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A general formulation is given to the quantum theory of steady diffusion. In seeking for a 
steady solution of Liouville's equation, the boundary condition is taken into account by requiring that 
the solution should lead to a given distribution of average density. The distribution is to be determin­
ed by macroscopic law of diffusion and macroscopic boundary condition. 

The basic equation thus obtained has a form similar to Bloch's kinetic equation and reduces to 
the latter in the limit of a system of weakly interacting particles. This is shown by generalizing a 
damping theoretical expansion of Kohn and Luttinger. 

It is found that the Einstein relation is valid only for the symmetric part of diffusion- and electric 
conductivity tensors, in agreement with Kasuya's suggestion. 

§ 1. Introduction 

Recently Kubo and others1
),2) have succeeded in formulating quantum statistical ex­

pressions for transport coefficients such as electric and thermal conductivities. These 

formulae are just as general and rigorous as, say, the familiar expression for the partition 

function Z=Tr(exp { H/kT}). In practice appropriate approximation should, of course, 

be made in evaluating transport coefficients. The point is, however, that the conventional 

Bloch equation is nothing else but the lowest order approximation in a damping theoretical 

treatment of dynamical motion (see § 6) and by 110 means the most general way of ap­

proaching the problem. 

Now, in the case of mechanical disturbances such as an external electric field, deri­

vation of these formulae has been rather simple. The mechanical disturbance is expressed 

as a definite perturbing Hamiltonian and the deviation from equilibrium caused by it can 

be obtained by perturbation theory. On the other hand, thermal disturbances such as 

density and temperature gradients cannot be expressed as a perturbing Hamiltonian in an 

unambiguous way. Accordingly in the previous paper,2) use had to be made of Onsager's 

assumption that the average regression of spontaneous fluctuation follows the macroscopic 

laws. As a result, certain ambiguity has been left over, concerning. galvano-magnetic 

effects caused by thermal disturbances. 

In the present paper, a general formulation free from such an assumption will be 

given to the theory of . thermal disturbances and, in order to show the basic idea, the case 

of steady diffusion will be discussed in detail. In this case, the usual Bloch equation 

takes the form in which the drift term due to the density gradient is balanced by the 
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<collision term. Our purpose is then to generalize the equation so as to include system;; 

of strongly interacting particles (electrons, phonons, im puri ties, etc.). In other words, we 

shall seek for a steady solution of the quantum theoretical Liouville equation 

i[H, /'J 0, (1·1) 

where H is the Hamiltonian of our system and /' the density matrix, taking fj = 1. The 

boundary condition should be such that a steady gradient of average density is established 

by attaching suitable sources at the boundary. But for such a boundary condition, (1· 1) 

would lead to an equilibrium density matrix, microcanonical, canonical or grand canonical. 

The microscopic detail of the interaction with sources at the boundary, however, should 

not be essential to the law of diffusion as an intrinsic property of a large system. We 

need only to suppose that the solution of (1· 1) should lead to a given distribution of 

average density. The distribution is in turn to be determined by the macroscopic law 

of diffusion together with a given macroscopic boundary condition. The law of diffusion 

itself is a consequence from our solution of (1. 1), so that the method is self-consistent. 

In this sense, the thermal disturbance is a constraint upon dynamical motion and in 

fact appears as an effective potential in our basic equation (~4). The equation takes a 

form similar to the Bloch equation and reduces to the latter in the limit of a system of 

weakly interacting particles. This will be shown by applying a damping theoretical ex­

pansion due to Kohn and Luttinger~) (§ 6). 

An important consequence of the theory is that the well-known Einstein relation is 

valid only for the symmetric part of diffusion- and electric conductivity tensors. In other 

words, as regards the Hall effect, the gradient of chemical potential is not equivalent to 

the electric field. The difference becomes appreciable at low temperatures and under 

strong magnetic fields. Such a difference has first been suggested by Kasuya and is con­

firmed far beyond doubt by the present theory (§ 5) . 
From technical points of view, the present theory is similar to the so-called method 

of pseudo-potentia1.4
) It may also be regarded as generalization of Enskog's classical kinetic 

theory.';) Indeed, Matsubara(») has once tried the theory of hydrodynamic properties from 

the latter point of view. It seems, however, that neither physical nor mathematical details 

has ever been examined by these previous authors. 

§ 2. Local equilibrium 

For definiteness, let us take a system of similar particles (say, electrons in a metal), 

in which there exists a steady gradient of average density. The number density of 

particles is represented by the operator 

n(x) = 2.~r)(X-Xj) =J2-1 Y'n"eii.",K', (2·1) 
j k 

where J2 is the volume of the system and n", = 2~ exp { - il~· Xj} should not be confused 

with occupation numbers. The average density is then given by 

Tr(pn(x» =(n(x». (2·2) 
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950 S. Nakajima 

As mentioned in § 1, we suppose that the right-hand side of (2·2) is given as a solution 
of the macroscopic diffusion equation, hence (2· 2) is the condition for the solution of 
(1· 1) to satisfy. 

Let us describe the system in equilibrium by the grand canonical distribution 

Pe=exp{~N-{iH} /Tr(exp{~N-(3H}), (2.3) 

where ~ is the chemical potential, f9 the temperature and N the operator representing the 
total number of particles and commutable with th~ Hamiltonian H. We shall assume 
that the system in equilibrium is homogeneous so that 

(2.4) 

is ,constant. Hence (2· 3), though stationary, does not satisfy (2· 2) when the density 

gradient does exist. 
A possibility of satisfying (2·2) is given by the so-called local equilibrium distribu-· 

tion 

Pl=exp {¢+fN- {iH+ 2.j/~kn_k}' (2·5) 
k::j::O 

Here ¢ 1S a normalization constant to make 

Tr(pz) =1 (2·6) 

and the ~ k (k 0) represent the fluctuation of chemical potential in space. From (2· 6) 
it can be easily seen that 

(2·7) 

where the entropy S is defined as 

-Tr(p,logp,), (2·8) 

Obviously, (2·2) is always satisfied by (2·5) with suitably chosen f k • But (2·5} 

does not satisfy (1.1), [H, Pt] ~ O. 
We are thus led to assume the density matrix in the form 

ACtually, however, no approximation is introduced in so far as Writing the density matrix: 
in this form. For any given p, we can always find (2·5) with parameters ¢, f, (3 and 

fk so chosen that 

Tr(p) =Tr(p,), Tr(pN) =Tr(Pl N) 
(2·10) 

Then (2· 9) can be regarded as the definition of ,01' which should necessarily satisfy 

Tr(P1) =0, Tr(p1N) =0, 

Tr(p1H) =0, Tr(P1nk) =0. 
(2.11) 
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There are an infinite number of density matrices which satisfy (2· 10) . Among 

them, (2· 5) is characterized by the maximum entropy and makes it possible to introduce. 

thermodynamical variables as shown by (2·7). This is the reason for our particular 
choice (2·5), because the boundary condition of our problem is most simply expressed in 

terms of thermodynamical variables by specifying chemical potentials of sources at the 

boundary. 

§ 3. Linear approximation 

Now let us assume that the system is not far from equilibrium so that both ~k and 

PI are sman quantities of first order. Then the well-known expansion formula of ordered 

exponential leads to 

(3 ·1) 

where we have made use of (2·4), i. e., 
• 

(3·2) 

and n,~(-i;') is obtained from Heisenberg's operator nk(t) =exp(iHt) ·nk·exp( -iHt) by 
replacing t with - ii. . 

Under the linear approximation (3· 1), the average density is given as 

where 

~ 

gk= J di. (n_k( ii.)nk\' 
o 

In particular, assuming gk IS continuous at k=o, we can show that 

limgk=tJ(an/af) 
k~O 

where n IS defined by (2· 4) . From (2· 7), the entropy is expressed as 

S=So- ~ ~'gi/ (nk) (n_,,) 

(3·3) 

(3 ·4} 

(3·5} 

(3·6) 

with the equilibrium value So. If the density fluctuation is gradual, i. e., only the ~k 

with small k are excited, we may replace gk, in (3· 6) by (3·5), so that we obtain the. 
well-known expansion of entropy in thermodynamics. 

Let us now turn to the flow density which is defined by 

vex) (3·7) 

In cases of neutral particles and also of charged particles without magnetic fields, the. 

local equilibrium (3· 1) makes no contribution to the average flow. In the case of charged 

particles moving in a magnetic field, on the contrary, the flow does not vanish even in 
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,equilibrium, because there exists a diamagnetic current. This current, however, can be 

described in terms of a magnetization and, in particular, never gives rise to a net current 

flowing through a cross section of a conductor (except for superconductors). So we here­

after disregard this part of flow. 

There still remains the flow due to the second term of (3· 1) 

~ d) 
.\ (3' (n_l',( i)v"')e' 
o 

(3·8) 

This vanishes if there is no magnetic field. Because then n", is invariant and Vir. changes 

its sign under the transformation of time reversal. In the presence of a magnetic field, 

however, the transformation of time reversal includes the reversal of the magnetic field, 

too. So we can infer only that (3· 8) is reversed together with the magnetic field. In 

other words, the flow is antisymmetric with respect to the magnetic field. But it does 

vanish in the classical limit and therefore in the high temperature limit, too. In fact, 

in the classical limit, we can first perform the integration over particle velocities in taking 

the expectation value in (3· 8) and this vapishes because it is linear in velocities. 

A more detailed discussion of (3·8) will be given in § 5. 

§ 4. Basic equation and its solution 

Now inserting (2·9) together with (3· 1) into (1· 1), we obtain our basic equation 

f\ 

i[H, ('1J=- )}{"J ~: Pe~-l.(-i) 
o 

where, of course, 

A particular solution of the inhomogeneous equation (4 -1) IS given by 

CD 
(. 

PI = .\ dt e-5t e- iHt 
[' eiHt 

() 

(4 ·1) 

(4·2) 

(4-3) 

where [' stands for the right-hand side of (4. 1) . In fact, (4· 3) is the solution which 

we are seeking for. This can be seen in the following way. 

First, note that the macroscopic relaxation time, i. e., the relaxation time in which 

the system recovers equilibrium, is of the order of [2/ D. Here I is the linear dimension 

of the system and D the diffusion coefficient. Now suppose that the system was in 

equilibrium at the remote past, t = - 00, and that the difference of chemical potentials 

at two ends of the system has been increased very slowly from zero to the present value 

(t=O). For instance, suppose that it is proportional to exp(Ct), where o <c<t,D/l2. 

Then we may assume that a steady diffusion is established at each instant of time from 

,f = - 00 to t = O. This is a sort of adiabatic change and may be represented by the 
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~olution proportional to expect) of the following Liouville equation 

At t=O, we have 

(4·4) 

whose solution is nothing but (4· 3), as can be easily confirmed. 

It still remains to be confirmed that (4· 3) does satisfy our subsidiary conditions 

(2 ·11). For any dynamical va.riable a, we have 

co ~1 .. 

-V"" If' et \" d;. . ~ :;1.0, dt e- . 9 < n_k ( 
() 0 I 

Tr(Pl a) = . (4·5) 

If we take a=l, the left-hand side is Tr(pJ, a.nd the right-hand side contains <~-k\~' 
This should vanish, because any flow in equilibrium is steady. The first condition in 

(2 . 11) is thus satisfied. As for the second condition, we take a = N. Since N com­

mutes with the Hamiltonian, the right-hand side of (4·5) contains < ~-k N) c" This 

should also vanish, because 

Tr(e~N-:~H~ .. N) -I. 

Thus the second condition is satisfied. Similarly, it can be seen by taking a = H that 

.the third condition is also satisfied. 

As for the final condition in (2· 11), we have 

00 ;~ 

. f' f'dJ. 
Tr(P1n,.) = -il1,f",. J dt e-St

.\ T (V_h( -iA)n",(t»e 
o 0 

(4·6) 

where we have made use of the continuity equation (4·2). In general, (4· 6) does not 

vanish. We should, therefore, restrict ourselves to the case where the density fluctuation 

is so gradual that we may replace ( .. -) e in (4· 6) by < V N) e • Here V is the net flow, 

1. e., v'" with k 0. Since there is no net flow in equilibrium as mentioned before, we 

have 

Thus, under our restriction, the fourth condition in (2 ·11) is satisfied. 

The restriction can more precisely be expressed in the following way. In terms of 

space coordinates, (4· 6) is written as 

Tr(P1n(x» - J dx' R(x-x') ·J7;(x' ) (4·7) 

with 
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954 S. Nakajima 

00 ~ d}' 
R(x-x') = 1 dt e-f-t 1 Q (v (x', -i}.)n(x, t) >e. 

o 0 t-' 

Except for such singular systems as superconductors and superfluids, the relaxation function 

R (x) will decay off within a finite distance. The gradient of chemical potential' Ii' ~ 
should be nearly constant over this distance. This is the precise formulation of our 

restriction. If the condition is not satisfied, the simple themodynamical notion of diffu­

sion is not applicable in describing th~ phenomenon. 

§ 5. Diffusion constant and Einstein's relation 

Now, we take a=Vk in (4·5), then the flow arising from PI is given as 

co ~ 

(Vk) 1 ==Tr(P1Vk) = -~k i dt e-Et i ~ (~-k( -i}.)Vk(t) >e. 
() 0 

(5 ·1) 

Making use of the continuity equation (4· 2), we see that in the limit of k -7> 0 the 

diffusion equation takes the form 

('Ok(J.)l = - 2JDJ~) X (ik.., ~k)' (5·2) 
"\I 

fl., lJ = x, y, z. 

In terms of space coordinates, this is written as 

(5·3) 

Here the diffusion tensor Dl;{J- is given by 

co ~, 

DJ~) = i dt e-,-t 1 ~ (V"\I( -iA)V(J.(t) >e 
() () 

(5 ·4) 

where V is the net flow. 

On the .other hand, it has been foundl
) that the electric conductivity tensor IS given,. 

in general, by 

CfJ ~ 

0- ILl; = 1 dt e-Et 1 dA (Iv (- iA)ItJ. (t) >e 
o 0 

where J = e V is the electric current and e the charge of the particle. 

with (5· 5), we obtain the well-known Einstein relation 

o-wlJ=pe2 D~~). 

(5 '5) 

Comparing (5· 4 ) 

(5·6) 

It should be remembered, however, that in the presence of a magnetic field we have the­

flow arising from the local equilibrium distribution, (3· 8), which is antisymmetric and 

thus makes contribution to the antisymmetric part of the diffusion tensor. Thus we. 
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obtain the important conclusion that the Einstein relation is valid only for the symmetric 

part of diffusion and electric conductivity tensors. 

In order to see the situation in more detail, let us take a system of electrons in a 

metal. For simplicity we shall neglect the interaction with phonons, taking account of 

impurity scattering alone. The Hamiltonian then takes the form 

H= 22H' (X j ) , 
j 

where A is the vector potential of the magnetic field and cp the scalar potential including 

both periodic and impurity potentials. Hereafter an operator of one electron will be 

primed as H'. Let us introduce the system of one electron eigenfunctions 

Then the Hamiltonian can be written as 

where ar , ar * are destruction and creation operators of electrons In the r-state. 

where 

Remember that 

and also that 

nk = 2J (rlnk'i s) ar * ao 

Vk= 2i(rlvk'ls)a,.*aH 

~=i[H', x]. 

(as * a,.ar! * as! ) e = as.S! arr! f( E8 ) (1- f( E,.) ) 

where f is the Fermi distribution function 

Then it is easily seen that (5·1) can be written as 

P 

(5·7) 

Similarly 

(5·8) 

(5·9) 

(5 ·10) 

(5·11) 

where P indicates taking the principal value. The flow arising from this part is anti­

symmetric, whereas the flow arising from the a.function is symmetric. 

Similarly, (3·8) can be written as 

(5·12) 
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For the sum of those terms in which E,. ~ Ep we can make use of 

(sl~~klr) ices E .. ) (sln~,.,lr) (5 ·13) 

so that the sum exactly cancels the anti symmetric part of (5· 11) , On the other hand, 

the terms with E.. in (5, 12) can be transformed as 

From (5·9) we see 

x ~ {(sln~klr) (rlv,/Is) (slvk'lr) (rln~kls)}. 

, , ) - " 
V'" n_k -x 

(5·14 ) 

so that the first term of (5· 14) vanishes. For the second term, we can again make 

use of (5· 13) . Taking the limit of k-~ 0 we find the anti symmetric part of the diffu­
sion tensor 

D (A)­
fL).I-

On the other hand, the antisymmetric palt of the electric conductivity tensor is given as 

1 (T(A) 
!,I..\I (slxILlr) (rlx).Ils)}. 

(5·16) 

Now, characteristic frequencies of the electron velocity (slxlr)exp{i(E, E,.)t} are 

cyclotron frequency We, collision frequency ,and also the average interval of interband 

transitions LlE. If all these frequencies satisfy 

(5' 17) 

then the difference quotient of f in (5 ·16) IS practically the same as the differential 

quotient in (5· 15), and we have the Einstein relation for the anti symmetric part, too. 

It is to be noted here that the second of (5· 17) is the well-known criterion for ap­

plicability of Bloch's kinetic equation, although actually this is too stringent. 

§ 6. Damping theoretical expansion 

Finally, we shall show that our basic equation (4· 1) reduces to the usual Bloch 

equation in the limit of a system of weakly interacting particles. In fact (4·1) has 

mathematically the same form as discussed by Kohn and Luttingerg
) in the case of a 

steady electric field. They have dealt with a simple model in which an electron is 

scattered by impurities. Actually their method can be applied to integration of the 

Liouville equation in general, provided that th~ Hamiltonian satisfies certain conditions. 

First let us introduce a symbolic method due to Kubo. Define the linear operator 

J;, which operates always from the left on any dynamical variable 7) as 
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~.~==i[H, ~J. (6·1) 

Incidentall y, the operator of this sort has been introduced in classical statistical mechanics 

to prove the ergodic theorem.7
) The Liouville equation can be written as 

a 
at 

Let us introduce the Laplace transform 

co 
f' 

{i(s) .\dte-stp(t) 
o 

which converges for ffis>o. Then (6·2) is transformed into 

(s+ ~)p(s) =Po 

(6-2) 

(6·3) 

(6·4) 

where ,()o is the initial density matrix at t = o. Replacing P (s) by PI' Po by r, and 

taking the limit S -7> + 0, we obtain our basic equation (4·4). But we shall be concerned 

with the general case (6· 4) for the moment. 

Now, assume that the Hamiltonian takes the form 

H=Ho+gHr (6·5) 

where g is a small numerical parameter indicating the order of perturbation H J • Cor-

respondingly the operator splits as 

(6·6) 

Let us fix the basic state vectors I a) as 

In the case of the electron-phonon interaction, for instance, a stands for a set of occupa­

tion numbers of free electrons and phonons. We introduce linear operators 5) and X 
which also operate from the left on any dynamical variable as 

(al 5)~la') = (al~la) (~('t('t!' 

(a I X ~ 1 at) = (a 1 11 a') (1- l; ",,! ) . 

Without loss of generality we assume that 5) HI =0. Following Kohn and Luttinger, we 

decompose the density matrix into diagonal and non-diagonal parts 

pes) (5) +('n(s), 
(6 -7) 

Inserting (6 -7) together with (6·6) into (6·4) and taking diagonal and non-diag.:mal 
parts of the equation respectively, we obtain 

s/'r1(s) +g5)~JPn(s) =5)/,0' 
(6·8) 
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Eliminating {in from these, we have a formal solution for the diagonal part 

We can derive a power series expansion from (6 -9), supposing that 

and making use of 

In particular the lowest order approximation satisfies 

Remember that 
0:> 

----1-1)= r dtexp( st) -exp( iHot) -1) exp(iHot)_ 
s+ J 

o 

Then, taking the explicit matrix representation of (6 - 12), . we find 

25 -----1 (a 1 HI I a') \2 (P~' (s) - p~ (s) ) 
52+ «(V~_(V~,)2 

In the limit of s ~ + 0, we have 

(6-10) 

(6-11) 

(6-12) 

(6-13) 

Hence (6 -13) is nothing else but the Laplace transform of the so-called master equation 

P~(t) = ~27rg21(a\Hlla')120'«(V~_(V~') (P(J.,(t) -P~(t», 

P~(t=O) =(alpola)-

which van Hove8
) has obtained by me-.at;ls of rather a lengthy expansion_ 

Now replacing /' by Pu Po by I', and taking the limit s ~ + 0, we have 

21'( g2~ I (aIH1Ia') \26 (W(J.-(V(J.f) (FcfJ - F~) = (alI'la') 
~, 

(6 -14) 

(6·15) 

where F~ is the diagonal element of ,01 in the lowest order approximation. The equation 

(6 -15) says that the drift term due to the gradient of chemical potential is b~lanced by 

the collision term due to perturbation HI' More precisely, F~ is still a many~particle 

distribution function and we have further to reduce (6· 15) to obtain the Bloch equation 

of one particle distribution function_ 

Of course, certain conditions should be satisfied in order that the transport equation 
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,( 6 ·12) be already a good approximation. Smallness of the parameter g is by no means 

: sufficient. For instance, in the case of an electron scattered by impurities, the contribu­

tion of the second term in (6· 11) relative to the first would not be simply proportional 

to g, but to g fJ, if impurities were on regular lattice points. In this case the transport 

equation can never be a good approximation, because gJJ can be increased indefinitely by 

increasing the volume fJ. In general, the size dependence of perturbation in a large 

· system plays an . essential role here. We shall not enter into this prl)blem, as the detailed 

·analyses have been given by van Hove.S
) 

§ 7. Conclusions 

Quantum statistical mechanics of steady diffusion has been formulated. The theory 

-is the most natural generalization of the Bloch kinetic equation and in fact reduces to 

the latter under certain conditions. An important conclusion is that the Einstein relation 

is valid only for the antisymmetric part of diffusion- and electric conductivity tensors. 

Obviously, the theory can be generalized so as to include heat conduction and viscosity, 

,which will be discussed in a subsequent paper. 

The expressions for transport coefficients derived in this way are general and rigorous. 

· In statistical thermodynamics, we have the general expression for the partition function 

-and introduce approximate methods in evaluating this; the virial expansion in the case 

of imperfect gases, normal vibrations in the case of crystals, and so on. In just the same 

. way, we should introduce appropriate methods of approximation to evaluate transport 

· coefficients, starting with our general expressions. Thus we may couclude that quantum 

-.theory of transport coefficients now stands on the same level as statistical mechanics of 

equilibrium properties, though admittedly we know few methods of approximation such as 

Bloch's kinetic equation which is nothing but the lowest order approximation in a damp­

ing theoretical expansion. 
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