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We present a proof of the Korringa relation for the impurity nuclear spin-lattice
relaxation of transition-metal impurities in simple metals. Two important mechanisms are
considered; the relaxation due.to the d-spin fluctuations and the d-orbital fluctuations. By
using the 5-fold degenerate Anderson model it is shown that the Korringa relation is valid
at low temperatures 7€ Tx for these two mechanisms in any order of the Coulomb interac-
tion between d-electrons. The proof can be easily extended to the Korringa relation for
the Wolff model. '

§ 1. Introduction

The electronic structure of transition-metal impurities in simple metals is well
described by the Anderson model.” A merit of this model is that it allows us a
systematic study of dilute alloys containing transition elements. Exact theories
of the Anderson model are desired for this reason.

It is believed that the ground state of the Anderson model is a nonmagnetic
singlet for any finite values of the Coulomb repulsion U on the impurity orbital.
Since the ground state should be a smooth function of U, itis quite natural then
to expect that the ground state for any finite U can be obtained from the one
for U=0 by the perturbation expansion. Recently Yamada and Yosida® have
developed a theory in this direction, and studied in detail low-temperature pro-
perties® of the symmetric single-band Hamiltonian (i.e., the impurity d-orbital is
half-filled). A remarkable point of this theory is that they have found some
-exact relations among the low-temperature impurity contributions of the specific
heat, the magnetic susceptibility and the resistivity. The relations remain valid
irrespective: of the magnitude of U as far as the perturbation expansion in U
converges. When U is very large (i.e., the s-d limit), the relations Yamada and
Yosida found coincide with what Noziéres® has discovered on the basis of the
s-d model and a phenomenological Fermi-liquid theory. One may regard therefore

-the Yamada-Yosida theory as a sort of microscopic justification of the Fermi-liquid
-description of dilute Kondo alloys.

* We mean by low temperature the region T Tk (Kondo temperature), where Tk is defined
as ‘the inverse of the static impurity susceptibility.

¥202 Iudy g uo1senb Aq 2£06.81/.96/F/7S/21one/d1d/woo dno-olwepeoe)/:sdiy wouy papeojumoq



968 H. Shiba

The purpose of this paper is to apply the Yamada and Yosida’s approach to
dynamical response functions and to give a proof of the Korringa relation
(KR) for the impurity nuclear spin-lattice relaxation® at low temperatures T« Tk
and low fields HL Hy(Hyx~ksTx/t5). Two mechanisms are believed to be im-

portant to the nuclear spin-lattice relaxation of transition-metal impurities; the hy-

perfine coupling of the impurity nuclear spin with the d-spin fluctuations (core
polarization) and with the orbital moment fluctuations. The KR between the nucle-

ar spln—lattlce relaxation time T, and the Knight shift K is stated as?
{K(a)Tmz)T Cao» 1-1)
K (orb)Tl(orb)T C(orb) )

Where the suffixes d and orb indicate the d-spin and d-orbital moment mechanisms,
respectlvely  C(gy and Ciomy are constants. T (Tiom) is proportional to thei imagi-
nary part of the low-frequency spin (orbital) susceptibility, while K, (Korm)
is essentially the static spin (orbital paramagnetic) susceptibility :¥

K(d) = A(d) hm Re xspln (a) + i(?) ’

1 (1-2a)
Titb = kT Ay ot lim | L T (i (0 +i0)) |
‘and
K(orb) = A(orb) hni: Re xg'b (Cl) + Zd) ’ =
' (1-2b)

= ko T Al Got [ L1m ats Co-+9))],

where A and Aem represent the hyperfine coupling constants, and g, and 4,
are the g-factor of the impurity nucleus and the nuclear Bohr magneton, respec-
tively. Xepin(@+20)- and yom(w+70) are the frequency-dependent spin and orbital
paramagnetic susceptibilities of the impurity d-electrons, respectively:

T (0+0) = @ua [ dbe i[5, 55O
) = us)Ss*; S¢"Vosris »
S e i) = et [ L @), L))

' =1L LY

with the total d-spin S;° and the total orbital angular momentum L*. For a small

1-3)

field HL Hy there is no distinction between ‘the longitudinal and transverse ‘sus-

“ceptibilities; "~ (0 +0) =2y* (v +140) holds. Hence (1-1) is equivalent to

hm [% Im Xspin (e) + i@)] = [xspin (0) ]Z/C(d)kB (gmun)z (1 * 43)

o0

and
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The Korringa Relation for the Impurity Nuclear Spin-Lattice Relaxation 969

lim [% Im fors (0 + ia)]é [ors (O T/ Corkis Gt . (1-4b)

00

* since the direction of the oscillating magnetic

Here ‘we have used y instead of y”
field is irrelevant. Both sides of (1-4) should be evaluated at zero temperature.
We prove this relation quite generally on the basis of the Anderson model with
5), 6)

5-fold degeneracy

H= kZ P kZ (Vim@is@me +h.c.)
7 mo

+ Z Eddnfo'dma + 2’ (Udr;ta n:r'a'dm’o"dma + Jdr;:—nrdg’a’dmo"dm'o') ’ (1 : 5)

aa’

. where a, denotes the creation operator of conduction electrons and d,, is that
of the impurity d-electron with the orbital angular momentum m. ¢, and E; are
measured from the chemical potential. The s-d mixing V,, is taken as Vi,=V-
VarY,,(2,) with the spherical harmonics Y;,(2.). The last term describes the
Coulomb and ‘exchange interaction on the d-orbitals. The Hamiltonian (1-5) has
rotational invariance in the spin and real space,” and is suitable for the present
purpose.

The KR (1-4) has been proved by Dworin and Narath® within the random
phase approximation (RPA), which starts from the nonmagnetic Hartree-Fock
(HF) ground state. According to-the RPA Cy and Cym, are given by

Car=(21+1) (215/9nttn)’/21ks ,

Clom = U+ 1) 41) (to/Gute 2k -
The HF approximation predicts a discontinuous transition from the nonmagnetic
to the magnetic state with the increase of Coulomb interaction, which is an  artifact
inherent in the HF. Higher order effects neglected in the HF theory wash it out
completely and lead to a smooth “transition”. That is to say, the exact y(w+140)
for a relatively large Coulomb interaction is greatly different from that in the
HF-RPA. Therefore one may expect a deviation from (1-4a) (1-4b) and
(1-6). In spite of this, as we show, the KR remains valid beyond the HF-RPA
as far as the perturbation expansion in terms of U and J is convergent.

The paper is arranged as follows: Section 2 is devoted to the first step of
" proof, which is based on the Friedel sum rule. In §3 we make an analysis of
the low-frequency spin éusceptibi‘lity and prove the KR for the d-spin fluctuation
mechanism. The proof of the KR for the orbital fluctuatién mechanism is presented
in §4. Some related problems are discussed in the last section.
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970 H. Shiba

~ §2. Friedel sum rule and impurity spin susceptibility at zero
temperature

 The Friedel sum rule for the Anderson model was first proved by Langreth,”
using the’ perturbation expansion for the single-band Anderson model at zero tem-
perature. Following Langreth, we prove the Friedel sum rule with a slight gener-
alization in order to discuss later the impurity spin susceptibility.

First we add a small spin-dependent term. H_;in to the d-electron part of @-5):
-H.spln Z 6ﬂdadmo'dmo' y} (2 * 1)

We study the Friedel sum rule for the combzned Hannltoman H + Hg,. “The
total Iocahzed charge 4n,, with spin ¢ is given by

Adnge= Z Namqg + Z (74e —\”ka) y - (2 2)

where 74,, and 7, are the d- electron and conductlon-electron numbers, respectwely
Mis Tepresents 7, for the pure host metal. These quantltles can be expressed with
the complete d-electron Green’s function Giams (a)—!—zﬁ) , the condiuction-electron

one Gy (0+140) and the Green’ s function for the pure host G%,(w+10). (2-2) is
then equivalent to

tree= | de @ L In) [5) G (e +i0)
+ 2 Gaaa (e +i8) ~Gla(e'+0))]

= [Taereo( = I ) 2 Guan (e+8) (1+| V' YIGL (e +id)) .

2-3)
Here use has been made of the relation

Giro (e +10) =G}, (e +10) + [G;, (e+20)F X VinGaime (e +0) Vi
=G (6+10) + [GLr (e + i) I V* Y Gaane (e+10). 2-4)

f(e) represents the Fermi distribution function. Introducing the proper self-energy
part Zym,(e+10) by , ) T

Guame (e +i0)=[¢ —Eg—|V|? Zk', Gio(e+0) —Zamq (e +i0) ],
EdaEEd~6ﬂda . B I | (25)

(2-3) can be transformed to®

dngg= J:odef(e) ( —% Im)g[gé InEae+ V[ 33 Gro(e +i0)

® As a matter of fact Gumo and Sgme are independent of m because all the 7’s are equivalent.
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The Korringa Relation for the Impurity Nuclear Spin-Lattice Relaxation 971

4 Sane (6 +i0) — &) + Gagmo (6 +0) (;f—ezm(e + ia)]. (2-6)

A key point is that at T'=0°K,
|- aef(e) (=2 1m ) 22[ Guane (e +i0) D Sune(e+ iH]-0 @7

holds for H+ Hyy, An analogous relation was first pointed out by Luttinger®
for the homogeneous Fermi liquid. However the relation has nothing to do with
the momentum conservation in the homogeneous system, but only the energy con-
servation plays an important role. According to Luttinger the relation (2-7) for
a fixed 0 is satisfied as far as the interaction between electrons is spin independent.
In the J term of (1-4) only ‘orbital ‘exchanges occur. Therefore the electron-

electron interaction in (1-4) is spin 1ndependent and (2:7) holds. From (2-6) -

we obtain  at T =0°K
dag = - Im)z 10 (Eag—id + Zams (i0)). (2-8)
7[ m

For the constant density of states of conduction electrons

IVI* 2] Gis (80) = —in| Vo= —id . 2-9)

This has been used in (2:8). Defining the phase shift at the Fermi energy by*

Eys 4 Zims (10)
A ’

0s= -g— —arctan (2-10)

we find from (2-8)
And,,—(2l+ 1) 0, ©(2-11)

Wthh is nothing but the Friedel sum rule.
Now we take the derivative of (2-8) with respect to Otg,~. The result

dmas | _ <_ 1 Im>2[6w— @ zdm,,(ia)/aaﬂM,)is,.:o] (2-12)
00 ttae lpu=o T m —E—Zins (10) +i4

is very useful. The left-hand side of (2:12) is a response of the localized charge
to a small change of the impurity chemical potential. It is related to the fluctua-
tion of the d-electron numbers:**

0474,

7 B
00 tas: - j; dvl{fas (T) Aaor (0))

Su=0

¥ Zams(40) describes the many-body effect at the Fermi energy, and is a real quantity. This
is one of the Fermi-liquid: properties of the present model.

** Actually- the localized charge 4745 contains the d-electron part 3}, 7tame as well as the con-
duction-electron part 3N (mos—nls) (See (2-2)). The latter contribution however vanishes for the
constant density of states of conduction electrons (i.e., the d-electron density of states for U=J=0
is exactly Lorentzian). This is Anderson’s compensation theorem.?
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972 . H. Shiba

={Tas; s Dio (2-13)

with 74, (v) =e¥ %, and Rao=2m (A sdps—<dmtsdns>). The average GO R
taken with (1-5). Combining (2-13) with (2:12) we obtain

~ ~ A 1 60‘0” - (a deo'/adﬂdn") IS =0 ]
2 o= |——1 [ £ R 2-14
Gracs Taoda= Sm)x e ey R R

which leads to the following expression for the static impurity spin susceptibility
at zero temperature:

tepin (0) / (2115’
={8; Si* i
:_i_ 620’00"(('7?“ 3 BasrDio
(_ 1 Im) Z[ 11— ((034m (20) /00 tar) — (O.Z'.zm (.i6) /00 1)) lsa=o ]
27,[ ‘ m —Ed“zdma‘ (16) +ZA

(2-15)

This relation is substituted into the right-hand side of (1-4a). In the next section
the left-hand side of (1-4a) is discussed.

§ 3. Low-frequency spin susceptibility at zero temperature

Sincé the impurity spin is quenched at low temperatures T« T gepin,® the
imaginary part of the dynamical spin- susceptibility is proportional to the frequency
w at low frequencies 0T gepin. )

We make an analysis of the dynamical susceptibility with the thermodynamic
Green’s function defined as

T4,

’ j *dee (TS ()8 (0) ]

—="<<Saz; Sllz>>im
=12, 004Ras; BaeDio, w=21n/B. (n: integer) (3-1)

The retarded Green’s function (1-3) can be obtained by the analytic continuation
iw—>w+10. Especially the w-linear imaginary part of {#gs; e Doris is obtained
from the |w|-linear contribution of (#y,; Tlus- Do at small w. It is because |w|=
(—isgnw)iw goes over to (—i)w by the analytic continuation. In the zero tem-
perature }%mit the discrete energies in the thermodynamic Green’s function formal-

® Tkepin is the Kondo temperature for the impurity spin, which is. most conveniently defined
as .the inverse of ¥spm(0) at zero temperature. We can also define Txom, the Kondo temperature
for the orbital moment quenching as the inverse of Xorn(0) at zero temperature. It is expected
that Tk spin<<T'korn in general.
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The Korringa Relation for the Impurity Nuclear Spin-Lattice Relaxation 973
ism are replaced by corresponding continuous ones. ‘Our analysis hereafter is devid-
ed into 3 steps:¥ :

[1] We apply to {Fus; #aeDio the perturbation- expansion in terms of U

and J and consider a contribution of a certain order of U and J, using the
Feynman diagram. Each diagram consists of d-electron lines and interaction vertices;
the former represents the unperturbed d-electron Green’s function G, .(ie)=[ic— E;
+idsgne]™, while U or. J is.attached to the latter. In order to pick up the
|w|-linear contribution from a given diagram, we leave the w-linear contribution
only in one of the d-electron lines. For the other d-electron lines the limit w—0
is taken carefully, since an extra factor i-sgnw may appear from the singularity

of Gins(ie) at €=0.

A typical diagram of {#us; #us )i looks like Fig. 1. Here the diagram has
been divided into two parts at an w-dependent d-electron line: The left part I';
has an external vertex with incoming energy w, while the right part I, contains
a vertex with outgoing energy w. These two parts are connected with each other by
an even number of d-electron lines, one of which has w-dependence in it. This
division of the diagram is arbitrary as far as the left and right parts have only
one external vertex. It is easy to see that the |w|-linear contribution is obtained
only when the total number of d-electron lines at the division is two. The proof
for this goes as follows: The w-linear contribution of Fig. 1 has the form

— Z Z J‘ %Tﬁanmu")(m; m1i61, Y 7n2ni€2n)
m, M’ Mmy-Mgp J—oco J

Gy 0Ogn

X [3@7 01 02m) (m’; my—iey, -+, Myn—1i€sn)

0 . 2n
wio@CmaGedge oy Gh (e 2n0 () 6,).
di &1 j=1

Substituting the relation

LGy () = = [Gline () F+2 I [Glns (+10)13(2)

into the above expression, we find that the integrand is not singular if .#=>2; after
the integrations the above expression does not contain any 7-sgn o factor in it.
For n=1 the singularities' of Gyn,, (iw+17e) and Gyn,, (i6;) overlap in the
limit w—0. Figure 2 shows the general structure of diagrams with z=1. A
close examination of Ggm,s, (i0+i&)Gim,q, (¢€:) in Fig. 2 gives us the |w|-linear
term —2 (%) (7-sgn ) [Im Gin,q, (+20)1°0 (&) =2| 0| [Im Gom,s, (+70)]* 0 (e,), which
is exactly what we need.

[2] Next we consider the effect of the self-energy insertion to Gim,s, (100 +7&;)-

® Throughout this proof we follow essentially Yamada and Yosida’s analysis® of Green’s
functions by extending it to degenerate orbitals with an arbitrary d-electron number. "
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974 . H. Shiba

. Fig. 1. The structure of a diagram of (Mg ;#as-Y1n for a given order of U and J. It

has two vertex parts I'y and I'; and an even number of d-electron lines connecting
I'y with .

+€

€}

I‘, rg

Fig. 2. The structure of diagrams, which give  Fig. 3. The self-energy insertion to the. two
nonvanishing |w|-linear contributions in the d-electron propagators, which connect I
small o limit. with I's.

Ginm,s,(i8), which is shown in Fig: 3. This type of contribution is expressed as

- 22 J‘ dEIF(MIUI)(m myigy, ml—lel)r(a I (m’; miiey, my—164)

m,m’m,cy

X Gam,a, (0 +761) [1—Zam,q, G0 +761) Gmya, G0 +61) ]
X Ghmyo, (161) [1 = Zamys, (i61) Gom,o, (Ge) T . ' (3-2)

The w-dependence of Xy, (iw+ie;) does not give us any |w]-linear -contribution;
therefore the self-energy insertion does not change the analysis in {1] except for

the replacement of 2|w|[Im Gjn,(+70)]? by 2/w| [Im G,,,,m,( +10) 717, Where Game (i€)
is the. complete d-electron Green’s function

Gaamo (i€) = [ie — Eq+id sgn € — Zamoie) .

The |w|-linear contribution of (3-2) is then given by

lwl > 2. [Im (Guams (+20) T Z 1979 (m; m4i0, mle)

mm’ my

X Ty (m? ;. my60, myi0). o (343).

Hence the |w|-linear contribution of (%4 #4s)in has the form

_M[Im (Gddma' (+ io) ]2 Z 2 1"(0"10'1) (m mllo mlio)
T

mm’ my0,

X T (m? 3 myd0, my0). (3-4)
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The Korringa Relation for the Impurity Nuclear Spin-Lattice Relaxation 975

Here use has been made of the sum I'“°°? of all the possible contributions to
Iy (or I). '

[3] I'“"9 is related to 02 4m,s,(70) /00 LLsg| 5u=0» which appeared in §2. In
fact the following relation holds:

0 2am,q, (20)

. (3-5
00 tas pu=0 )

Z ]"’(0‘010‘1) (m, mlio’ mlz()) — 60‘0’1 —_

'(3-5) is a sort of Ward’s identity,” which connects with a vertex part a change
of the proper self-énergy part due to an infinitesimally small external perturbation
(the spin-depenident impurity chemical potehtial in the present case). Using (3-4),
(3-5) and (2-15) we obtain

‘|w|-linear contribution of % 2100 A as; FaoDio
oo’

2
0] (0o (+ i) 21 (gaz_f_%gzmT>| )
ar dy / on=0

z, S:lz>>i0:|2

g 1za> (-sgn ©) [(Sa*; Sa™aul . (3:6)

The analytic continuation leads us from (3-6) to

lim [— Im {Ss*; Sa’%us] 5 Sa Dl 7(3 -7

0—0

2l1

which is exactly the same as (1-4a) and (1-6).

- §4. The Korringa relation for the d-orbital mechanism

The analysis in §§ 2 and 3 can be easily extended to the proof for the d-orbital
“mechanism. We add to H, (1-5), a new term Hgy instead of Hgi,, where
HZ, is an orbital-dependent perturbation

H;rb: - Z 6ﬂdmd;wdmo' . (4 * 1)

’The localized charge dn,4, with the orbital angular momentum m is given by
U= j dsf(e) (—l Im>2 Goame (& +10),

since the conduction-electron part vanishes for the constant density of states of
host conduction electrons. Notice that Gygns (€ +20) here is the complete d-electron
Green’s function for H+ Has. In the same way as in §2 we transform the
above expression into
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976 H. Shiba
I e , 1 bl . o
Ay = j dsf(e) <—_ Im)z[_ 10 (Egn —id+ Sams (e +i8) —¢)
—o T 7 Lo¢

+ Gagme (¢ +i6>% Same (e +i6>],; 4-2)

EdeEd - 6ﬂdm .

Again we can prove that at T=0°K
"4 1 . 0 .
sf(e)<—_1m>z Guime (e +i0) 2 Samo(e+id)|=0  (4-3)
—e T v Oe

holds, because the J-term in (1-5)
JZ dr;rad;:’a’dma'dm’uz —-J Z,drrtndrz'y'dm’admo" )

mm’
oo’ oo’

may be viewed as showing that the spins are exchanged at the interaction vertex,
while the orbits are unchanged. Then (4-2) leads to the Friedel sum rule

Ag = <——%Im>2 10 (Egn —id + Samoe (i0)). (4-4)

From this equation we obtain

R T

0474y |
aaﬂdm'

Ou=0

2imns(10) in the denominator is independent of m and ¢ actually. The left-hénd
side is related to the fluctuation {Fam; Zam Y1, Where Fgm =3 e (st s@ms— < ditedms).
From (4-5)

oy (1 Omme — (0Zame (80) /00 tam) |su=s _
<<ndm, Fam D= < T Im);[ “Ey— S, (16) +id ] (4 6)

is obtained. 0Zgns (20) /00 Ltam | su=0 has the following properties: 0Zgme(20) /00 am|su=o
is independent of m, and 024n, (20) /00 tam-| su=e (m=Em’) is also 1ndependent of m
and m’. This property leads to

§L?; L)y
= g’mm’((?idm; Bam Do

_(_1 [ L= (0 ums (i6) /06 t1am) — (9 ama (i0) /08 t1am)) lspms
_< n1m>;(§ml)[ —Eq—Zans (i0) +id ]

(m’<m) 4-7)

Now we turn to the |w|-linear contribution of {L?; L*);, at small -w. The

equation corresponding to (3-4) is given by
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The Korringa Relation for the Impurity Nuclear Spin-Lattlce Relaxation 977
|w|-linear part.of {Fum; Zam Die

= 19U Im Guans @) X X 14 (m; s, msi0)

T Go'm.0,
X ') (m’ 3 myd0, m,70). 4-8)
and instead of (3:6) we have

az‘dmm,

4.9
aaﬂdm ( )

Z ]-v(a'o'lo'l) (m ; mlio, mliO) = 6mm1 —

Cu=0
Combining (4-8) with (4-9),

|o|-linear contribution of {L*; L*y,,

= ——,2_|.a.)_I I G ; 2 2 [1_ azdmo‘ . az‘dma’
2 [ Gasme (D)} (3 ) ( e aaﬂdm,)

]2
6u=0

1
(4/3)1(I+1) 21+ 1)

[KL*5 L)wl

= — 2z]0|

can be obtained. One may write it in. the form

2n
“4/3)I+1D) 2l+1)

which is the KR for the d-orbital mechanism.

[CL*; L)w], (4:10)

lim [% (Im (L7 Lz>>m+,-8)] -

0—0

§ 5. Supplementary discussion

(1) ‘We have proved the Korringa relation (KR) for the impurity nuclear
‘spin relaxation due to the d-spin-mechanism as well as the d-orbital mechanism.
Our proof has shown that for the model (1-5) the KR is valid at low temperatures
in any order of the perturbation expansion. It also suggests that the KR may
hold for a Hamiltonian more general than (1-5). If the exchange enhancement
is present in the host, however, the. KR breaks down even in the RPA.?
Therefore the locality of the Coulomb and exchange interaction such as in (1-5)
is. certainly one of the necessary conditions for the KR.* 1In this connection we
want to make a comment on the assumption of the constant density of states of
conduction electrons. Actually that assumption is not essential to our proof,
although it is quite reasonable for transition-metal impurities in simple metals.
If we do not use the assumption, we have to take into account the .conduction-
electron part D\ (714, —7%s) of the localized charge; (2-13) should be then replaced
by

*) The author is indebted to Professor K. Yosida and Professor A. Yoshimori for calling
his attention to this point. )
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aAnd,,

00 liagr =(Alas+ees Waar), 6

0u=0

where 7., =3 (afsar,—<{aisar,y). Therefore (S S0 in (3-6) and (3-7) is
taken over by {Si°; Si’+ S Vw, where S = (1/2)3,0ai,as,. Instead of (3:7) we
obtain

lim [l Im (S S,,‘)),,m] = 20 [0S S+ Sl (5-2)
o0 | 2[+1

€Sd"; Si*+ S5V is a d-spin induced by a small uniform magnetic field, and it is'

exactly the quantity that appears in the Knight shift K. It is also easy to
prove the KR for the Wolff model.’> The outline -of the proof is given in the
Appendix. Anyhow the proof of the KR leads us to conclude that the KR must
be valid in a wide variety of systems, as far as the host exchange is negligible
and the conditions, T« Tk and HL Hy, are satisfied. We refer the reader to
Refs. 4) and 5) as to the analysis of experimental data based on the KR.

(2) In §3 we have examined the low-frequency dynamical spin susceptibility
and showed that it is related to the static spin susceptibility. It is easy to see
that an analogous relation holds for the charge fuctuations: !

lim Im [<<% Aar+7a); % Far+ 7ay) >>m+is] )
00 a) P

2 1, 1., ~ z .
:21f1[<5 »”ﬂ‘“"”w); —2—(”11 +”d¢)>w] . (53)

The static charge susceptibility is suppressed by the Coulomb repulsion; consequent-
ly the low-frequency charge fluctuation is also suppressed as in (5-3).

(3) The static spin susceptibility is enhanced by the Coulomb and exchange
interaction. The Korringa relation shows that the low-frequency spin fluctuations
are also enhanced. Using the perturbation expansion, Yamada estimated the
enhancement of the static susceptibility for the symmetric single-band model.
The corresponding low-frequency spin fluctuations are éasily evaluated with the aid
of (3-7). It is expected in general that €Sd"; Si¥YuocTr i It leads to

lim Im [ (fepin (0 +20) /0] 00 T ittpin -

(4) In this paper we have studied only the low-frequency spin and orbital
susceptibilities at zero temperature in order to prove the KR. The spin (orbital
moment) at zero temperature is quenched at low frequencies, i.e., 0T gopin(WL
Txor). waeyer if we look at the impurity with a ﬁme-scale shorter than #/k;Tx
an appreciable spin or orbital moment shéuld be expected. In order to confirm
this picture we are currently studying the frequency dependence of x(@+10), the

spectrum Im y(w+20) in. particular, over the whole w region. It will be
published in a forthcoming paper.
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Appendix

——The Korringa relation in the Wolff model

* Here we want to give the outline of the proof of the Korringa relation (KR)
for the. single-band Wolff model:”

H= iZ tiaia;.+V ; asa0s+ Uatasiagae , (A-1)
J

where a;, is the annihilation operator of an electron at the j-th site. The transfer
matrix £; is. arbitrary, and the impurity is assumed to be located at the origin.
The KR for this model reads

lim | = Im (55 SyPevn | =200CS5 380l a-2)

where S;* is the spin operator at the j-th site, ie., (an'a;—ay*a;)/2. The KR
(A-2), which corresponds to (5-2) in the Anderson model, was proved by Lederer
and Mills® by using the RPA. However, as we show below, the relation is
quite general. :

By adding a small perturbation Hin=—>,0tsa8:a0; to (A-1) we study the
total displaced charge 4n, for the spin 0. 4n, can be written as

dn= [~ def®) (=2 Im) [T G e+ Vte(e+id)],  (A-3)

where G’ (e+70) =[e+i0—e] 7" (& =Fourier’ transform of #;) is the host Green’s
function. #,(e+:0) is the #-matrix of the impurity scattering, i.e.,
v, .

1-V,Gi(e+id)

+ : . 1 2,(8+i6) s (A.'4)

. A-V,Gh(e+id)Y 1—-2,(e+i0)GH(e+1:0)/(1—V,Gh(e+10))
where V,=V—0u,, and Gyy(e+28) =3 G’ (¢ +i0). The first term of (A-4) is a
pure potential-scattering, while the second term describes the many-body. scattering
modified by the potential scattering. The self-energy 2,(e+i0) is defined as

te(e+i0)=

~ ) Gy (e +i0)
G +C + 6‘ — 00 A'5
we (& 10) = T e 1 i0)) Gl (o 1 30) (A-5)
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with the propagator Gy, from the origin to the origin in the alloy. Substituting
(A-4) into (A-3) and using the Luttinger’s relation at T=0°K

j”daf@)(-l Im)[ao,(e +ia)-@M]=o (A-6)
- o : 0e
for the present case, we find that at 7'=0°K

dny = <——%>Im {In[1— (V,+3,30)) G%(:0) ]}

~1s,. (A-7)
T

Here the phase shift at the Fermi energy

5. — tan-i_ Vot ZoG0)) I
(Ve+ 24 (i0)) Ry —1

was introduced with G (i0) =Ry —ily. (A-7) is the Friedel sum rule in the
present case. From (A-7) we obtain

(A-8)

047, 1\e 1~ o 9%, (i0) B
e =(——)I Goa 0 0ggr ———2? . A-9
aa,uoa' Su=0 < T > m[ ’ (l )] < - 66/1.,.,, aﬂ=o> ( )

The left-hand side is equivalent to (Fy,.; > 7690, where Aie=ajsa;,—<{at,a;s».
The analysis of the low-frequency thermodynamic Green’s function {7,; 790 );s
can be made in the same way as in §3. The only thing we have to do is to

omit the index 7 and to replace G%,(ic) by GY%(ie) /(1 —VGy(ie)). Therefore
we easily find

|o|-linear part of (74s; 705 Yiu

= 12 [0 [ (10) 7 5 (5, — 22260
T 71 a6ﬂ0a

)

). (4-10)

opu=0
(500, 02a00)

6’5/106' 0p=0

Combining (A-10) with (A-9) we obtain (A-2).
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