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967 

We present a proof of the Korringa· relation for the impurity nuclear spin-lattice 
relaxation of transition-metal impurities in simple metals. Two important mechanisms are 
considered; the relaxation due to the d-spin fluctuations and the d-orbital fluctuations. By 
using the 5-fold degenerate Anderson model it is shown that the Korringa relation is valid 
at low temperatures T<f;_Tx for these two mechanisms in any order of the Coulomb interac
tion between d-electrons. The proof can be easily extended to the Korringa relation for 
the Wolff model. 

§I. Introduction 

The electronic structure of transition-metal impurities in simple metals is well 
described bythe Anderson model.n A merit of this model is that it allows us a 

systematic study of dilute alloys containing transition elements. Exact theories 
of the Anderson model are desired for this reason. 

It is believed that the ground state of the A;nderson model is a nonmagnetic 
singlet for any finite values of the Coulomb repulsion U on the impurity orbital. 
Sin<;:e the ground state should be a smooth function of U, it is quite natural then 
to expect that the ground state for any finite U can be obtained from the one 

for U = 0 by the perturbation expansion. Recently Yamada and Y osida2' have 
developed a theory in this direction, and studied in detail low-temperature pro

perties*' of the symmetric single-band Hamiltonian (i.e., the impurity d-orbital is 
half-filled). A remarkable point of this theory is that they have found some 
exact relations among the low-temperature impurity contributions of the specific 

heat, the magnetic susceptibility and the resistivity. The relations remain valid 
irrespective of the magnitude of U as far as the perturbation expansion in U 
converges. When U is very large (i.e., the s-d limit), the relations Yamada and 
Yosida found coincide with what Nozieres8' has discovered on .the basis of the 
s-d model and a phenomenological Fermi-liquid theory. One may regard therefore 

· the Yamada-Yosida theory as a sort of microscopic' justification of the Fermi-liquid 
description of dilute Kondo alloys. 

*> We mean by low temperature the region T<f;_TK (Kondo temperature), where TK is defined 
as the inverse of the static impurity susceptibility. 
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968 H. Skiba 

The purpose of this paper is to apply the Yamada and Yosida's approach to 
dynamical response functions and to give a proof of the Korringa relation 
(KR) for· the impurity nuclear spin-lattice relaxation4' at low temperatures T<f;._T x 
and low fields H<f;._Hx(Hxr-.JkBT x/ IJ.B). Two mechanisms are believed to be im
portant to the nuclear spin-lattice relaxation of transition-metal impurities; the hy-· 
perfine coupling of the impurity nuclear spin with the d-spin fluctuations (core 
polarization). and with the orbital moment fluctuations. The KR between the nucle
ar spin-lattice relaxation time T 1 and the Knight shift K is stated as4' 

{Kfa)Tt<alT=C<al ,. 

Kforb) Tl(orb) T = C (orb) , 
(1·1) 

where the suffixes d and orb indicate the d-spin and d-orbital moment mechanisms, 
respectively. ' Cca> and Ccorb; are constants. Tl(~l (Tl(~rb)) is proportional to the imagi
nary part of· the low-frequency spin (orbital) susceptibility, while Kca> (Kcorb>) 
is essentia}ly the static spin (orbital paramagnetic) susceptibility:4' 

lK<al = A<al lim Re x~~in ((J) + ilJ), . 
a>-+0 

T;(Jl = kBT A~a) (gnttnY lim[_!_ Im (X~in (w + ilJ) )] 
a>-+0 (J) 

(1·2a) 

·and 

jK<orb) = A<orb) lim Re X~~b ((J) + ilJ), 
a>-+0 

;!r)rbl =kBTA~orb) (gnttnY·lim[l.rm Cx:ri; ((J) + ilJ) )] , 
. a>-+0 (J) 

(1·2b) 

where Aca> and Acerb> represent the hyperfine coupling constants, and ffn and IJ.n 
are the g-factor of the impurity nucleus and the nuclear Bohr magneton, respec
tively. Xspin (w + ilJ)· and Xorb(w + ilJ) are the frequency-dependent spin and orbital 
paramagnetic susceptibilities of the impurity d-electrons, respectively: 

I x~~in((J)+ilJ) = (2ttBY .rdtei<"'+i6)ti(.[Sa'(t), sd·co)J> 

= (2ttBY((S/; S/)).,+i6, 

l. X~~b((J) + ilJ) = 11.< So~~te:<"+i6)ti([V(t), V(O)J> 

=/l.B «L ' L » .. +i6 . 

(1·3) 

with the total d-spin Sa' and the total orbital angular momentum L•. For a small 
field H<t.Hx there is no distinction between the longitudinal ~nd transverse sus
ceptibilities; x+-((J)+iO') =2Jczz((J)+ilJ) holds. Hence (1·1) is equivalent to 

lim[l. Im Xspin (w + iO')] = [Xspin (0)]2/C(a)kB (gnttS 
a>-+0 (J) . 

(1·4a) 

and 
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The Korringa Relation for the Impurity Nuclear SPin-Lattice Relaxation 969 

(1·4b) 

Here 'We have used X instead of x" since the direction of the oscillating magnetic 
field is irrelevant. Both sides of (1· 4) should be evaluated at zero temperature. 
We prove this relation quite generally on the basis of the Anderson model with 
5-fold degeneracy5>. 6> 

+ ~ Edd;%adma + ~ (Ud;%.d;%'a'dm'a'dma + Jd;%,d;%'a'dma'dm'a), (1·5) 
mrJ mm' 

a a' 

, where aka denotes the creation operator of conduction electrons and dma is that 
of the impurity d-electron with the orbital angular momentum m. ek and Ed are 

measured from the chemical potential. The s-d mixing Vkm is taken as Vkm = V · 
.J 47C Y1m (Qk) with the spherical harmonics Y1m (!Jk). The last term describes the 
Coulomb and exchange interaction on the d-orbitals. The Hamiltonian (1· 5) has 
rotational in~ariance in the spin and real space,5> and is suitable for the present 
purpose. 

The KR (1· 4) has been proved by Dworin and Narath5> within the random 

Phase approximation (RPA), which starts from the nonmagnetic Hartree-Fock 

(HF) ground state. According to the RP A Cd> and C<orb> are given by 

jC<dJ = (2l+ 1) (2tJ.B!gnfJ.n)2/27CkB, 

1C(orb) = ~ l(l+ 1) (2l+ 1) (tJ.B/gntJ.nY/27CkB. 
(1·6) 

The HF approximation predicts a discontinuous transition from the nonmagnetic 
to the magnetic state with the increase of Coulomb interaction, which is an· artifact 
inherent in the HF. Higher order effects neglected in the HF theory wash it out 
completely and lead to a smooth "transition". That is to say, the exact X (a>+ iB) 
for a relatively large Coulomb interaction is greatly different from that in the 
HF-RPA. Therefore one may expect a deviation from (1·4a) (1·4b) and 
(1·6). In spite of this, ~s we show, the KR remains valid beyond the HF-RPA 
as far as the perturbation expansion in terms of U and J is convergent. 

The paper is arranged as follows.: Section 2 is devoted to the first ste'p of 
proof, which is based on the Friedel sum rule. In § 3 we make an analysis of 
the low-frequency spin susceptibility and prove the KR for the d-spin fluctuation 
mechanism. The proof of the KR for the orbital fluctuation mechanism is presented 

in § 4. Some related problems are discussed in the last section. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/54/4/967/1879037 by guest on 24 April 2024



970 H; Skiba 

§ 2. Friedel sum rule and impurity spin susceptibility at zero 
temperature 

· The Friedel· sum rule for the Anderso~ model was first proved by Langreth/> 
usii:J.g the'perturbation expansion for the single-band Anderson model at zero telll
perature. Following Langreth, we prove the Friedel sum rule with a slight gener
alization in order to discuss later the impurity spin susceptibility. 

First we add a small spin-dependent term. II'spin to the d-electron part of (1·5): 

We study the Friedel sum rule for the combined Hamilto,nian H+II'spin· The ~ ·; total localized charge L1ntl11 with spin (J is given by 

Llntltt = :E ntlmtt + .E (n~ctt -.n~ .. ), m ~ - ·k 
(2·2) 

where ntlmtt and n~c 11 are the d-electron and conduction-ele:ctron numbers, respectively. 
n~ .. represents n~c 11 for the pure host metal. These quB;ntities can be expressed with 
the complete d-electron Greeri's function Gtltlmtt (a>+ iD), the conduction-electron 
one G~c~c 11 (a>+iD) and the Green'~ function for the pure host G~ .. (a>+iD). (2·2) is 
then equivalent to 

Llntltt= J_cocodef(e)(-! Im)q~;G,tlmtt(e+iD) 
+ _E(Gu .. (e+iD) -G~ .. (e+iD))] 

.1:, 

= s:codef(e)(-! Im)~Gtltlmtt(e+iD)(l+IV['~G~ .. (e+iD)). 

(2·3) 
Here use has been made of the relation 

m 

=G~ .. (e+i8) + [G~ .. (e+i8)J'IVI 2 .E G.,tl,. .. (e+i8). (2·4) 
m 

f(e) represents the Fermi distribution func~on. Introducing the proper self-energy 
part Itl,. .. (e+iB) by 

GtltlmtT(e +i8)·= [e -Etl .. -JVI' I; G~,.(e+i8) -ItlmtT(e+i8)J:·1 , 

Etl .. ==Ert- 8 /.ltltt . 

(2 · 3) can be transformed to*> 

k 

Llntttt= def(e) --Im .E -ln(Ert .. +IVI .EG~c,(e+zO.) Jco ( 1 ) [a 2 ·· · • 
-co 7C m ae 1c 

(2·5) 

*> As a matter of fact Gu .... and Ia,. .. are independent of m because all them's are equivalent. 
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The Korringa Relation for the Impurity Nuclear Spin-Lattice Relaxation 971 

+ .EamtJ (e + i(J) -e)+ GaamtJ (e + itJ) J_zamle + itJ)J. 
Be 

(2·6) 

A key point is that at T=0°K, 

Soo def(e) (-i. Im)L:[GaamtJ(e + itJ)J_ZamtJ(e + itJ)J =0 
-00 · n m oe 

(2·7) 

holds for H +H~pin· An analogous relation was first pointed out by Luttinger8> 
for the homogeneous Fermi liquid. Iiowever the relation has nothing to do with 
the momentum conservation in the homogeneous system, but only the energy con
servation plays an important role. According to Luttinger the relation (2 · 7) for 
a fixed (J is satisfied as far as the interaction between electrons is spin independent. 
In the J term of (1· 4) only . orbital 'exchanges occur. Therefore the electron
electron interaction in (1· 4) is spin independent and (2 · 7) holds. From (2 · 6) 
we obtain at T=0°K 

AnatJ = (- ~ Im) ~In (EatJ -iA + ZamtJ (i(J)). (2·8) 

For the constant density of states of conduction electrons 

IVI 2 I:; Gu(i(J) = -iniVfp= -iA. (2·9) 
k 

This has been used in (2 · 8). Defining the phase shift at the Fermi energy by*> 

~ _ n t EatJ + ZamtJ (itJ) u tJ - - - arc an ---'""--'---==.::....o.---<._ 
2 A 

(2 ·10) 

we find from (2 · 8) 

which is nothing but the Friedel sum rule. 
Now we take the derivative of (2·8) with respect to tJ/l.atJ'· The result 

oAnatJ I = (- i_ Im)L: [(JtJtJ'- ca ZamtJ (i(J) jf)(J/l.dtJ') lap=O] 
otJ /l.atJ' op=o . n m - Ea- ZamtJ (itJ) + iA 

(2·12) 

is very useful. The left-hand side of (2 ·12) is a response of the localized charge 
to a small change of the impurity chemical potential. It is rela:ted to the fluctua
tiol;l of the d-electron numbers:**> 

oAnatJ I 
f)(J /l.dtJ' 6p=0 

*> 2:amtJ (i!J) describes the many-body effect at the Fermi energy, and is a, real quantity. This 
is one of the Fermi-liquid· properties of the present model. 

**> Actually the localized charge, dnatJ contains the d-electron part 2Jm namtJ as well as the con
duction-electron part 2J.(n.tJ-n~tJ) (See (2·2)), The latter contribution however vanishes for the 
constant density of states of conduction electrons (i.e., the d-electron density of states for U=J=O 
is exactly Lorentzian), This is Anderson's compensation theorem.'> 
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972 H. Shiba 

(2 ·13) 

with nc~.(r) =eH<n;d,e-Hr and nc~.='E,m(d;:;,dm.-(d;:;,dma)). The average < ···> is 
taken with (1· 5). Combining (2 ·13) with (2 ·12) we obtain 

«nda; nw »io = ( _1_ Im) L, [(](fa/- (a 4dml!/8iJ /f.dl!') la,.=O J ' 
7r m -Ed-4clml!(iiJ) +iJ . 

(2 ·14) 

which leads to the following expression for the static impurity spin susceptibility 
at zero temperature: 

Xspin (0) / (2/f.BY 

= ((Sc~'; S/))io 

= 1.. ~)10"' «nda; ndl!' »io 
4 ""' 

= (-1_ Im)'E,[ 1- ( (84amr(iiJ)/8i11J.c~r)- (84amt(iiJ)/ai1fJ.aJ.)) la,.=o J. 
2n m -Ea-4dma(iiJ) +i.d 

(2 ·15) 

This relation is substituted into the right-hand side of (1· 4a). In the next section 
the left-hand side of (1· 4a) is discussed. 

§ 3. Low-frequency spin susceptibility at zero temperature 

Since the impurity spin is quenched at low temperatures T<f;_T Kspin, *> the 
imaginary part of the dynamical spin·· susceptibility is proportional to the frequency 
11) at low frequencies w<f;.T Kspin· 

We make an analysis of the dynamical susceptibility with the thermodynamic 
Green's function defined as 

'· r drei"'<(T[S/(r)S/(0)]) 

=((S/; S/))i .. 

w=2nn/{3. (n: integer) (3 ·1) 

The retarded Green's function (1· 3) can be obtained by the analytic continuation 
iw~w + iiJ. Especially the w-linear imaginary part of ((nc~.; nc~.)).,+io is obtained 
from the lwl-linear contribution of ((na.; na.-)\., at small w. It is because lwl = 
(- i sgn (1)) iw goes over to (- i) (1) by the analytic continuation. In the zero tem
pe,rature ,limit the discrete energies in 'the thermodynamic Green's function formal-

*> Txspin is the Kondo temperature for the impurity spin, which is most conveniently defined 
as .the inverse of Xspin(O) at zero temperature. We can also define Txorb, the Kondo temperature 
for the orbital moment quenching as the inverse of Xorb(O) at zero temperature~ It is expected 
that Txspln<Txorb in general. 
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The Korringa Relation for the Impurity Nuclear Spin-Lattice Relaxation 973 

ism are replaced by corresponding continuous ones. Our analysis hereafter is devid
ed into 3 steps:*> 

[1] we apply to «na.; ndd' »iw the perturbation expansion in terms of u 
and J and consider a contribution of a . certain order of U and J, using the 
Feynman diagram. Each diagram consists of d-electron lines and interaction vertices; 
the former represents the unperturbed d-electron Green's function G~mlie)= [ie-Ea 
+ i.d sgn e] -\ while U or J is . attached to the latter. In order to pick up the 
lcol-linear contribution from a given diagram, we leave the co-linear contribution 
only in one of the d-electron lines. For the other d-electron lines the limit C0---70 

is taken carefully, since an extra factor i · sgn co may appear from the singularity 
of G~muCie) at e=O. 

A typical diagni:tn of «na.; nau'))i,. looks like Fig. 1. Here the diagram has 
been divided into two parts at an co-dependent d-electron line: The left part T, 
has an external vertex with incoming energy co, while the right part r, contains 
a vertex with outgoing energy co. These two parts are connected with each other by 
an even number of d-electron lines, one of which has co-dependence in it. This 
division of the diagram is arbitrary as far as the left and right parts have only 
one external vertex. It is easy to see that the I col-linear contribution is obtained 
only when .the total number of d-electron lines at the division is two. The proof 
for this goes as follows: The co-linear contribution of Fig. 1 has the form 

Substituting the relation 

4-c~mu(ie) =- [G~"'" (ie)J + 2 Im[G~mu( + iO)] o (e) 
dze 

into the above expression, we find that the integrand is not singu,lar iLn>2; after 
the integrations the above expression does not contain any i · sgn co factor in it. 
For n=1 the singularities of G~m,u, (ico+ie,) and G~"''"' (ie1) overlap in the 
limit C0---?0. Figure 2 shows the general structure of diagrams with n = 1. A 
close examination of G~"''"' (ico +ieJ G~m,u, (ie1) in Fig. 2 gives us the I col-linear 
term -2 (ico) (i · sgn co) [Im G~,.,.,( + iO) ro(e,) = 21 col [Im G~"''"' ( + iO) ] 2 o(e,), which 
IS exactly what we need. 

[2] Next we consider the effect of the self-energy insertion to G~"''"' (ico + ie,) · 

*> Throughout this proof we follow essentially Yamada and Y osida' s analysis'> of Green's 
functions by extending it to degenerate orbitals. with an arbitrary d-electron ·number. · 
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974 H. Skiba 

r, f 2 

. Fig. 1. The structure of a diagram of ((n0 .,.; iiocr• )),. for. a given order of U and J. It 
has two vertex parts r, and F0 and an even number of d-electron lines connecting r, with r •. 

Fig. 2. The structure of diagrams, which give 
nonvanishing ja>j-linear contributions in the 
small a> limit. 

Fig. 3. The self-energy insertion to the two 
d-electron propagators, which connect r, 
with r •. 

G~m,a, (ie1), which is shown in Fig. 3. This type of contribution is expressed as 

_ """" Joo de,rcaa,a,l(m· mt""' m -t·.,.'\r(a'a,a,)(m'· mt""' m t""') ~ ~ 2 1 ' I "h 1 "'1) 2 , 1 "h 1- "1 m,m.'m 1 0'1 -oo 7r _ 

(3·2) 

The a>-dependence of .2dm,a, (ia> + ie,) does not give us any la>l-linear contribution; 
therefore the self-energy insertion does not change the analysis in {1] except for 
the replacement of 2la>l [Im G~ma( +iO) ] 2 by 21 a>l [Im Gddma( + iO) ]2, where Cddma (ie) 
is the. complete d-electron Green's function 

The la>l-linear contribution of (3·2) is then given by 

-~I:; :E [Im(Gddma(+i0)]2L:;T1caa,a,)(m; m 1i0, m,iO) 
TC mm" m 1 tt 1 

(3·3) .. 

Hence the la>l-linear contribution of «nd.,.; nda'))i., has the form 

- ~ [Im (Gddmcr ( + iO) ]2 L:; ~· rcaa,a,) (m; m,iO, m 1i0) 
7r mm' m 1tr 1 

X rwa,a,) (m'; m,iO, m,iO). (3·4) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/54/4/967/1879037 by guest on 24 April 2024



The Korringa Relation for the Impurity Nuclear SPin-Lattice Relaxation 975 

Here use has been made of the sum r<a.1 d 1l of all the possible contributions to 

rl (or r.). 
[3] r<dd1d1) is r~Iated to fJ.~am 1 d 1 (iO) /fN1!1a~t!a,~o, which appeared in § 2. In 

fact the following relation holds: 

4-.1 · 1 1 m; m1z , m1z - U~t(f 1 • 
""' r(dd If) ( ·o "0) - ~ -a .s_am11f1 (iO) I 
m ao /Lttd o,~o 

(3 ·5) 

(3·5) is a sort of Ward's identity,9l which connects with a vertex part a change 

of the proper self-energy part due to an infinitesimally small external perturbatio~ 
(the spin-dependent impurity chemical potential in the present case). Using (3·4), 

(3 · 5) and (2 ·15) we obtain 

I a> !-linear contribution of __!_ I: (J(J' fit ad; 'iia~t' ))i., 
4 lfd' 

= _l!Qj_[ImGaamd ( + iO) J I:(1- (a .Samt - a .Samt )[ r 
2i! m ao fLat ao /Ltt!, 8Jl~O 

= -~lwl [((S/; s~·»iOJ 
2l+ 1. 

= ~iw (i · sgn a>) [ ((S/; S/))w]2 • 

2l+1 

The analytic continuation leads us from (3 · 6) to 

-lim[__!_ Im ((Sa'; S/)).,Ha] = ~[((S/; S/)\0] 2 , 
...... o (!) 2l+ 1 

which IS exactly the same as (1· 4a) and (1· 6). 

§ 4. The Korringa relation for the d-orbital mechanism 

(3·6) 

(3·7) 

The analysis in §§ 2 and 3 can be easily extended to the proof for the d-orbital 

- mechanism. We add to H, (1· 5), a new term H;rb instead of H:pin, where 

H;rb is ~n orbital-dependent perturbation 

H~rb = - I:. 0 /Lamd:;.ddmd • (4·1) 
md 

The localized charge Llnam with the orbital angular momentum m IS given by 

Llnam = S"" def(e) ( _ __!_ Im) I: Gaamlf (e + io), 
-= i! If 

smce the conduction-electron part vanishes for the constant density of states of 

host conduction electrons. Notice that Gactmd(e+io) here is the completed-electron 

Green's function for H + H;rb· In the same way as in § 2 we transform the 
above expression into 
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976 H. Skiba 

(4·2) 

Again we can prove that at T=OoK 

Soo def(e) (-_!_ Im):E[Gaam~(e+ i(J)J_ Zam~Ce+i(J)J =0 (4·3) 
-oo 7r ~ a e 

holds, because the J-term in (1· 5) 

J I:; d;/;~d;/;'~'dml!'dm'~ = -J I:; d;/;~d;/;'~'dm'l!dm~', 
mm' mm' 
~~ ~~ 

may be viewed as showing that the spins are exchanged at the interaction vertex, 

while the orbits are unchanged. Then ( 4 · 2) leads to the Friedel sum rule 

(4·4) 

From this equation we obtain 

a Anam II = (- _!_ Im) :E [ (Jmm'- (aZam~ (i(J) ;a a /f.dm') lap~oJ ( 4. 5) 
a(J /f.am' a,~o 7r ~ - Ea- Zam~ (i(J) + iJ ' 

Zam 11 (i(J) in the denominator is independent of m and (}' actually. The left-hand 

side is related to theHuctuation ((~4m; nam,))w, where nam=L;a(d;/;~dm~-(d;/;~dm~)). 
From (4·5) 

((nam; nam'»w = (- _!_ Im) I:; [ (Jmm'- ~Zam~ (i(J)/:~!f.ar:] la"~o] ( 4 ·6) 
7r ~ - d - dm~ Z + Z 

is obtained. 8Zam~ (i(J) /8(]/J.am'l 6,~ 0 has the following properties: 8Zam~ (z(J) ja(J!f.aml a,~o 
is independent of m, and 8Zam~ (i(J) j8(}tJ.am'l a,~o (m=/=-m') is also independent of m 
and m'. This property leads to 

= :E mm'((ndm; nam'»io 
mm' 

(m'=/=m) (4·7) 

Now we turn to the I wJ-linear contribution of ((V; £'))1,. at small al. The 

equation corresponding to (3 · 4) is given by 
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The Korringa Relation for the Impurity Nuclear SPin-Lattlce Relaxation 977 

I w 1-linear part. of «nam; nam'));., 

= -M[Im Gaama(ia)J2 ~ ~ paa,a,>(m; mdO, mdO) 
1C (f(f'mtdl 

(4·8) 

and instead of (3 · 6) we have 

(4·9) 

Combining (4·8) with (4·9), 

I w 1-linear contribution of ((V; V));., 

- 2n w 1 V· V 2 

- - I I (4/3) l(l+ 1) (2l+ 1) [« ' »iOJ 

can be obtained. One may write it in. the form 

lim[_!_(Im 11L'· L'\\ ·)]= 27r [ 1!L'· L'\\.]2 (4·10) 
uHO (1) \\ ' //ru+•a (4/3)l(l+1)(2l+1) ~-. ' //•O ' 

which Is the KR for the d-orbital mechanism. 

§ 5. Supplementary discussion 

(1) We have proved the Korringa relation (KR) for the impurity nuclear 

spm relaxation due to the d-spin-mechanism as well as the d-orbital mechanism. 

Our proof has shown that for the model (1· 5) the KR is valid at low temperatures 

in any order of the perturbation expansion. It also suggests that the KR may 

hold for a Hamiltonian more general than (1· 5). If the exchange enhancement 

is present in the host, however, the KR breaks down even in the RPA. 10> 

Therefore the locality of the Coulomb and exchange interaction such as in (1· 5) 
is certainly one of the necessary conditions for the KR. *> In this connection we 

want to make a comment on the assumption o{ the constant density of states of 

conduction electrons. Actually that assumption is not essential to our proof, 

although it is quite reasonable for transition-metal impurities in simple metals. 

If we do not use the assumption, we have to take into account the .conduction

electron part ~k (nka- nL) of the localized charge; (2 ·13) should be then replaced 

by 

*> The author is indebted to Professor K. Y osida and Professor A. Y oshimori for calling 
his attention to this J?Oint. 
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(5·1) 

where n •• =L;k(at.ak.-<at.ak.)). Therefore ((S/; Si))iO in (3·6) and (3·7) 1s 
taken over by «S[; Si + Sc'))iO, where Sc'= (1/2) L;k.Gat.ak•· Instead of (3,· 7) we 
obtain 

(5·2) 

(<S,/; S,/ + Sc'))io is a d-spin induced by a small uniform magnetic field, and it is 
exactly the quantity that appears in the Knight shift K<d>· It is also easy to 
prove the KR for the Wolff model. 11> The outline ·of the proof is given in the 
Appendix. Anyhow the proof of the KR leads us to conclude that the KR must 
be valid in a wide variety of systems, as far as the host exchange is negligible 
and the conditions, T<f:;.Tx and H<f:;.Hx, are satisfied. We refer the reader to 
Refs. 4) and 5) as to the analysis of experimental data based on the KR. 

(2) In § 3 we have examined the low-frequen-cy dynamical spin susceptibility 
and showed that it is related to the static spin susceptibility. It is easy to see 
that an analogous relation holds for the charge fluctuations: 

lim Im [«Hndt + nd~); Hndt + nd~)».,+ia] 
Ol->0 (j) 

(5·3) 

The static charge susceptibility is suppressed by -the Coulomb repulsion; consequent
ly the lowe frequency charge fluctuation is also suppressed as in (5 · 3). 

(3) The static spin susceptibility is enhanced by the Coulomb and exchange 
interaction. The Korringa relation shows that the low-frequency spin fluctuations 
are also enhanced. Using the perturbation expansion, Yamada estimated the 
enhancement of the static susceptibility for the symmetric single-band model. 
The corresponding low-frequency spin fluctuations .are easily evaluated with .the aid 
of (3 · 7). It is expected in general that (<Sd'; Sd'))i0 ocT]{~pin·' It leads to 

lim lin [ (Xspin ((.!) + itJ) / w] ocT.K!pin . 
W->0 

( 4) In this paper .:V e have studied only the low-frequency spin and orbital 
susceptibilities at zero temperature in order to .prove the KR. The spin _(orbital 
moment) at zero temperature is quenched at low frequencies; i.e., w<f:;_T X spin (w1;:_ 
T xorb). However if we look at the impurity with a time-scale shorter than h/kBT x 
an appreciable spin or orbital moment should be expected. In order to confirm 
this picture we· are currently studying the frequency dependence of X (w + itJ), the 
spectrum Im x(w+itJ) in particular, over the whole w region. It will be 
published in a forthcoming paper. 
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Appendix 

--The Korringa relation in the Wolff model--

· Here we want to give the outline of the proof of the Korringa relation (KR) 
for the single-band Wolff model:1n 

H= E tiJataaJa+ VE ataaoa+ Ua~adiao.aot, (A·1) 
ij a 

where aia is the annihilation operator of an electron at the j-th site. The transfer 
matrix tiJ is arbitrary, and the impurity is assumed to be located at the origin. 
The KR for , this model reads12> 

where S/ is the spin operator, at the j-th site, i.e., (ait+ait-a1/an)/2. The KR 
(A· 2), which corresponds to (5 · 2) in the Anderson model, was proved by Lederer 

and Mills12> by using the RPA. However, as we show below, the relation is 
quite general. 

By adding a small perturbation H:pin =.- Ea&/.toaataaoa to (A ·1) we study the 
total displaced charge Ana for the spin (J. Ana can be written as 

where G~c0 (e+i&) =[e+i&-e~c]- 1 (ek=Fourier transform of ti,) is the host Green's 
function. ta(e+i&) is the t-matrix of the impurity scattering, i.e., 

' v t (e+i&)= tf 

a 1 - VaG~o ( e + i&) 

+ 1 .Zu(e+i&) (A·4) 
, (1- V11G~o(e+i&))2 1-.Z11 (e+i&)G~0 (e+i&)/(1- VaG~0 (e+i&))' 

where Va=V-&;.t06 and G~0 (e+i&) =EkGk0 (e+i&). The first term of (A·4) is a 
pure potential-scattering, while the second term describes the many-body scattering 

modified by the potential scattering. The self-energy Iff (e + i&) rs defined as 

G- ( -~) G~o (e + i&) ooa c + Zu = ----=c::,----_c_:__'----'---c:-:----

1- (Vu+Ia(e+i&))G~o(e+i&) 
(A·5) 
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with the propagator Gooa from the origin to the origin in the alloy. Substituting 
(A·4) into (A·3) and using the Luttinger's relation at T=0°K 

for the present case, we find that at T=OoK 

Llna= (- ~)Im{ln[1- (Va+.Ea(iO))G~0 (i0)]} 

1 
=-Oa. 

n 

Here the phase shift at the Fermi energy 

(A·7) 

(A·8) 

was introduced with G~0 (i0) =R00 -i100• (A·7) is the Friedel sum rule in the 
present case. From (A· 7) we obtain 

(A·9) 

The left-hand side is equivalent to «n0,,; L;1n1,))i0, where nia=a)aa1,-<aj,a1,). 
The analysis of the low-frequency thermodynamic Green's function «noa; n0,,))iw 

can be made in the same way as in § 3. The only thing we have to do is to 
omit the index m and to replace G~.(ie) by G~0 (ie)/(1- VG~o(ie)). Therefore 
we easily find 

(A·10) 

Combining (A·lO) with (A·9) we obtain (A·2). 
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