything else.
Table 1.

The content of Ψ32. In the second and third columns, SU(5)Z=SU(5)×U(1)Z and G227=SU(2)L×SU(2)R×SO(7) are shown. In the fourth column, SO(6) in GPS=SU(2)L×SU(2)R×SO(6) is shown. In the fifth column GSM=SU(3)C×SU(2)L×U(1)Y. Superscripts and subscripts indicate U(1)Y charges. In the last column, parity at y=0 and L is given for left-handed components. The right-handed components have opposite parity.

graphic 
graphic 
Table 1.

The content of Ψ32. In the second and third columns, SU(5)Z=SU(5)×U(1)Z and G227=SU(2)L×SU(2)R×SO(7) are shown. In the fourth column, SO(6) in GPS=SU(2)L×SU(2)R×SO(6) is shown. In the fifth column GSM=SU(3)C×SU(2)L×U(1)Y. Superscripts and subscripts indicate U(1)Y charges. In the last column, parity at y=0 and L is given for left-handed components. The right-handed components have opposite parity.

graphic 
graphic 
Ψ11 decomposes into an SO(10) vector and a singlet. The former further decomposes into an SO(4) vector ψj (j=1,,4) and an SO(6) vector ψj (j=5,,10). An SO(4) vector ψj (j=1,,4) transforms as (2,2) of SU(2)L×SU(2)R. Under ΩLSU(2)L and ΩRSU(2)R,  
ψˆΩLψˆΩR,ψˆ=12(ψ4+iψσ)iσ2=12(ψ2+iψ1ψ4iψ3ψ4iψ3ψ2iψ1)(EˆNNˆE).
(2.19)
An SO(6) vector ψj (j=5,,10) decomposes into two parts:  
(DjDˆj)=12(ψ3+2jiψ4+2j)(j=1,2,3).
(2.20)
With this notation the contents of Ψ11 and Ψ11' in (2.8) are summarized in Table 2. Notice that Ψ11 and Ψ11' have no components carrying the quantum numbers of the u quark. With the boundary conditions (2.8), only (DjR,DˆjR) and (DjL',DˆjL') have zero modes. If the boundary conditions (2.9) were adopted, then (NR,ER,EˆR,NˆR,SL) and (NL',EL',EˆL',NˆL',SR') would have zero modes.
Table 2.

The contents of Ψ11 and Ψ11' with the boundary conditions (2.8). The same notation is adopted as in Table 1.

Ψ11 
SO(10) SU(5)Z GPS GSM QEM name zero mode parity (left) 
10 5+2 (2,2,1) (1,2)+1/2 +10 EˆNˆ  (,+) 
 5¯2 (2,2,1) (1,2)1/2 01 NE  (,+) 
 5+2 (1,1,6) (3,1)1/3 13 Dj DjR (,) 
 5¯2 (1,1,6) (3¯,1)+1/3 +13 Dˆj DˆjR (,) 
1 10 (1,1,1) (1,1)0 0 S  (+,) 
Ψ11 
SO(10) SU(5)Z GPS GSM QEM name zero mode parity (left) 
10 5+2 (2,2,1) (1,2)+1/2 +10 EˆNˆ  (,+) 
 5¯2 (2,2,1) (1,2)1/2 01 NE  (,+) 
 5+2 (1,1,6) (3,1)1/3 13 Dj DjR (,) 
 5¯2 (1,1,6) (3¯,1)+1/3 +13 Dˆj DˆjR (,) 
1 10 (1,1,1) (1,1)0 0 S  (+,) 
Ψ11' 
SO(10) SU(5)Z GPS GSM QEM name zero mode parity (left) 
10 5+2 (2,2,1) (1,2)+1/2 +10 EˆNˆ  (+,) 
 5¯2 (2,2,1) (1,2)1/2 01 NE  (+,) 
 5+2 (1,1,6) (3,1)1/3 13 Dj' DjL' (+,+) 
 5¯2 (1,1,6) (3¯,1)+1/3 +13 Dˆj' DˆjL' (+,+) 
1 10 (1,1,1) (1,1)0 0 S  (,+) 
Ψ11' 
SO(10) SU(5)Z GPS GSM QEM name zero mode parity (left) 
10 5+2 (2,2,1) (1,2)+1/2 +10 EˆNˆ  (+,) 
 5¯2 (2,2,1) (1,2)1/2 01 NE  (+,) 
 5+2 (1,1,6) (3,1)1/3 13 Dj' DjL' (+,+) 
 5¯2 (1,1,6) (3¯,1)+1/3 +13 Dˆj' DˆjL' (+,+) 
1 10 (1,1,1) (1,1)0 0 S  (,+) 
Table 2.

The contents of Ψ11 and Ψ11' with the boundary conditions (2.8). The same notation is adopted as in Table 1.

Ψ11 
SO(10) SU(5)Z GPS GSM QEM name zero mode parity (left) 
10 5+2 (2,2,1) (1,2)+1/2 +10 EˆNˆ  (,+) 
 5¯2 (2,2,1) (1,2)1/2 01 NE  (,+) 
 5+2 (1,1,6) (3,1)1/3 13 Dj DjR (,) 
 5¯2 (1,1,6) (3¯,1)+1/3 +13 Dˆj DˆjR (,) 
1 10 (1,1,1) (1,1)0 0 S  (+,) 
Ψ11 
SO(10) SU(5)Z GPS GSM QEM name zero mode parity (left) 
10 5+2 (2,2,1) (1,2)+1/2 +10 EˆNˆ  (,+) 
 5¯2 (2,2,1) (1,2)1/2 01 NE  (,+) 
 5+2 (1,1,6) (3,1)1/3 13 Dj DjR (,) 
 5¯2 (1,1,6) (3¯,1)+1/3 +13 Dˆj DˆjR (,) 
1 10 (1,1,1) (1,1)0 0 S  (+,) 
Ψ11' 
SO(10) SU(5)Z GPS GSM QEM name zero mode parity (left) 
10 5+2 (2,2,1) (1,2)+1/2 +10 EˆNˆ  (+,) 
 5¯2 (2,2,1) (1,2)1/2 01 NE  (+,) 
 5+2 (1,1,6) (3,1)1/3 13 Dj' DjL' (+,+) 
 5¯2 (1,1,6) (3¯,1)+1/3 +13 Dˆj' DˆjL' (+,+) 
1 10 (1,1,1) (1,1)0 0 S  (,+) 
Ψ11' 
SO(10) SU(5)Z GPS GSM QEM name zero mode parity (left) 
10 5+2 (2,2,1) (1,2)+1/2 +10 EˆNˆ  (+,) 
 5¯2 (2,2,1) (1,2)1/2 01 NE  (+,) 
 5+2 (1,1,6) (3,1)1/3 13 Dj' DjL' (+,+) 
 5¯2 (1,1,6) (3¯,1)+1/3 +13 Dˆj' DˆjL' (+,+) 
1 10 (1,1,1) (1,1)0 0 S  (,+) 

2.2. Brane interactions

In addition to (2.3) and (2.10), there appear brane mass–Yukawa interactions among Ψ32a, Ψ11a, Ψ11a, and Φ16 on the Planck brane at y=0. On the Planck brane the SO(10) local gauge invariance must be manifestly preserved. The Ψ32 (Ψ11) field decomposes to Ψ16 and Ψ16¯ (Ψ10 and Ψ1), as indicated in Table 1 (Table 2), under SO(10) transformations. Only fields of even parity at y=0 participate in the brane mass–Yukawa interactions. We need to write down SO(10)-invariant terms in terms of Ψ16La, Ψ16¯Ra, Ψ10Ra, Ψ1La, Ψ10La, Ψ1Ra, and Φ16. Further, we impose the condition that the action be invariant under a global U(1)Ψ fermion number (NΨ) transformation  
Ψ32aeiαΨ32a,Ψ11aeiαΨ11a,Ψ11aeiαΨ11a.
(2.21)
Six types of brane interactions are allowed:  
formula
 
formula
(2.22)
Here, Φ˜16¯=RˆΦ16* with Rˆ defined in (A7) transforms as 16¯, and we have employed 32-component notation given by  
Φˆ16=(Φ160),Φ˜ˆ16¯=(0Φ˜16¯),Ψˆ16=(Ψ160),Ψˆ16¯=(0Ψ16¯).
(2.23)
In general, all coefficients κ and μ in (2.22) have matrix structure in the generation space, which induces flavor mixing. In the present paper we restrict ourselves to diagonal κ and μ.
The total action is given by  
S=Sbulk+SΦ16+Sbrane.
(2.24)

2.3. EW Higgs boson

The orbifold boundary condition (2.5) reduces the SO(11) gauge symmetry to SO(4)×SO(6)SU(2)L×SU(2)R×SO(6). It is easy to see that terms bilinear in fields in the gauge field part of the action Sbulk, (2.3), become  
d4xdzkzj<k[12Aμ(jk){ημν(+k2P4)(11ξ)μν}Aν(jk)+12k2Az(jk)(+ξk2Pz)Az(jk)+c¯(jk)(+ξk2P4)c(jk)],ημνμν,μ=ημνν,P4zz1zz,Pzzzz1z.
(2.25)
For four-dimensional components Aμ of SO(10), gauge fields have additional bilinear terms coming from the brane scalar interaction SΦ16, (2.10), with Φ160. The parity of Aμ and Az is summarized in Table 3. For Az, only four components (2,2,1) in GPS=SU(2)L×SU(2)R×SO(6) have parity (+,+), and therefore zero modes corresponding to the Higgs doublet in the SM. For Aμ, components (3,1,1), (1,3,1), and (1,1,15), corresponding to SU(2)L, SU(2)R, and SO(6), respectively, have parity (+,+). SU(2)R×SO(6) symmetry is spontaneously broken to SU(3)C×U(1)Y by Φ160, reducing to the SM gauge symmetry.
Table 3.

Parity of Aμ and Az classified with the content in GPS=SU(2)L×SU(2)R×SO(6).

GPS Aμ Az 
(3,1,1) (+,+) (,) 
(1,3,1) (+,+) (,) 
(1,1,15) (+,+) (,) 
(2,2,6) (+,) (,+) 
(2,2,1) (,) (+,+) 
(1,1,6) (,+) (+,) 
GPS Aμ Az 
(3,1,1) (+,+) (,) 
(1,3,1) (+,+) (,) 
(1,1,15) (+,+) (,) 
(2,2,6) (+,) (,+) 
(2,2,1) (,) (+,+) 
(1,1,6) (,+) (+,) 
Table 3.

Parity of Aμ and Az classified with the content in GPS=SU(2)L×SU(2)R×SO(6).

GPS Aμ Az 
(3,1,1) (+,+) (,) 
(1,3,1) (+,+) (,) 
(1,1,15) (+,+) (,) 
(2,2,6) (+,) (,+) 
(2,2,1) (,) (+,+) 
(1,1,6) (,+) (+,) 
GPS Aμ Az 
(3,1,1) (+,+) (,) 
(1,3,1) (+,+) (,) 
(1,1,15) (+,+) (,) 
(2,2,6) (+,) (,+) 
(2,2,1) (,) (+,+) 
(1,1,6) (,+) (+,) 
Mode functions of Az in the fifth dimension are determined by  
Pzhn(z)=λn2hn(z),1zLkdzzhn(z)h(z)=δn,
(2.26)
where boundary conditions at z=1 and zL are given by (d/dz)(hn/z)=0 or hn=0 for parity even or odd fields, respectively. In particular, the zero mode (λ0=0) function is given by  
h0(++)(z)=uH(z)=1kzu˜H(y)=2k(zL21)z
(2.27)
for 1zzL (0yL). The mode function in the y-coordinate satisfies u˜H(y)=u˜H(y)=u˜H(y+2L). We note that  
0Ldyu˜H(y)=1zLdzuH(z)=zL212k.
(2.28)
The zero modes of Az are physical degrees of freedom, being unable to be gauged away. They are in Aza11(x,z) (a=1,,4). In terms of mode functions {hn(++)(z)} for the parity (+,+) boundary condition,  
Aza11(x,z)=φHa(x)uH(z)+n=1φHa(n)(x)hn(++)(z)(a=1,,4),
(2.29)
where the four-component real field, φHa(x), plays the role of the EW Higgs doublet field in the SM. It will be shown that φHφH4 dynamically develops VEV φH0, breaking the SM symmetry to U(1)EM. φH1,2,3 are absorbed by W and Z bosons.

2.4. AB phase θH

Under a general gauge transformation AM'=ΩAMΩ1+(i/g)ΩMΩ1, new gauge potentials satisfy new boundary conditions  
(Aμ'Ay')(x,yjy)=Pj'(AμAy)(x,yj+y)Pj1+igPj'(μy)Pj1,Pj'=Ω(x,yjy)PjΩ(x,yj+y)1.
(2.30)
The original boundary conditions (2.5) are maintained if and only if Pj'=Pj. Such a class of gauge transformations define the residual gauge invariance [2,60].
There is a class of “large” gauge transformations which transform Ay nontrivially. Consider  
Ω(y;α)=exp{igα2yLdyu˜H(y)T4,11}.
(2.31)
For Ay=12Ay(4,11)(x,y)T4,11,  
Ay'=Ay+α2u˜H(y)T4,11,φH(x)φH'(x)=φH(x)+α.
(2.32)
The new boundary condition matrices Pj are evaluated, with the aid of {Pj,T4,11}=0, to be Pj'=Ω(yjy;α)Ω(yj+y;α)Pj, that is,  
P0'=Ω(y;α)Ω(y;α)P0=Ω(0;2α)P0,P1'=Ω(Ly;α)Ω(L+y;α)P1=P1.
(2.33)
The boundary conditions are preserved provided Ω(0;2α)=1. As (T4,11sp)2=14I32 in the spinorial representation, the boundary conditions are preserved provided  
gα20Ldyu˜H(y)=gα2zL212k=2πn(n=an integer).
(2.34)
Aharonov–Bohm (AB) phases along the fifth dimension are defined by phases of eigenvalues of  
Wˆ=Pexp{igLLdyAy}P1P0.
(2.35)
They are gauge invariant. Ay4,11(x,y)=Ay4,11(x,y) and the orthonormality relation (2.26) implies that 1zLdzhn(++)(z)=0 for n0. Hence, for Ay=(1/2)Ay4,11T4,11,  
Wˆ=exp{igφH20Ldyu˜H(y)2T4,11}(I4I61)
(2.36)
in the vectorial representation so that the relevant phase θˆH(x) is given by  
θˆH(x)=gφH(x)20Ldyu˜H(y)=φH(x)fH,fH=2gkzL21=2gwkL(zL21).
(2.37)
Under a large gauge transformation satisfying (2.33),  
θˆH(x)θˆH(x)=θˆH(x)+2πn.
(2.38)
Denoting θH=θˆH(x), one has  
Az(4,11)(x,z)={θHfH+H(x)}uH(z)+.
(2.39)
H(x) corresponds to the neutral Higgs boson found at LHC. The value of θH is undetermined at the tree level, but is determined dynamically at the one-loop level. The effective potential Veff(θH) is evaluated in Sect. 5.

2.5. Twisted gauge

Under the gauge transformation (2.31) θˆH(x) is transformed to θˆH'(x)=θˆH(x)+(α/fH). In the new gauge given with α=θHfH,  
Ω(y)=exp{igθHfH2yLdyu˜H(y)T4,11}=exp{iθ(z)T4,11},θ(z)=θHzL2z2zL21 for1zzL,
(2.40)
θH'(x)=0. Hereafter, this new gauge is called the twisted gauge, and quantities in the twisted gauge are denoted with tildes [8,75]. According to (2.33), the boundary conditions become  
P˜0=Ω(0)2P0=e2iθHT4,11P0,P˜1=P1.
(2.41)
In the vectorial representation,  
P˜0vec={(cos2θHsin2θHsin2θHcos2θH)in the 411 subspace,I9otherwise.
(2.42)
Components of Ψ32 split into two groups:  
χ=(νν),(ee),(ujuj'),(djdj'),χˆ=(νˆνˆ),(eˆeˆ),(uˆjuˆj'),(dˆjdˆj').
(2.43)
The boundary condition matrix becomes  
P˜0sp=(cosθHisinθH±isinθHcosθH) for{χχˆ.
(2.44)
It turns out very convenient to evaluate Veff(θH) in the twisted gauge.

2.6. Proton stability

In the present model of gauge–Higgs grand unification, proton decay is forbidden. Fields of up quark quantum number, u and u, are contained only in Ψ32. Fields of down quark quantum number are in Ψ32 (d and d) and in Ψ11 and Ψ11' (D and D); fields of electron quantum number are in Ψ32 (e and e) and in Ψ11 and Ψ11' (E and E); and fields of neutrino quantum number are in Ψ32 (ν, νˆ, ν, and νˆ) and in Ψ11 and Ψ11' (N, Nˆ, S, N, Nˆ, and S). The down quark at low energies, for instance, is a linear combination of d, d, D, and D. All quarks and leptons have NΨ=1 fermion number. The total action preserves the NΨ=1 fermion number. As the proton has NΨ=3 and the positron has NΨ=1, the proton decay pπ0e+, for instance, cannot occur. This is contrasted with the SU(5) or SO(10) GUT in four dimensions in which proton decay inevitably takes place. The SO(11) gauge–Higgs grand unification provides a natural framework of grand unification in which proton decay is forbidden.

One comment is in order. S and S in Ψ11 and Ψ11' are SO(10) singlets. One could introduce Majorana masses, such as S¯Scδ(y) on the Planck brane, which break the NΨ fermion number. They would give rise to Majorana masses for neutrinos, and at the same time could induce proton decay at higher loops.

3. Spectrum of gauge fields

Veff(θH) at the one-loop level is determined from the mass spectrum of all fields when θˆH(x)=θH. It is convenient to determine the spectrum in the twisted gauge in which θˆ˜H(x)=0. The nontrivial θH dependence is transferred to the boundary conditions. In this section we determine the spectrum of gauge fields.

In the absence of the brane interactions with Φ16 in SΦ16, (2.10), the boundary conditions for gauge fields are given by  
{N:zAμ=0for parity=+D:Aμ=0for parity={N:z(1zAz)=0for parity=+D:Az=0for parity=
(3.1)
at z=1 (y=0) and z=zL (y=L). In the presence of SΦ16, the brane mass terms (2.12) for Aμ are induced, and the Neumann boundary condition N is modified to an effective Dirichlet condition Deff for low-lying KK modes of the 21 components of Aμ as described below. The boundary conditions for the gauge fields are summarized in Table 4.
Table 4.

A Venn diagram of the gauge group structure is displayed above, and the boundary conditions in each category are summarized in the table below. Here, GSM=SU(3)C×SU(2)L×U(1)Y, GPS=SU(2)L×SU(2)R×SO(6), and SU(5)GPS=GSM. N and D stand for Neumann and Dirichlet conditions, respectively. Deff represents the effective Dirichlet condition explained in Sect. 3.1, (i), (ii), (v), (vii), and (viii).

graphic 
graphic 
Table 4.

A Venn diagram of the gauge group structure is displayed above, and the boundary conditions in each category are summarized in the table below. Here, GSM=SU(3)C×SU(2)L×U(1)Y, GPS=SU(2)L×SU(2)R×SO(6), and SU(5)GPS=GSM. N and D stand for Neumann and Dirichlet conditions, respectively. Deff represents the effective Dirichlet condition explained in Sect. 3.1, (i), (ii), (v), (vii), and (viii).

graphic 
graphic 
In the twisted gauge, A˜M=Ω(z)AMΩ(z)1+igΩ(z)MΩ(z)1, where Ω(z) is given by (2.40). One finds  
AMk4=cosθ(z)A˜Mk4sinθ(z)A˜Mk,11,(k4),AMk,11=sinθ(z)A˜Mk4+cosθ(z)A˜Mk,11,Az4,11=A˜z4,112gθ(z)=A˜z4,11+22gθHzzL21.
(3.2)
All other components are unchanged. At z=zL, θ(zL)=0, and AMk4 and AMk,11 always have opposite parity. It follows that A˜M satisfies the same boundary condition as AM at z=zL. In the bulk (1<z<zL) the bilinear part of the action is the same as in the free theory in the twisted gauge. Hence, depending on the boundary condition at z=zL, wave functions for A˜μ and A˜z are given by  
A˜μN:C(z;λ),D:S(z;λ),A˜zN:S(z;λ),D:C(z;λ),
(3.3)
where C(z;λ) and S(z;λ) are defined in Appendix B.

3.1. Aμ components

3.1.1. (i) (A˜μaL,A˜μaR,A˜μa,11)(a=1,2): W and WR towers

The original AμaL, AμaR, and Aμa,11 have parity (+,+), (+,+), and (,), respectively. AμaR picks up a brane mass. To find its boundary condition at z=1, we need to recall the equation of motion. Lbranemassgauge in (2.12) yields (g2w2/4)δ(y)(AμaR)2. The equation of motion for AμaR in the y-coordinate is  
{ημν(+ye2σ(y)yg2w22δ(y))(11ξ)μν}AνaR=,
(3.4)
where interaction terms on the right-hand side involve neither the total y derivative nor δ(y). By integrating the equation ϵϵdy and taking the limit ϵ0, one finds that AμaR/y|y=ϵ=(g2w2/4)AμaR|y=0. The brane mass gives rise to cusp behavior at y=0. The boundary conditions for (AμaL,AμaR,Aμa,11) (a=1,2) at z=1 are  
zAμaL=0,(zω)AμaR=0,ω=g2w24k,Aμa,11=0.
(3.5)
Here it is understood that AμaR/z is evaluated at z=1+.
Expressed in terms of fields in the twisted gauge, (3.5) becomes  
zA˜μ23+zA˜μ14cosθHzA˜μ1,11sinθH=0,(zω)A˜μ23(zω)A˜μ14cosθH+(zω)A˜μ1,11sinθH=0,A˜μ14sinθH+A˜μ1,11cosθH=0.
(3.6)
From the boundary conditions at zL, one can set  
[A˜μ23,A˜μ14,A˜μ1,11]=[α23C(z;λ),α14C(z;λ),α1,11S(z;λ)]aμ(x)
for each mode. The boundary conditions (3.6) are transformed to  
K(α23α14α1,11)=0,K=(CcosθHCsinθHSCωCcosθH(CωC)sinθH(SωS)0sinθHCcosθHS),
(3.7)
where C=C(1;λ), etc. The spectrum {λn} is determined by detK=0, or by  
2C(SC+λsin2θH)ωC(2SC+λsin2θH)=0.
(3.8)
For sufficiently large w, the spectrum {mn=kλn} of low-lying KK modes is approximately determined by the second term in (3.8). This approximation for zL=105, for instance, is justified for ω>103:  
W tower: 2S(1;λ)C(1;λ)+λsin2θH=0,WR tower: C(1;λ)=0.
(3.9)
Asymptotically, the equations determining the spectra of the W and WR towers become SC+λsin2θH=0 and C=0, respectively. The mass of the W boson, mW=mW(0), is given by  
mW~kLzL1sinθH=sinθHπkLmKK.
(3.10)

3.1.2. (ii) (A˜μ3L,C˜μ,B˜μY,A˜μ3,11): γ, Z, and ZR towers

Here, Cμ=1/5(Aμ12Aμ34+Aμ56+Aμ78+Aμ910)=2/5Aμ3R+3/5Aμ0C. The original Aμ3L, Cμ, BμY, and Aμ3,11 have parity (+,+), (+,+), (+,+), and (,), respectively. Cμ picks up a brane mass δ(y)(5g2w2/8)Cμ2, so that the boundary conditions at z=1 are  
zAμ3L=0,(z52ω)Cμ=0,Aμ3,11=0,zBμY=0.
(3.11)
In the twisted gauge they become  
zA˜μ12+zA˜μ34cosθHzA˜μ3,11sinθH=0,(z52ω){A˜μ12A˜μ34cosθH+A˜μ3,11sinθH+3A˜μ0C}=0,A˜μ34sinθH+A˜μ3,11cosθH=0,zA˜μ12zA˜μ34cosθH+zA˜μ3,11sinθH23zA˜μ0C=0.
(3.12)
Adding the first and second equations, one gets  
(2z52ω)A˜μ12+52ω(A˜μ34cosθHA˜μ3,11sinθH)+3(z52ω)A˜μ0C=0.
Adding the first and fourth equations, one gets  
zA˜μ1213zA˜μ0C=0.
Writing [A˜μ12,A˜μ34,A˜μ3,11,A˜μ0C]=[α12C(z),α34C(z),α3,11S(z),α0CC(z)]aμ(x), one finds that  
K(α12α34α3,11α0C)=0.K=(CcosθHCsinθHS045CωCωcosθHCωsinθHS3(25CωC)0sinθHCcosθHS0C0013C).
(3.13)
The spectrum is determined by detK=0:  
C{2C(SC+λsin2θH)ωC(5SC+4λsin2θH)}=0.
(3.14)
For sufficiently large w, the spectrum of low-lying KK modes is approximately determined by the second term in (3.14). One finds that  
γ tower: C(1;λ)=0,Z tower: 5S(1;λ)C(1;λ)+4λsin2θH=0,ZR tower: C(1;λ)=0.
(3.15)
The mass of the Z boson, mZ=mZ(0), is given by  
mZ~8k5LzL1sinθH=mWcosθW,sin2θW=38.
(3.16)

3.1.3. (iii) A˜μ4,11: Aˆ4 tower

Aμ4,11 obeys (D,D) and there is no zero mode. Its spectrum is determined by  
Aˆ4tower: S(1;λ)=0.
(3.17)

3.1.4. (iv) SU(3)C gluons

The boundary condition is (N,N) so that  
gluon tower: C(1;λ)=0.
(3.18)

3.1.5. (v) X-gluons

These are six components given by  
12(Aμ57Aμ68Aμ58+Aμ67),12(Aμ59Aμ610Aμ510+Aμ69),12(Aμ79Aμ810Aμ710+Aμ89),
(3.19)
which originally obey (N,N) boundary conditions. They have brane masses of the form δ(y)(g2w2/4)Aμ2 in (2.12) so that the boundary conditions at z=1 become (zω)Aμ=0. Consequently, the spectrum is determined by CωC=0. For the low-lying KK modes,  
X-gluon tower: C(1;λ)=0.
(3.20)

3.1.6. (vi) X-bosons

These are six components given by  
12(Aμ15+Aμ26Aμ16Aμ25),12(Aμ17+Aμ28Aμ18Aμ27),12(Aμ19+Aμ210Aμ110Aμ29),
(3.21)
which originally obey (N,D) boundary conditions. There is no brane mass, and the spectrum is determined by  
X-boson tower: S(1;λ)=0.
(3.22)

3.1.7. (vii) X-bosons

These are six components given by  
12(Aμ15Aμ26Aμ16+Aμ25),12(Aμ17Aμ28Aμ18+Aμ27),12(Aμ19Aμ210Aμ110+Aμ29),
(3.23)
which originally obey (N,D) boundary conditions. They have brane masses of the form δ(y)(g2w2/4)Aμ2 in (2.12) so that boundary conditions at z=1 become (zω)Aμ=0. Consequently, the spectrum is determined by SωS=0. For the low-lying KK modes,  
X-boson tower: S(1;λ)=0.
(3.24)

3.1.8. (viii) Y, Y-bosons

There are three classes:  
Y:12(Aμ35Aμ46Aμ36+Aμ45),12(Aμ37Aμ48Aμ38+Aμ47),12(Aμ39Aμ410Aμ310+Aμ49),Y:12(Aμ35+Aμ46Aμ36Aμ45),12(Aμ37+Aμ48Aμ38Aμ47),12(Aμ39+Aμ410Aμ310Aμ49),Yˆ:Aμb11(b=5,,10).
(3.25)
The original fields in Y, Y, and Yˆ satisfy (N,D), (N,D), and (D,N) boundary conditions. Aμ4b and Aμb11 (b=5,,10) mix with each other by θH0. Fields in Y have brane masses of the form δ(y)(g2w2/4)Aμ2 in (2.12). Boundary conditions at z=1 for (Aμ35,Aμ46,Aμ611), for instance, are  
z(Aμ35Aμ46)=0,(zω)(Aμ35+Aμ46)=0,Aμ611=0.
(3.26)
Writing [A˜μ35,A˜μ46,A˜μ11,6]=[α35S(z;λ),α46S(z;λ),α11,6C(z;λ)]aμ(x), one finds that  
(ScosθHSsinθHCSωScosθH(SωS)sinθH(CωC)0sinθHScosθHC)(α35α46α11,6)=0.
(3.27)
The spectrum is determined by  
2S(CSλsin2θH)ωS(2CSλsin2θH)=2S(SC+λcos2θH)ωS{2SC+λ(1+cos2θH)}=0.
(3.28)
For the low-lying modes, one finds  
Y boson tower: 2C(1;λ)S(1;λ)λsin2θH=0,Y boson tower: S(1;λ)=0.
(3.29)

3.2. Az components

Similarly, one can find the spectrum for Az. The evaluation is simpler as Az does not couple to the brane scalar field Φ16.

3.2.1. (i) Azab(1a<b3) and Azjk(5j<k10)

These components satisfy boundary conditions (D,D), so that  
C(1;λ)=0.
(3.30)

3.2.2. (ii) Aza4,Aza11(a=1~3)

Boundary conditions of (Aza4,Aza11) are (D,D) and (N,N), respectively. Aza4 and Aza11 mix with each other by θH. Writing [A˜za4,A˜za11]=[βa4C(z;λ),βa11S(z;λ)]az(x), one finds that at z=1,  
(cosθHCsinθHSsinθHCcosθHS)(βa4βa11)=0.
(3.31)
The spectrum is determined by  
S(1;λ)C(1;λ)+λsin2θH=0.
(3.32)

3.2.3. (iii) Az4,11: Higgs tower

This obeys (N,N) boundary conditions, so that  
Higgs tower: S(1;λ)=0.
(3.33)
There is always a zero mode, which will acquire a mass at the one-loop level.

3.2.4. (iv) Azak(a=1~3,k=5~10)

These components obey (D,N) boundary conditions, so that  
S(1;λ)=0.
(3.34)

3.2.5. (v) Azk4, Azk11(k=5~10)

Azk4 and Azk11 satisfy (D,N) and (N,D) boundary conditions, respectively. Writing [A˜zk4,A˜zk11]=[βa4S(z;λ),βa11C(z;λ)]az(x), one finds that  
(cosθHSsinθHCsinθHScosθHC)(βk4βk11)=0.
(3.35)
The spectrum is determined by  
S(1;λ)C(1;λ)+λcos2θH=0.
(3.36)

4. Spectrum of fermion fields

We take Dirac matrices γA in the spinor representation in (2.3):  
γμ=(σμσ¯μ),γ5=(I2I2),σμ=(I2,σ),σ¯μ=(I2,σ).
(4.1)
The fermion action becomes  
d5xdetGΨ¯D(c)Ψ=d4x1zLdzkΨˇ¯[k(D(c)+igAz)σμ(μigAμ)5ptσ¯μ(μigAμ)k(D+(c)igAz)]Ψˇ,
(4.2)
where Ψˇ=z2Ψ and D±(c) is defined in (B5).

4.1. Brane mass terms

In addition to (2.3), the fermion fields have brane interactions given by Sbrane in (2.22). With Φ160 in (2.11), Sbrane generates fermion mass terms on the Planck brane. As indicated in (2.22), the mass terms have matrix structure in the three generations. In the present paper we restrict ourselves to the case of diagonal mass matrices, and consider each generation of quarks and leptons separately. We shall drop the generation index henceforth. Each interaction Lagrangian Lj (j=1,,6) in (2.22) generates a brane mass Ljm.  
Sbranem=d5xdetGδ(y){L1m+L2m+L3m+L4m+L5m+L6m},L1m=2μ1(S¯R'νˆL+νˆ¯LSR'),L2m=2μ2(S¯LνR'+ν¯RSL),L3m=2μ3{i(E¯ReLe¯LER)+i(N¯RνLν¯LNR)+(Dˆ¯1Rdˆ1L+dˆ¯1LDˆ1R)+(Dˆ¯2Rdˆ2L+dˆ¯2LDˆ2R)+(Dˆ¯3Rdˆ3L+dˆ¯3LDˆ3R)},L4m=2μ4{i(Eˆ¯L'eˆR'eˆ¯REˆL')+i(Nˆ¯L'νˆR'νˆ¯RNˆL')(D¯1L'd1R'+d¯1R'D1L')+(D¯2L'd2R'+d¯2R'D2L')(D¯3L'd3R'+d¯3R'D3L')},L5m=2μ5(S¯R'SL+S¯LSR'),L6m=2μ6{E¯L'ER+E¯REL'+Eˆ¯L'EˆR+Eˆ¯REˆL'+N¯L'NR+N¯RNL'+Nˆ¯L'NˆR+Nˆ¯RNˆL'+j=13(D¯jL'DjR+D¯jRDjL'+Dˆ¯jL'DˆjR+Dˆ¯jRDˆjL')},
(4.3)
where  
2μ1=κ[1,16]w,2μ2=κ[1,16¯]w,2μ3=2κ[10,16]w,2μ4=2κ[10,16¯]w,2μ5=μ[1,1],2μ6=μ[10,10].
(4.4)
All μks are taken to be real without loss of generality. Fermions with QEM=±23, uj, uj', uˆj, uˆj', do not appear in the brane masses in (4.3).

4.2. Quarks and leptons

To derive the mass spectrum for fermions, we note that the components of Ψ32 in the original and twisted gauges are related by  
χ=(cos12θ(z)isin12θ(z)isin12θ(z)cos12θ(z))χ˜,χˆ=(cos12θ(z)isin12θ(z)isin12θ(z)cos12θ(z))χˆ˜,
(4.5)
where χ and χˆ are defined in (2.43), and θ(z) is given in (2.40). In the original gauge with θH, one has  
gAzcl=g2Az(4,11)T4,11=θ(z)T4,11,T4,11={12τ1for χ,12τ1for χˆ.
(4.6)
We denote  
Dˆcl(c)=(kDˆ(c)σμμσ¯μμkDˆ+(c)),Dˆ±(c)=±(ddz+iθ(z)T4,11)+cz,D0(c)=(kD(c)σμμσ¯μμkD+(c)).
(4.7)
To simplify the notation the bulk mass parameters are denoted as  
c0=cΨ32,c1=cΨ11',c2=cΨ11.
(4.8)

4.2.1. (i) QEM=+23 : uj,uj'

There are no brane mass terms. The boundary conditions are D+uˇjL=0, uˇjR=0, uˇjL'=0, and DuˇjR'=0 at z=1,zL. The equations of motion in the twisted gauge are  
kD(c0)(uˇ˜jRuˇ˜jR')+σμμ(uˇ˜jLuˇ˜jL')=0,kD+(c0)(uˇ˜jLuˇ˜jL')+σ¯μμ(uˇ˜jRuˇ˜jR')=0.
(4.9)
(uˇ˜j,uˇ˜j') satisfy the same boundary conditions at z=zL as (uˇj,uˇj'), so that one can write, for each mode,  
(uˇ˜jRuˇ˜jR')=(αuSR(z;λ,c0)αu'CR(z;λ,c0))fR(x),(uˇ˜jLuˇ˜jL')=(αuCL(z;λ,c0)αu'SL(z;λ,c0))fL(x),
(4.10)
where σ¯fR(x)=kλfL(x) and σfL(x)=kλfR(x). Both right- and left-handed modes have the same coefficients αu and αu' as a result of the equations of motion.
The boundary conditions at z=1 for the right-handed components, uˇjR=0 and DuˇjR'=0, become  
(cos12θHSRc0isin12θHCRc0isin12θHCLc0cos12θHSLc0)(αuαu)=0,
(4.11)
so that the spectrum is determined by  
SLc0SRc0+sin212θH=0,
(4.12)
where SLc=SL(1;λ,c), etc. The mass of the lowest mode, m=kλ, is given by  
mu={π114c02sin12θHmKKfor c0<12,π14c021zLc0+0.5sin12θHmKKfor c0>12.
(4.13)
c0=cΨ32 is determined from the up-type quark mass. For the top quark, c0<12, whereas for the charm and up quarks, c0>12. Note that  
mtmW~kL(14c02)2cos12θH.
(4.14)

4.2.2. (ii) QEM=23 : uˆj,uˆj'

There are no brane mass terms. The boundary conditions are D+uˆˇjL=0, uˆˇjR=0, uˆˇjL'=0, and DuˆˇjR'=0 at z=1, and uˆˇjL=0, DuˆˇjR=0, D+uˆˇjL'=0, and uˆˇjR'=0 at z=zL. Wave functions of each mode are given by  
(uˆˇ˜jRuˆˇ˜jR')=(αuˆCR(z;λ,c0)αuˆSR(z;λ,c0))fR(x),(uˆˇ˜jLuˆˇ˜jL')=(αuˆSL(z;λ,c0)αuˆCL(z;λ,c0))fL(x).
(4.15)
Boundary conditions at z=1 lead to  
(cos12θHCRc0isin12θHSRc0isin12θHSLc0cos12θHCLc0)(αuˆαuˆ)=0,
(4.16)
so that the spectrum is determined by  
SLc0SRc0+cos212θH=0.
(4.17)
The mass of the lowest mode is given by  
muˆ={π114c02cos12θHmKKfor c0<12,π14c021zLc0+0.5cos12θHmKKfor c0>12.
(4.18)
Note that  
muˆmu=cot12θH.
(4.19)

4.2.3. (iii) QEM=13 : dj,dj',Dj,Dj'

The equations of motion are  
(a)(b)kDˆ(dˇjRdˇjR')+σμμ(dˇjLdˇjL')=0,(c)(d)kDˆ+(dˇjLdˇjL')+σ¯μμ(dˇjRdˇjR')=2μ4δ(y)(0DˇjL'),(e)kDDˇjR'+σμμDˇjL'=2μ4δ(y)dˇjR'+2μ6δ(y)DˇjR,(f)kD+DˇjL'+σ¯μμDˇjR'=0,(g)kDDˇjR+σμμDˇjL=0,(h)kD+DˇjL+σ¯μμDˇjR=2μ6δ(y)DˇjL'.
(4.20)
Here, D+ acting on dˇjL, DˇjL, DˇjL' means D+(c0), D+(c2), D+(c1), respectively. Brane interactions affect the boundary conditions at y=0. dˇjR, dˇjL', DˇjR', DˇjL are parity-odd at y=0, whereas dˇjL, dˇjR', DˇjL', DˇjR are parity-even. Recall that D±(c) is parity-odd at y=0:  
D±(c)=eσ(y)k(±ddy+cσ(y))=eσ(y)(±1kddy+cϵ(y)).
(4.21)
Noting that Az(4,11) is parity-even and integrating over y from ϵ to ϵ in (4.20), one finds  
(a)2dˇjR(x,ϵ)=0,(d)2dˇjL'(x,ϵ)=2μ4DˇjL'(x,0),(e)2DˇjR'(x,ϵ)=2μ4dˇjR'(x,0)+2μ6DˇjR(x,0),(h)2DˇjL(x,ϵ)=2μ6DˇjL'(x,0).
(4.22)
For parity-even fields we evaluate the equations (4.20) at y=ϵ>0, with the help of (4.22), to find  
(c)Dˆ+dˇjL=0,(b)DˆdˇjR'+μ4D(c1)DˇjR'=0,(f)D+DˇjL'μ4Dˆ+dˇjL'μ6D+DˇjL=0,(g)DDˇjR+μ6DDˇjR'=0.
(4.23)
To summarize, the boundary conditions at z=1+ (y=ϵ) are given by  
(right-handed)(left-handed)dˇjR=0,Dˆ+dˇjL=0,DˆdˇjR'+μ4DDˇjR'=0,dˇjL'+μ4DˇjL'=0,DˇjR'μ4dˇjR'μ6DˇjR=0,D+DˇjL'μ4Dˆ+dˇjL'μ6D+DˇjL=0,DDˇjR+μ6DDˇjR'=0,DˇjL+μ6DˇjL'=0.
(4.24)
In the twisted gauge all fields obey free equations in the bulk so that eigenmodes are expressed, with the boundary conditions at the TeV brane taken into account, as  
(dˇ˜jRdˇ˜jR'DˇjR'DˇjR)=(αdSR(z;λ,c0)αdCR(z;λ,c0)αDSR(z;λ,c1)αDCR(z;λ,c2))fR(x),(dˇ˜jLdˇ˜jL'DˇjL'DˇjL)=(αdCL(z;λ,c0)αdSL(z;λ,c0)αDCL(z;λ,c1)αDSL(z;λ,c2))fL(x).
(4.25)
The boundary conditions (4.24) for the right-handed components are converted to  
K(αdαdαDαD)=0,K=(cosθH2SRc0isinθH2CRc000isinθH2CLc0cosθH2SLc0μ4CLc10iμ4sinθH2SRc0μ4cosθH2CRc0SRc1μ6CRc200μ6CLc1SLc2),
(4.26)
where SRc=SR(1;λ,c), etc. The spectrum {λn} is determined from detK=0,  
{cos212θHSLc0SRc0+sin212θHCLc0CRc0}{SRc1SLc2+μ62CLc1CRc2}+μ42SRc0CRc0CLc1SLc2=0,
(4.27)
or, by making use of CLCRSLSR=1 one finds that  
{SLc0SRc0+sin212θH}{SRc1SLc2+μ62CLc1CRc2}+μ42SRc0CRc0CLc1SLc2=0.
(4.28)
The same result is obtained from the boundary conditions for the left-handed components in (4.24).
For the mode with the lowest mass, the down-type quark, one can suppose that λzL1, sin212θH|SLc0SRc0|, and μ62CLc1CRc2|SRc1SLc2|, so that  
SRc0SLc2μ62CRc2μ42CRc0sin212θH.
(4.29)
In the first and second generations, cj>12, whereas in the third generation, cj<12. The mass is given by  
md={1πμ6μ4(12c0)(1+2c2)zLc0c2sin12θHmKKfor c0,c2<12,1πμ6μ4(2c01)(1+2c2)zLc2+0.5sin12θHmKKfor c0,c2>12.
(4.30)
In either case one finds that  
mdmu=μ6μ41+2c21+2c0zLc0c2.
(4.31)

4.2.4. (iv) QEM=+13 : dˆj,dˆj',Dˆj,Dˆj'

DˆjR and DˆjL' have zero modes. The equations of motion are  
kDˆ(dˆˇjRdˆˇjR')+σμμ(dˆˇjLdˆˇjL')=2μ3δ(y)(DˆˇjR0),kDˆ+(dˆˇjLdˆˇjL')+σ¯μμ(dˆˇjRdˆˇjR')=0,kDDˆˇjR'+σμμDˆˇjL'=2μ6δ(y)DˆˇjR,kD+DˆˇjL'+σ¯μμDˆˇjR'=0,kDDˆˇjR+σμμDˆˇjL=0,kD+DˆˇjL+σ¯μμDˆˇjR=2μ3δ(y)dˆˇjL+2μ6δ(y)DˆˇjL'.
(4.32)
At the Planck brane (y=0), dˆR, dˆL', DˆR', DˆL are parity-odd, whereas dˆL, dˆR', DˆL', DˆR are parity-even. The boundary conditions at y=ϵ (z=1+) become  
(right-handed)(left-handed)DˆdˆˇjR'=0,dˆˇjL'=0,dˆˇjRμ3DˆˇjR=0,Dˆ+dˆˇjLμ3D+DˆˇjL=0,DDˆˇjR+μ3DˆdˆˇjR+μ6DDˆˇjR'=0,DˆˇjL+μ3dˆˇjL+μ6DˆˇjL'=0,DˆˇjR'μ6DˆˇjR=0,D+DˆˇjL'μ6D+DˆˇjL=0.
(4.33)
Eigenmodes are given by  
(dˆˇ˜jR'dˆˇ˜jRDˆˇjRDˆˇjR')=(αdˆSR(z;λ,c0)αdˆCR(z;λ,c0)αDˆCR(z;λ,c2)αDˆSR(z;λ,c1))fR(x),(dˆˇ˜jL'dˆˇ˜jLDˆˇjLDˆˇjL')=(αdˆCL(z;λ,c0)αdˆSL(z;λ,c0)αDˆSL(z;λ,c2)αDˆCL(z;λ,c1))fL(x).
(4.34)
The boundary conditions (4.33) lead to  
K(αdˆαdˆαDˆαDˆ)=0,K=(cosθH2CLc0isinθH2SLc000isinθH2SRc0cosθH2CRc0μ3CRc20iμ3sinθH2CLc0μ3cosθH2SLc0SLc2μ6CLc100μ6CRc2SRc1).
(4.35)
The spectrum is determined by  
{cos212θHCLc0CRc0+sin212θHSLc0SRc0}{SRc1SLc2+μ62CLc1CRc2}+μ32SLc0CLc0SRc1CRc2=0,
(4.36)
or  
{SLc0SRc0+cos212θH}{SRc1SLc2+μ62CLc1CRc2}+μ32SLc0CLc0SRc1CRc2=0.
(4.37)
For the mode with the lowest mass,  
SLc0SRc1μ62CLc1μ32CLc0cos212θH.
(4.38)
The mass is given by  
mdˆ={1πμ6μ3(12c1)(1+2c0)zLc1c0cos12θHmKKfor c0,c1<12,1πμ6μ3(2c0+1)(2c11)zLc0+0.5cos12θHmKKfor c0,c1>12.
(4.39)
One finds that  
mdˆmu=μ6μ312c112c0cot12θH×{zLc1c0for c0,c1<12,1forc0,c1>12.
(4.40)

4.2.5. (v) QEM=1 : e,e,E,E

The spectrum in the QEM=1 sector is found in a similar manner. The boundary conditions at y=ϵ (z=1+) are given by  
(right-handed) (left-handed)DˆeˇR'=0,eˇL'=0,eˇR+iμ3EˇR=0,Dˆ+eˇL+iμ3D+EˇL=0,DEˇR+iμ3DˆeˇR+μ6DEˇR'=0,EˇL+iμ3eˇL+μ6EˇL'=0,EˇR'μ6EˇR=0,D+EˇL'μ6D+EˇL=0,
(4.41)
and mode functions in the twisted gauge are given by  
(eˇ˜R'eˇ˜REˇREˇR')=(αeCR(z;λ,c0)αeSR(z;λ,c0)αESR(z;λ,c2)αECR(z;λ,c1))fR(x),(eˇ˜L'eˇ˜LEˇLEˇL')=(αeSL(z;λ,c0)αeCL(z;λ,c0)αECL(z;λ,c2)αESL(z;λ,c1))fL(x).
(4.42)
The boundary conditions in (4.41) lead to  
(cosθH2SLc0isinθH2CLc000isinθH2CRc0cosθH2SRc0iμ3SRc20μ3sinθH2SLc0iμ3cosθH2CLc0CLc2μ6SLc100μ6SRc2CRc1)(αeαeαEαE)=0.
(4.43)
Consequently, the spectrum is determined by  
{SLc0SRc0+sin212θH}{CRc1CLc2+μ62SLc1SRc2}+μ32SLc0CLc0CRc1SRc2=0.
(4.44)
For the lowest mode, the electron,  
SLc0SRc2CLc2μ32CLc0sin212θH,
(4.45)
so that  
me={1π1μ3(12c2)(1+2c0)zLc2c0sin12θHmKKfor c0,c2<12,1π1μ3(2c21)(1+2c0)zLc0+0.5sin12θHmKKfor c0,c2>12.
(4.46)
One finds that  
memu=1μ312c212c0×{zLc2c0for c0,c2<12,1for c0,c2>12.
(4.47)

4.2.6. (vi) QEM=+1 : eˆ,eˆ,Eˆ,Eˆ

There are no zero modes. The boundary conditions at y=ϵ (z=1+) for right-handed components are given by  
eˆˇR=0,DˆeˆˇR'iμ4DEˆˇR'=0,EˆˇR'iμ4eˆˇR'μ6EˆˇR=0,DEˆˇR+μ6DEˆˇR'=0,
(4.48)
and wave functions in the twisted gauge are given by  
(eˆˇ˜Reˆˇ˜R'EˆˇR'EˆˇR)=(αeˆCR(z;λ,c0)αeˆSR(z;λ,c0)αEˆCR(z;λ,c1)αEˆSR(z;λ,c2))fR(x).
(4.49)
Expressions for the left-handed components are obtained by simple replacement which would be obvious from the cases for QEM=±13, etc. The boundary conditions in (4.48) are converted to  
(cosθH2CRc0isinθH2SRc000isinθH2SLc0cosθH2CLc0iμ4SLc10μ4sinθH2CRc0iμ4cosθH2SRc0CRc1μ6SRc200μ6SLc1CLc2)(αeˆαeˆαEˆαEˆ)=0.
(4.50)
The spectrum is determined by  
{SLc0SRc0+cos212θH}{CRc1CLc2+μ62SLc1SRc2}+μ42SRc0CRc0SLc1CLc2=0.
(4.51)
For the lowest mode,  
SRc0SLc1CRc1μ42CRc0cos212θH,
(4.52)
so that  
meˆ={1π1μ4(12c0)(1+2c1)zLc0c1cos12θHmKKfor c0,c1<12,1π1μ4(2c01)(1+2c1)zLc1+0.5cos12θHmKKfor c0,c1>12.
(4.53)
One finds that  
meˆmu=1μ41+2c11+2c0zLc0c1cot12θH
(4.54)
both for c0,c1<12 and for c0,c1>12.

4.2.7. (vii) QEM=0 : ν,ν,N,N,S,S,νˆ,νˆ,Nˆ,Nˆ

Only νL, νR have zero modes. In general all these ten components mix with each other. It is convenient to split them into two sets:  
Set 1:ν,ν,N,N,S,Set 2:νˆ,νˆ,Nˆ,Nˆ,S.
The boundary conditions at y=ϵ (z=1+) become  
νˇR+iμ3NˇR=0,DˆνˇR'+μ2DSˇR=0,NˇR'μ6NˇR=0,SˇRμ5SˇR'μ2νˇR'=0,DNˇR+iμ3DˆνˇR+μ6DNˇR'=0,
(4.55)
for Set 1, and  
DˆνˆˇR'iμ4DNˆˇR'=0,νˆˇRμ1SˇR'=0,DNˆˇR+μ6DNˆˇR'=0,DSˇR'+μ5DSˇR+μ1DˆνˇR=0,NˆˇR'iμ4νˆˇR'μ6NˆˇR=0,
(4.56)
for Set 2. When μ5=0, the two sets of boundary conditions decouple from each other. We set μ5=0 in the following analysis.
Wave functions in the twisted gauge are given by  
(νˇ˜Rνˇ˜R'NˇRNˇR'SˇR)=(ανSR(z;λ,c0)ανCR(z;λ,c0)αNSR(z;λ,c2)αNCR(z;λ,c1)αSCR(z;λ,c2)),(νˆˇ˜R'νˆˇ˜RNˆˇR'NˆˇRSˇR')=(ανˆSR(z;λ,c0)ανˆCR(z;λ,c0)αNˆCR(z;λ,c1)αNˆSR(z;λ,c2)αSSR(z;λ,c1)).
(4.57)
The boundary conditions (4.55) and (4.56) for μ5=0 lead to  
(cosθH2SRc0isinθH2CRc0iμ3SRc200isinθH2CLc0cosθH2SLc000μ2SLc2iμ2sinθH2SRc0μ2cosθH2CRc000CRc200μ6SRc2CRc10iμ3cosθH2CLc0μ3sinθH2SLc0CLc2μ6SLc10)(αναναNαNαS)=0,(cosθH2CLc0isinθH2SLc0iμ4SLc100isinθH2SRc0cosθH2CRc000μ1SRc1iμ1sinθH2CLc0μ1cosθH2SLc000CLc100μ6SLc1CLc20iμ4cosθH2SRc0μ4sinθH2CRc0CRc1μ6SRc20)(ανˆανˆαNˆαNˆαS)=0.
(4.58)
The spectrum for Set 1 is determined by  
sin2θH2{CLc0CRc2+μ22SRc0SLc2}{CRc0CRc1CLc2+μ32SLc0CRc1SRc2+μ62CRc0SLc1SRc2}+cos2θH2{SLc0CRc2+μ22CRc0SLc2}{SRc0CRc1CLc2+μ32CLc0CRc1SRc2+μ62SRc0SLc1SRc2}=0.
(4.59)
As will be seen shortly, μ2 needs to be very large to have small neutrino masses. Careful evaluation of each term in (4.59) is necessary to find approximate formulas for neutrinos. For the lowest mode with λzL1,  
CLc0CRc2+μ22SRc0SLc2zLc0c2{1μ22(λzL)2zL2(c2c0)(12c0)(1+2c2)},SLc0CRc2+μ22CRc0SLc2λzL1+c0c2{11+2c0+μ22zL2(c2c0)1+2c2},SRc0CLc2+μ32CLc0SRc2λzL1+c2c0{112c0+μ32zL2(c0c2)12c2}
(4.60)
for c0,c2<12, and  
CLc0CRc2+μ22SRc0SLc2zLc0c2{1μ22(λzL)2zL2c21(2c01)(1+2c2)},SLc0CRc2+μ22CRc0SLc2λzL1+c0c2{11+2c0+μ22zL2(c2c0)1+2c2},SRc0CLc2+μ32CLc0SRc2λzLc0+c2{12c01+μ322c21}
(4.61)
for c0,c2>12. For neutrinos, λzL=πmν/mKK. In the third generation, for which we choose c0,c2<12, it is found, a posteriori, that μ2λzL1+c2c0~(mτ/mt)sin12θH1, μ2zLc2c0~mτ/mντ1, and μ3zLc0c2~mt/mτ1. In the first and second generations we have c0,c2>12. It is found, a posteriori, that μ2λzL0.5+c2~(me/mu)sin12θH1, μ2zLc2c0~me/mνe1, and μ32~(mu/me)21. Hence, in both cases the mass of the lowest mode, the neutrino, is determined approximately by  
SLc2SRc21μ22μ32sin212θH,
(4.62)
so that  
mν={1π1μ2μ314c22sin12θHmKKfor c2<12,1π1μ2μ34c221zLc2+0.5sin12θHmKKfor c2>12.
(4.63)
One finds that  
mνmu=1μ2μ314c2214c02×{1for c0,c2<12,zLc0c2for c0,c2>12.
(4.64)
We note that  
mνme=1μ21+2c21+2c0zLc0c2
(4.65)
for c0,c2<12 and for c0,c2>12.
The spectrum for Set 2 is determined by  
sin2θH2{SRc0CLc1+μ12CLc0SRc1}{SLc0CLc2CRc1+μ42CRc0CLc2SLc1+μ62SLc0SRc2SLc1}+cos2θH2{CRc0CLc1+μ12SLc0SRc1}{CLc0CLc2CRc1+μ42SRc0CLc2SLc1+μ62CLc0SRc2SLc1}=0.
(4.66)
The mass of the lowest mode is approximately given by  
mνˆ={π1mKKcot12θH(112c0+μ12zL2(c0c1)12c1)(11+2c0+μ42zL2(c1c0)1+2c1)for c0,c1<12,π1mKKcot12θH(12c01+μ122c11)(zL2c01+2c0+μ42zL2c11+2c1)for c0,c1>12.
(4.67)

4.3. Exotic particles

In each generation one can reproduce the mass spectrum of quarks and leptons at the unification scale by adjusting the parameters c0, c1, c2, μ2, μ3, μ4/μ6 in (4.13), (4.30), (4.46), and (4.63). There are more than enough parameters.

However, there also appear new particles below the KK scale as shown in (4.18) in the QEM=23 sector, in (4.39) in the QEM=+13 sector, in (4.53) in the QEM=+1 sector, and in (4.67) in the QEM=0 sector. In particular, the exotic particle in the QEM=23 sector causes a severe problem. As shown in (4.19), the ratio of muˆ to mu is solely determined by θH. Phenomenologically, θH<0.1. It will be seen in the next section that with reasonable parameters it is not possible to get a minimum of the effective potential Veff(θH) at very small θH. It is unavoidable to have unwanted light uˆ particles in the first and second generations.

5. Effective potential

In this section, we evaluate the Higgs effective potential Veff(θH) by using the mass spectrum formulas of SO(11) gauge bosons and fermions. The contributions to the effective potential from the quark–lepton multiplets in the first and second generations are negligibly small in the RS space, and can be ignored. In numerical evaluation, we use the mass parameters and gauge-coupling constants listed in Ref. [76].

The one-loop effective potential from each KK tower is given by [9,75,77]  
Veff(θH)=±12d4p(2π)4nln(p2+mn(θH)2)=±I[Q(q);f(θH)],
(5.1)
where {mn(θH)} is the mass spectrum of the KK tower and we take the + sign for bosons and sign for fermions. I[Q;f] is given by  
I[Q(q);f(θH)]:=(kzL1)4(4π)20dqq3ln[1+Q(q)f(θH)],
(5.2)
where Q(q)=Q˜(iqzL1) when the mass spectrum (mn=kλn) is determined by Q˜(λn)=0. For example, when a mass spectrum is determined by the equation A(λn)+B(λn)f(θH)=0, we rewrite the equation as 1+Q˜(λn)f(θH)=0 where Q˜(λ)=A(λ)/B(λ). The first and second derivatives of I[Q(q);f(θH)] with respect to θH are given by  
formula
(5.3)
where f(n)(θH):=nf(θH)/θHn.
The evaluation of the total effective potential Veff(θH)=Veffgauge(θH)+Vefffermion(θH) is straightforward. We are interested in the θH-dependent part of Veff, to which only KK towers with θH-dependent spectra contribute. Veffgauge(θH) in the ξ=1 gauge is decomposed as  
Veffgauge(θH)=VeffW±+VeffZ+VeffY+VeffAza4,Aza11+VeffAzk4,Azk11.
(5.4)
The equations determining the spectra are given by (3.9) for the W± tower, (3.15) for the Z tower, (3.29) for the Y boson tower, (3.36) for the Aza4,Aza11(a=1,2,3) towers, and (3.32) for the Azk4,Azk11(k=5,,10) towers. It has been confirmed that the use of the approximate formula (3.9) in place of the exact formula (3.8), for instance, is numerically justified. One finds that  
VeffW±(θH)=4I[12Q0(q,12);sin2θH],VeffZ(θH)=2I[Q0(q,12);sin2θH],VeffY(θH)=12I[12Q0(q,12);1+cos2θH],VeffAza4,Aza11(θH)=3I[Q0(q,12);sin2θH],VeffAzk4,Azk11(θH)=6I[Q0(q,12);cos2θH].
(5.5)
Here,  
Q0(q,c)=zLq21Fˆc++(q)Fˆc(q),Fˆc±±(q)=Fˆc±12,c±12(qzL1,q),Fˆα,β(u,v)=Iα(u)Kβ(v)ei(αβ)πKα(u)Iβ(v),
(5.6)
where Iα(u) and Kα(u) are modified Bessel functions.
The fermion part Vefffermion(θH) is evaluated in a similar manner. Following the classification based on QEM in the previous section, we decompose Vefffermion into eight parts:  
Vefffermion(θH;c0,c1,c2;μk)=Veff(i)+Veff(ii)+Veff(iii)+Veff(iv)+Veff(v)+Veff(vi)+Veff(vii-1)+Veff(vii-2).
(5.7)
Vefffermion depends on the three bulk mass parameters (cj) and brane interaction mass parameters (μk) in the third generation. We set μ5=0 as before. The equations determining the mass spectra are (i) (4.12) for the QEM=+23 (u-type) quarks, (ii) (4.17) for the QEM=23 (uˆ-type) quarks, (iii) (4.28) for the QEM=13 (d-type) quarks, (iv) (4.37) for the QEM=+13 (dˆ-type) quarks, (v) (4.44) for the QEM=1 (e-type) leptons, (vi) (4.51) for the QEM=+1 (eˆ-type) leptons, (vii-1) (4.59) for the QEM=0 (ν-type) leptons, and (vii-2) (4.66) for the QEM=0 (νˆ-type) leptons. VeffF(i), VeffF(ii), etc. are given by  
Veff(i)(θH)=4I[Q0(q,c0);sin212θH],Veff(ii)(θH)=4I[Q0(q,c0);cos212θH],Veff(iii)(θH)=4I[Q(iii)(q,c0,c1,c2,μ4,μ6);sin212θH],Veff(iv)(θH)=4I[Q(iv)(q,c0,c1,c2,μ3,μ6);cos212θH],Veff(v)(θH)=4I[Q(v)(q,c0,c1,c2,μ3,μ6);sin212θH],Veff(vi)(θH)=4I[Q(v)(q,c0,c1,c2,μ4,μ6);cos212θH],Veff(vii01)(θH)=4I[Q(vii01)(q,c0,c1,c2,μ2,μ3,μ6);cos212θH],Veff(vii02)(θH)=4I[Q(vii02)(q,c0,c1,c2,μ1,μ4,μ6);sin212θH],
(5.8)
where  
formula
(5.9)
and Fˆc±±=Fˆc±±(q).
The Higgs mass mH(θH=θHmin) is determined by  
mH2(θH)=1fH2d2Veff(θH)dθH2|θH=θ1,
(5.10)
where fH is given by (2.37), or by  
fH=sin2θWπαemk2(zL21)log(zL).
(5.11)
Here, αem is the fine-structure constant, and θW is the Weinberg angle.

In the following we give example calculations for the effective potential and show a result for the Higgs mass. As we remarked before, the current SO(11) model necessarily contains light exotic particles, and therefore is not completely realistic. With this in mind, we do not insist on reproducing all of the observed values of the masses of the SM gauge bosons, Higgs boson, quarks, and leptons. Further, the GUT relation leads to sin2θW=38. The renormalization group equation effect must be taken into account to compare it with the observed value at low energies.

From the mass relations (4.31), (4.47), and (4.65) applied to the third generation, one finds the following constraints for the brane mass parameters (μ2,μ3,μ4,μ6):  
μ21+2c21+2c0zLc0c2mτmντ,μ312c212c0zLc2c0mtmτ,μ6μ41+2c01+2c2zLc2c0mbmt.
(5.12)
For c0=c2, these constraints lead typically to μ2>O(1010), μ3~100, μ440μ6, and μ6=O(1). No constraint appears for μ1. It should be noted that the brane parameters μk sensitively depend on the bulk mass parameters c0 and c2, as demonstrated below.

To find a consistent set of parameters we use the following procedure: Depending on the initial values of c2, μ1, and μ4, one may not find a consistent solution at step 4. In particular, we could not find consistent solutions with θHmin~0.1 for c0=c2. Judicious choice of appropriate values for c2, μ1, and μ4 is necessary.

  • (0) We fix zL=ekL and pick θH=θHmin.

  • (1) We suppose that the minimum of Veff(θH) is located at θH=θHmin. Equation (3.15) determines the spectrum {λZ(n)} of the Z tower. By using the zero mode mass mZ(0) and the observed Z boson mass mZobs, k=mZ(0)/λZ(0)=mZobs/λZ(0) is determined. The KK mass scale is also determined by mKK=πk/(zL1)πkzL1.

  • (2) The observed top quark mass mtobs determines the bulk mass parameter of the third generation SO(11) spinor fermion c0 through (4.13).

  • (3) We choose a sample value of the bulk mass parameter of SO(11) vector fermion c2. Then the brane mass parameters μ2, μ3, and μ6/μ4 are determined by (5.12). For μ1 and μ4 we have taken sample values μ1=1 and μ4=0.5.

  • (4) At this stage Veff(θH) is determined, once the bulk mass parameters of SO(11) vector fermions c1 is given. c1 is fixed by demanding that Veff(θH) has a global minimum at θH=θHmin.  
    0=ddθHVeff(θH)|θH=θHmin.
    (5.13)
  • (5) By using the above values of the bulk and brane parameters, we obtain the Higgs boson mass mH by using (5.10).

We give a sample calculation for the effective potential Veff(θH) and mH(θH). Let us take, as a set of input parameters, zL=1010, θH=0.10, αem1(mZ)=127.916±0.015, sin2θW(mZ)=0.23116±0.00013, mt=173.1±1.22GeV, mb=4.18GeV, mτ=1.776GeV, and mντ=0.1eV. For mb and mτ, we use the central values. The value of mντ is a reference value for our calculation. mKK, k, and fH are determined to be  
mKK=1.088×104 GeV,  k=3.464×1013 GeV,  fH=2216 GeV.
(5.14)
For mt=165.0,170.0,175.0GeV, consistent sets of the bulk and brane parameters are tabulated in Table 5. The Higgs boson mass mH is the output. In the current model it comes out in the range 50 GeV<mH<55 GeV, smaller than the observed value mH125GeV. Even if one takes slightly different values for c2, μ1, and μ4, the value of mH does not change very much.
Table 5.

Consistent parameter sets for θH=0.10, zL=1010, (μ1,μ4)=(1.0,0.50) for various values of mt. The Higgs boson mass mH is the output.

Top quark Bulk parameters Brane parameters Higgs 
mt[GeV] c0 c1 c2 μ2 μ3 μ6 mH[GeV] 
165.0 0.3696 0.4286 0.2970 9.05×1010 21.8 0.00249 50.96 
170.0 0.3559 0.4293 0.3120 5.20×1010 36.8 0.00420 51.77 
175.0 0.3496 0.4286 0.3270 2.95×1010 62.8 0.00719 53.52 
Top quark Bulk parameters Brane parameters Higgs 
mt[GeV] c0 c1 c2 μ2 μ3 μ6 mH[GeV] 
165.0 0.3696 0.4286 0.2970 9.05×1010 21.8 0.00249 50.96 
170.0 0.3559 0.4293 0.3120 5.20×1010 36.8 0.00420 51.77 
175.0 0.3496 0.4286 0.3270 2.95×1010 62.8 0.00719 53.52 
Table 5.

Consistent parameter sets for θH=0.10, zL=1010, (μ1,μ4)=(1.0,0.50) for various values of mt. The Higgs boson mass mH is the output.

Top quark Bulk parameters Brane parameters Higgs 
mt[GeV] c0 c1 c2 μ2 μ3 μ6 mH[GeV] 
165.0 0.3696 0.4286 0.2970 9.05×1010 21.8 0.00249 50.96 
170.0 0.3559 0.4293 0.3120 5.20×1010 36.8 0.00420 51.77 
175.0 0.3496 0.4286 0.3270 2.95×1010 62.8 0.00719 53.52 
Top quark Bulk parameters Brane parameters Higgs 
mt[GeV] c0 c1 c2 μ2 μ3 μ6 mH[GeV] 
165.0 0.3696 0.4286 0.2970 9.05×1010 21.8 0.00249 50.96 
170.0 0.3559 0.4293 0.3120 5.20×1010 36.8 0.00420 51.77 
175.0 0.3496 0.4286 0.3270 2.95×1010 62.8 0.00719 53.52 

The effective potential for mt=170GeV is displayed in Fig. 1. The global minimum is located at θH=0.10, and the EW symmetry breaking takes place. In Figs. 2 and 3, the contributions of gauge fields and fermions are plotted separately.

Fig. 1.

The effective potential Veff(θH) for θHmin=0.10, zL=1010, and mt=170GeV. Veff(θ)/[(kzL1)4/(4π)2] has been plotted. The bulk mass parameters are given by (c0=0.3599,c1=0.4293,c2=0.3120). The bottom figure shows the behavior near the minimum. The blue solid, the green dashed, and the red short-dashed lines show the effective potential containing the contributions from all the SO(11) bulk gauge boson and fermions, only SO(11) bulk gauge boson, and only SO(11) bulk fermions, respectively.

Fig. 1.

The effective potential Veff(θH) for θHmin=0.10, zL=1010, and mt=170GeV. Veff(θ)/[(kzL1)4/(4π)2] has been plotted. The bulk mass parameters are given by (c0=0.3599,c1=0.4293,c2=0.3120). The bottom figure shows the behavior near the minimum. The blue solid, the green dashed, and the red short-dashed lines show the effective potential containing the contributions from all the SO(11) bulk gauge boson and fermions, only SO(11) bulk gauge boson, and only SO(11) bulk fermions, respectively.

Fig. 2.

Contributions of gauge fields to Veff(θH). The input parameters are the same as in Fig. 1. The green solid line represents all gauge field contributions for the effective potential, which is the same as the green dashed in Fig. 1. The red dashed line is the (i) W± contribution, the purple short-dashed line is the (ii) Z contribution, the orange dashed line is the (viii) Y contribution, the blue dashed line is the (ii) Aza4,Aza11(a=1,2,3) contribution, and the brown short-dashed line is the (v) Azk4,Azk11(k=5,,10) contribution.

Fig. 2.

Contributions of gauge fields to Veff(θH). The input parameters are the same as in Fig. 1. The green solid line represents all gauge field contributions for the effective potential, which is the same as the green dashed in Fig. 1. The red dashed line is the (i) W± contribution, the purple short-dashed line is the (ii) Z contribution, the orange dashed line is the (viii) Y contribution, the blue dashed line is the (ii) Aza4,Aza11(a=1,2,3) contribution, and the brown short-dashed line is the (v) Azk4,Azk11(k=5,,10) contribution.

Fig. 3.

Contributions of fermions to Veff(θH). The parameter set is the same as in Figure 1. The red solid line is the total fermion contribution for effective potentials, which is the same as the red dashed line in Figure 1. The green dashed line is the (i) QEM=+23 fermion contribution, the cyan short-dashed line is the (ii) QEM=23 fermion contribution, the brown dashed line is the (iii) QEM=13 fermion contribution, the pink short-dashed line is the (iv) QEM=+13 fermion contribution, the blue dashed line is the (v) QEM=1 fermion contribution, the gray short-dashed line is the (vi) QEM=+1 fermion contribution, the orange dashed line is the (vii-1) QEM=0 fermion contribution, and the magenta short-dashed line is (vii-2) QEM=0 fermion contribution.

Fig. 3.

Contributions of fermions to Veff(θH). The parameter set is the same as in Figure 1. The red solid line is the total fermion contribution for effective potentials, which is the same as the red dashed line in Figure 1. The green dashed line is the (i) QEM=+23 fermion contribution, the cyan short-dashed line is the (ii) QEM=23 fermion contribution, the brown dashed line is the (iii) QEM=13 fermion contribution, the pink short-dashed line is the (iv) QEM=+13 fermion contribution, the blue dashed line is the (v) QEM=1 fermion contribution, the gray short-dashed line is the (vi) QEM=+1 fermion contribution, the orange dashed line is the (vii-1) QEM=0 fermion contribution, and the magenta short-dashed line is (vii-2) QEM=0 fermion contribution.

It can be seen in Figure 2 that the contributions from (v) Azk4,Azk11 (k=5,,10) and (viii) Y bosons dominate over the others in the gauge field sector. In the fermion sector there appears to be cancelation among contributions from various components. It can be seen in Figure 3 that the contribution of (i) the top quark is almost canceled by that of (ii) the uˆ-type tˆ fermion. The bottom quark and dˆ-type bˆ fermion contributions are not canceled out, but each contribution is small. The tau lepton and eˆ-type τˆ fermion contributions are not canceled out, but each contribution is small. The four contributions from b, bˆ, τ, and τˆ add up to almost zero. The contribution from neutral fermions is appreciable in the current model.

In the previous section we observed that there appear light exotic fermions that should not exist in reality. In this section we have observed that there appear cancelations among the contributions to Veff(θH) from fermions and their corresponding exotics. These two seem to be related, and the too-light Higgs boson mass mH is inferred to be a result of those cancelations.

6. Conclusion and discussions

In the present paper we have explored SO(11) gauge–Higgs grand unification in the RS space. SO(11) gauge symmetry is broken to SO(4)×SO(6) symmetry by the orbifold boundary conditions, which is spontaneously broken to SU(2)L×U(1)Y×SU(3)C by the brane scalar Φ16 on the Planck brane. The EW SU(2)L×U(1)Y symmetry is dynamically broken to U(1)EM by the Hosotani mechanism. The Higgs boson appears as the four-dimensional fluctuation mode of the AB phase in the fifth dimension, or the zero mode of Ay. Thus the gauge–Higgs unification is achieved.

Quark–lepton fermion multiplets are introduced in Ψ32, Ψ11, and Ψ11' in each generation. Unlike the SO(5)×U(1)X gauge–Higgs EW unification, one need not introduce brane fermions on the Planck brane. The quark–lepton masses are generated by the Hosotani mechanism with θH0, supplemented with the brane interactions on the Planck brane. We have demonstrated that the quark–lepton mass spectrum can be reproduced by adjusting the parameters of the brane interactions.

One of the interesting features of the model is that proton decay is forbidden, in sharp contrast to the GUT models in four dimensions. The quark–lepton number NΨ is conserved by the gauge interactions and brane interactions.

In the current model, however, there appear light exotic fermions associated with uˆ-type, dˆ-type, and eˆ-type fermions, which contradicts observation. The Higgs boson mass mH, which is predicted in the current gauge–Higgs grand unification, turns out too small. The small mH is a result of the partial cancelation among the contributions of the quark–lepton component and the exotic fermion component to the effective potential Veff(θH). In other words the exotic fermion problem and the small mH problem seem to be related to each other. The model needs improvement in this regard. We hope to report how to cure these problems in the near future.

Acknowledgements

This work was supported in part by the Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Nos. 23104009 and 15K05052.

Funding

Open Access funding: SCOAP3.

Appendix A. SO(11), SO(10), and SO(4)

The generators of SO(11), Tjk=Tkj=Tjk (j,k=1,,11), satisfy the algebra  
[Tij,Tkl]=i(δikTjlδilTjk+δjlTikδjkTil).
(A1)
In the adjoint representation,  
(Tij)pq=i(δipδjqδiqδjp),TrTjkTlm=2(δjlδkmδjmδkl),Tr(Tjk)2=2.
(A2)
As a basis of SO(11) Clifford algebra, it is convenient to adopt  
{Γj,Γk}=2δjkI32,Γ1=σ1σ1σ1σ1σ1,Γ2=σ2σ1σ1σ1σ1,Γ3=σ3σ1σ1σ1σ1,Γ4=σ0σ2σ1σ1σ1,Γ5=σ0σ3σ1σ1σ1,Γ6=σ0σ0σ2σ1σ1,Γ7=σ0σ0σ3σ1σ1,Γ8=σ0σ0σ0σ2σ1,Γ9=σ0σ0σ0σ3σ1,Γ10=σ0σ0σ0σ0σ2,Γ11=σ0σ0σ0σ0σ3=iΓ1Γ10,
(A3)
where σ0=I2 and {σk} are Pauli matrices. In terms of Γj the SO(11) generators in the spinorial representation are given by  
Tjk=i4[Γj,Γk](=i2ΓjΓk for jk),(Tjk)2=14I32, Tr(Tjk)2=8.
(A4)
The orbifold boundary conditions P0,P1 in (2.6) and (2.7) break SO(11) to SO(4)×SO(6). The generators of the corresponding SO(4)SU(2)L×SU(2)R in the spinorial representation are given by  
TL=12(T23+T14T31+T24T12+T34)=12σ(10)σ0σ0σ0,TR=12(T23T14T31T24T12T34)=12σ(01)σ0σ0σ0.
(A5)
The orbifold boundary condition P0 at the Planck brane reduces SO(11) to SO(10), whose generators are given by Tjk (j,k=1,,10). In the representation (A3), those generators become block-diagonal TjkSO(10)=[](σ0orσ3) so that a spinor 32 of SO(11) splits into 1616¯ of SO(10):  
Ψ32=(Ψ16Ψ16¯).
(A6)
With (A3) one finds that  
Γj*=(1)j+1Γj,RΓjR=(1)jΓj,RΓj*R=Γj,RTjk*R=Tjk,R=Γ2Γ4Γ6Γ8Γ10=R=R1  =σ2σ3σ2σ3σ2  Rˆσ2.
(A7)
It follows that for an SO(11) spinor Ψ32, the R-transformed one also transforms as 32:  
Ψ˜32iRΨ32*,Ψ32'=(1+i2ϵjkTjk)Ψ32Ψ˜32'=(1+i2ϵjkTjk)Ψ˜32.
(A8)
Its SO(10) content is given by  
Ψ˜32=(Ψ˜16Ψ˜16¯)=(RˆΨ16¯*+RˆΨ16*).
(A9)

Appendix B. Basis functions in RS space

Mode functions of various fields in the RS spacetime are expressed in terms of Bessel functions. We define, for gauge fields,  
C(z;λ)=π2λzzLF1,0(λz,λzL),C(z;λ)=π2λ2zzLF0,0(λz,λzL),S(z;λ)=π2λzF1,1(λz,λzL),S(z;λ)=π2λ2zF0,1(λz,λzL),
(B1)
where Fα,β(u,v)=Jα(u)Yβ(v)Yα(u)Jβ(v). They satisfy  
zddz1zddz(C(z;λ)S(z;λ))=λ2(C(z;λ)S(z;λ)),C(zL;λ)=zL,C(zL;λ)=0,S(zL;λ)=0,S(zL;λ)=λ,CSSC=λz.
(B2)
It follows that  
ddzzddz1z(C(z;λ)S(z;λ))=λ2(C(z;λ)S(z;λ)),ddz{1zS(z;λ)}|z=zL=0.
(B3)
For fermions with a bulk mass parameter c we define  
(CLSL)(z;λ,c)=±π2λzzLFc+12,c12(λz,λzL),(CRSR)(z;λ,c)=π2λzzLFc12,c±12(λz,λzL),
(B4)
which satisfy  
D+(c)(CLSL)=λ(SRCR),D(c)(CRSR)=λ(SLCL),    D±(c)=±ddz+cz,CR=CL=1,SR=SL=0,atz=zL,CLCRSLSR=1.
(B5)
We note that for λzL1 and c0,  
C(1;λ)~zL{1+O(λ2zL2)},C(1;λ)~λ2zLlnzL{1+O(λ2zL2)},S(1;λ)~12λzL{1+O(λ2zL2)},S(1;λ)~λzL1{1+O(λ2zL2)},CL(1;λ,c)~zLc{1+O(λ2zL2)},CR(1;λ,c)~zLc{1+O(λ2zL2)},SL(1;λ,c)~λzLc+12(c+12){1+O(λ2zL2)},SR(1;λ,c)~{λzLc2(c12){1+O(λ2zL2)}for c>12,λzL1/2lnzLfor c=12,λzL1c2(12c){1+O(λ2zL2)}for c<12.
(B6)
In particular,  
SL(1;λ,c)SR(1;λ,c)~{λ2zL2c+14c21{1+O(λ2zL2)}for c>12,12λ2zL2lnzLfor c=12,λ2zL214c2{1+O(λ2zL2)}for c<12.
(B7)

References

[1]
Hosotani
Y.
,
Phys. Lett. B
 
126
,
309
(
1983
).
[2]
Hosotani
Y.
,
Ann. Phys. (N.Y.)
 
190
,
233
(
1989
).
[3]
Davies
A. T.
McLachlan
A.
,
Phys. Lett. B
 
200
,
305
(
1988
).
[4]
Davies
A. T.
McLachlan
A.
,
Nucl. Phys. B
 
317
,
237
(
1989
).
[5]
Hatanaka
H.
Inami
T.
Lim
C. S.
,
Mod. Phys. Lett. A
 
13
,
2601
(
1998
).
[6]
Agashe
K.
Contino
R.
Pomarol
A.
,
Nucl. Phys. B
 
719
,
165
(
2005
).
[7]
Medina
A. D.
Shah
N. R.
Wagner
C. E.
,
Phys. Rev. D
 
76
,
095010
(
2007
).
[8]
Hosotani
Y.
Sakamura
Y.
,
Prog. Theor. Phys.
 
118
,
935
(
2007
).
[9]
Hosotani
Y.
Oda
K.
Ohnuma
T.
Sakamura
Y.
,
Phys. Rev. D
 
78
,
096002
(
2008
);
79
,
079902
(
2009
) [erratum].
() ()
[10]
Gripaios
B.
Pomarol
A.
Riva
F.
Serra
J.
,
J. High Energy Phys.
 
0904
,
070
(
2009
).
[11]
Hosotani
Y.
Noda
S.
Uekusa
N.
,
Prog. Theor. Phys.
 
123
,
757
(
2010
).
[12]
Funatsu
S.
Hatanaka
H.
Hosotani
Y.
Orikasa
Y.
Shimotani
T.
,
Phys. Lett. B
 
722
,
94
(
2013
).
[13]
Sakamura
Y.
Hosotani
Y.
,
Phys. Lett. B
 
645
,
442
(
2007
).
[14]
Hosotani
Y.
Kobayashi
Y.
,
Phys. Lett. B
 
674
,
192
(
2009
).
[15]
Hasegawa
K.
Kurahashi
N.
Lim
C. S.
Tanabe
K.
,
Phys. Rev. D
 
87
,
016011
(
2013
).
[16]
Kurahashi
N.
Lim
C. S.
Tanabe
K.
,
Prog. Theor. Exp. Phys.
 
2014
,
123B04
(
2014
).
[17]
Funatsu
S.
Hatanaka
H.
Hosotani
Y.
,
Phys. Rev. D
 
92
,
115003
(
2015
).
[18]
Hosotani
Y.
Tanaka
M.
Uekusa
N.
,
Phys. Rev. D
 
84
,
075014
(
2011
).
[19]
Funatsu
S.
Hatanaka
H.
Hosotani
Y.
Orikasa
Y.
Shimotani
T.
,
Phys. Rev. D
 
89
,
095019
(
2014
).
[20]
Georgi
H.
Glashow
S. L.
,
Phys. Rev. Lett.
 
32
,
438
(
1974
).
[21]
Mambrini
Y.
Nagata
N.
Olive
K. A.
Quevillon
J.
Zheng
J.
,
Phys. Rev. D
 
91
,
095010
(
2015
) [arXiv:1502.06929 [hep-ph]] [Search inSPIRE].
[22]
Hisano
J.
Muramatsu
Y.
Omura
Y.
Yamanaka
M.
,
Phys. Lett. B
 
744
,
395
(
2015
) [arXiv:1503.06156 [hep-ph]] [Search inSPIRE].
[23]
Brennan
T. D.
, arXiv:1503.08849 [hep-ph] [Search inSPIRE].
[24]
Feruglio
F.
Patel
K. M.
Vicino
D.
,
J. High Energy Phys.
 
1509
,
040
(
2015
) [arXiv:1507.00669 [hep-ph]] [Search inSPIRE].
[25]
Babu
K. S.
Khan
S.
,
Phys. Rev. D
 
92
,
075018
(
2015
) [arXiv:1507.06712 [hep-ph]] [Search inSPIRE].
[26]
Fukuyama
T.
Ichikawa
K.
Mimura
Y.
, arXiv:1508.07078 [hep-ph] [Search inSPIRE].
[27]
Nagata
N.
Olive
K. A.
Zheng
J.
,
J. High Energy Phys.
 
1510
,
193
(
2015
) [arXiv:1509.00809 [hep-ph]] [Search inSPIRE].
[28]
Arbelaez
C.
Longas
R.
Restrepo
D.
Zapata
O.
,
Phys. Rev. D
 
93
,
013012
(
2016
) [arXiv:1509.06313 [hep-ph]] [Search inSPIRE].
[29]
Ferreira
P. M.
Grimus
W.
Jurciukonis
D.
Lavoura
L.
,
Nucl. Phys. B
 
906
,
289
(
2016
) [arXiv:1510.02641 [hep-ph]] [Search inSPIRE].
[30]
Boucenna
S. M.
Krauss
M. B.
Nardi
E.
,
Phys. Lett. B
 
755
,
168
(
2016
) [arXiv:1511.02524 [hep-ph]] [Search inSPIRE].
[31]
Evans
J. L.
Nagata
N.
Olive
K. A.
Zheng
J.
,
J. High Energy Phys.
 
1602
,
120
(
2016
) [arXiv:1512.02184 [hep-ph]] [Search inSPIRE].
[32]
Mambrini
Y.
Nagata
N.
Olive
K. A.
Zheng
J.
, arXiv:1602.05583 [hep-ph] [Search inSPIRE].
[33]
Chu
X.
Smirnov
A. Y.
,
J. High Energy Phys.
 
1605
,
135
(
2016
) [arXiv:1604.03977 [hep-ph]] [Search inSPIRE].
[34]
Babu
K. S.
Bajc
B.
Saad
S.
, arXiv:1605.05116 [hep-ph] [Search inSPIRE].
[35]
Bajc
B.
Smirnov
A. Y.
, arXiv:1605.07955 [hep-ph] [Search inSPIRE].
[36]
Maekawa
N.
Muramatsu
Y.
,
Prog. Theor. Exp. Phys.
 
2014
,
113B03
(
2014
) [arXiv:1401.2633 [hep-ph]] [Search inSPIRE].
[37]
Maekawa
N.
Muramatsu
Y.
Shigekami
Y.
,
Prog. Theor. Exp. Phys.
 
2014
,
113B02
(
2014
) [arXiv:1405.4193 [hep-ph]] [Search inSPIRE].
[38]
Ishihara
T.
Maekawa
N.
Takegawa
M.
Yamanaka
M.
,
J. High Energy Phys.
 
1602
,
108
(
2016
) [arXiv:1508.06212 [hep-ph]] [Search inSPIRE].
[39]
Maekawa
N.
Muramatsu
Y.
, arXiv:1601.04789 [hep-ph] [Search inSPIRE].
[40]
Hisano
J.
Kobayashi
D.
Kuwahara
T.
Nagata
N.
,
J. High Energy Phys.
 
1307
,
038
(
2013
) [arXiv:1304.3651 [hep-ph]] [Search inSPIRE].
[41]
Yamatsu
N.
,
Prog. Theor. Exp. Phys.
 
2013
,
123B01
(
2013
) [arXiv:1304.5215 [hep-ph]] [Search inSPIRE].
[42]
Hisano
J.
Kuwahara
T.
Omura
Y.
,
Nucl. Phys. B
 
898
,
1
(
2015
);
907
,
476
(
2016
) [erratum] [arXiv:1503.08561 [hep-ph]] [Search inSPIRE].
() ()
[43]
Fonseca
R. M.
,
Nucl. Phys. B
 
897
,
757
(
2015
) [arXiv:1504.03695 [hep-ph]] [Search inSPIRE].
[44]
Feger
R. P.
Kephart
T. W.
,
Phys. Rev. D
 
92
,
035005
(
2015
) [arXiv:1505.03403 [hep-ph]] [Search inSPIRE].
[45]
Fonseca
R. M.
Hirsch
M.
,
Phys. Rev. D
 
92
,
015014
(
2015
) [arXiv:1505.06121 [hep-ph]] [Search inSPIRE].
[46]
Bajc
B.
Hisano
J.
Kuwahara
T.
Omura
Y.
, arXiv:1603.03568 [hep-ph] [Search inSPIRE].
[47]
Kawamura
Y.
Miura
T.
,
Int. J. Mod. Phys. A
 
28
,
1350055
(
2013
) [arXiv:1301.7469 [hep-ph]] [Search inSPIRE].
[48]
Goto
Y.
Kawamura
Y.
Miura
T.
,
Phys. Rev. D
 
88
,
055016
(
2013
) [arXiv:1307.2631 [hep-ph] [Search inSPIRE].
[49]
Goto
Y.
Kawamura
Y.
,
Phys. Lett. B
 
752
,
252
(
2016
) [arXiv:1508.06357 [hep-ph]] [Search inSPIRE].
[50]
Abe
H.
Fujimoto
Y.
Kobayashi
T.
Miura
T.
Nishiwaki
K.
Sakamoto
M.
Tatsuta
Y.
,
Nucl. Phys. B
 
894
,
374
(
2015
) [arXiv:1501.02787 [hep-ph]] [Search inSPIRE].
[51]
Fujimoto
Y.
Kobayashi
T.
Nishiwaki
K.
Sakamoto
M.
Tatsuta
Y.
, arXiv:1605.00140 [hep-ph] [Search inSPIRE].
[52]
Abe
H.
Kobayashi
T.
Otsuka
H.
Takano
Y.
Tatsuishi
T. H.
, arXiv:1605.00898 [hep-ph] [Search inSPIRE].
[53]
Slansky
R.
,
Phys. Rep.
 
79
,
1
(
1981
).
[54]
Yamatsu
N.
, arXiv:1511.08771 [hep-ph] [Search inSPIRE].
[55]
Hosotani
Y.
Yamatsu
N.
,
Prog. Theor. Exp. Phys.
 
2015
,
111B01
(
2015
) [arXiv:1504.03817 [hep-ph]] [Search inSPIRE].
[56]
Hosotani
Y.
Yamatsu
N.
,
PoS PLANCK
 
2015
,
058
(
2015
) [arXiv:1511.01674 [hep-ph]] [Search inSPIRE].
[57]
Yamatsu
N.
,
Prog. Theor. Exp. Phys.
 
2016
,
043B02
(
2016
) [arXiv:1512.05559 [hep-ph]] [Search inSPIRE].
[58]
Burdman
G.
Nomura
Y.
,
Nucl. Phys. B
 
656
,
3
(
2003
).
[59]
Haba
N.
Harada
M.
Hosotani
Y.
Kawamura
Y.
,
Nucl. Phys. B
 
657
,
169
(
2003
);
669
,
381
(
2003
) [erratum].
() ()
[60]
Haba
N.
Hosotani
Y.
Kawamura
Y.
Yamashita
T.
,
Phys. Rev. D
 
70
,
015010
(
2004
).
[61]
Lim
C. S.
Maru
N.
,
Phys. Lett. B
 
653
,
320
(
2007
).
[62]
Kojima
K.
Takenaga
K.
Yamashita
T.
,
Phys. Rev. D
 
84
,
051701(R)
(
2011
).
[63]
Frigerio
M.
Serra
J.
Varagnolo
A.
,
J. High Energy Phys.
 
1106
,
029
(
2011
).
[64]
Funatsu
S.
Hatanaka
H.
Hosotani
Y.
Orikasa
Y.
Shimotani
T.
,
Prog. Theor. Exp. Phys.
 
2014
,
113B01
(
2014
).
[65]
Kakizaki
M.
Kanemura
S.
Taniguchi
H.
Yamashita
T.
Phys. Rev. D
 
89
,
075013
(
2014
).
[66]
Matsumoto
Y.
Sakamura
Y.
,
J. High Energy Phys.
 
1408
,
175
(
2014
).
[67]
Kitazawa
N.
Sakai
Y.
,
Mod. Phys. Lett. A
 
31
,
1650041
(
2016
).
[68]
Matsumoto
Y.
Sakamura
Y.
,
Prog. Theor. Exp. Phys.
 
2016
,
053B06
(
2016
).
[69]
Adachi
Y.
Maru
N.
, arXiv:1604.01531 [hep-ph] [Search inSPIRE].
[70]
Hasegawa
K.
Lim
C. S.
, arXiv:1605.06228 [hep-ph] [Search inSPIRE].
[71]
Yamamoto
K.
,
Nucl. Phys. B
 
883
,
45
(
2014
).
[72]
Cossu
G.
Hatanaka
H.
Hosotani
Y.
Noaki
J.-I.
,
Phys. Rev. D
 
89
,
094509
(
2014
).
[73]
Akerlund
O.
de Forcrand
P.
,
PoS Lattice
 
2014
,
272
(
2015
).
[74]
Knechtli
F.
Rinaldi
E.
, arXiv:1605.04341 [hep-lat] [Search inSPIRE].
[75]
Falkowski
A.
,
Phys. Rev. D
 
75
,
025017
(
2007
).
[76]
Olive
K. A.
et al. 
[Particle Data Group Collaboration],
Chin. Phys. C
 
38
,
090001
(
2014
).
[77]
Hatanaka
H.
Hosotani
Y.
,
Phys. Lett. B
 
713
,
481
(
2012
).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Funded by SCOAP3