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In a recently published paper1> a rela
tivistic approach to quadrupole effects on 
planetary orbits was tried. As this paper 
is not free from inaccuracies, the relativistic 
approach has to be done again with the 
correct arguments for power-series expan
sion of the geodesic equation and with the 
results one would expect looking at the 
Curzon-metric. 

The main result is a justification of the 
intuitively obvious procedure of adding the 
classical quadrupole-effect to the Schwarz
schild perihelion precession. The first rela
tivistic quadrupole effects is also calculated, 
which is very small for mercury but may 
come into the range of observation for 
astronomical objects like binary neutron 
stars with highly eccentric orbits. 

The metric for the W eyl-solutions IS m 

polar W eyl-coordinates2> 

ds2 =e2 (11 -m (dr2+r2d{J2) 

+e- 26r 2 sin2 (Jdrf;2-e+ 26dt2 (1) 

and the functions o (r, {}),If. (r, {}) are given 
by3) 

o = 2j anr- (n+!) Pn, 
n=O 

xr(n+m+2> [Pn+lpm+l-PnPmJ, (2) 

where o is the classical potential of some 
mass-distribution in (r, e, ¢) -coordinates,2) 

which means 

o (r, {}) :s;;O. (3) 

Due to the two Killing-vectors of the W eyl
solutions we immediately have two first 
integrals of the geodesic-equation: 

e- 26r 2 sin2 {)rj;=l, 

(4) 

where the dot denotes differentiation with 
respect to ds. Choosing now a solution of 
(2) with vanishing odd ano from the sym
metry of o and If. we can argue that 

{)= rr 
2 

is also a solution of the geodesic equation. 
Setting R=l/r, 8=rr/2, replacing ¢, i 

by ( 4) and writing R' = R (rj;) -l we get 

fro~ (1) 

R'2+Rze-zf1_ ;2 e-2(p.+a> (E2e-2a_l) =0. 

(5) 

The solutions of this equation have to 
satisfy 

e- 26 (E 2e- 26-l) -l2R 2 =: F(R) 20. 

As it can be seen from (2) and (3) we 
have (for a0<0) 

F(O) =E2_1. 

e- 26 is a monotonously increasing function; 
so by a proper choice of E and l we can 
make F(O) <O and F(R) have zeros at R 1 

<R2<R3 • This means that there is a 
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solution of (5) confined to R1~R~R2 • 

Expanding e- 2"·F(R) now in a power 
series 

00 

e- 2P·F(R) = "2j J..nRn, 
n=O 

we can make an approximation of the 
order n if we assume the constants being 
chosen such that 

We are now interested in the effect of 
the quadrupole moment on planetary orbits. 
Therefore we take the solution 

(} =- m +_g__ (3 cos2 {} -1) 
r 2r3 ' 

1 . 2 {} [m2 3 mq (5 2() 1) /f.=--sin ----- cos -2 r 2 2 r 4 

of (2). To get a first impression of what 
we have to expect, we calculate the quad
rupole moment of this solution.4>,*> As 
this W eyl-solution has the rotational sym
metry about the axis 6=0 and the reflec
tions symmetry on the equational plane {} 
=n/2, the multipole-moments must be 
multiples of the symmetrized trace-free 
outer products of the axis-vector with itself. 
However the monopole and quadrupole are 
given by 

M=-m, 

(7) 

Hence the quadrupole-moment will vanish 
iff 

in accord with the well-known fact that 
the Schwarzschild-solution appears in 

*> Note that each of the quoted expressions 
for the mass potential leads to the same multi
pole-moments for the Weyl-solutions. 

W eyl-coordinates as the potential of a rod 
of length 2m and mass density -t. 

The conformal transformation mapping 
this rod into the Schwarzschild-solution is 

cos 6=cos 8 (r-m) 

X (r2 -2mr+m2 cos20) - 112 (8) 

or in the equatorial plane {} = 8 = n /2 with 
u=1/r 

R=u(1-2mu) - 112• (9) 

Considering now the slow motion of a 
planet, thus taking E 2 = 1, substituting (9) 
in (6) and (5) and approximating until 
4th-order we find after lengthy calculations 

u'2 +u2 =2mu3 + j2 [2mu+( q+ ~ m 3 ) 

Xu3 +5m ( q+ ~ ms) u4J. (10) 

A look in a standard textbook of classical 
mechanics shows that we may identify 

(11) 

with the classical quadrupole-moment, 
which could be expected according to (7). 

Differentiating Eq. (10) one arrives for 
u'*O at 

" - m 3 2 3 e 2 10 me s u +u-p+ mu +212 u + Tu 

(12) 

or in dimensionless form 

x"+x=1+Ax2 +Bx3, 

an equation which may be solved by various 
methods. Also (10) can be solved by the 
Weierstrass elliptic integrals. 

If we assume that A is small of first 
and B small of second order, we may write 

xo''+x0 =1, 

x/'+x1=Ax02, 
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and enter with 

x 0 =1+acos ¢ 

into lengthy calculations, which finally 

give us a perihelion shift of 

L1~=2nA+n[ sAZ( 1+ ~2) +3B(1+ ~2) J. 
(13) 

Here one sees that neglecting second-order 

effects one may simply add the classical 

quadrupole-effect to the relativistic Schwarz

schild-effect; moreover, that the coefficient 

(11) on which the quadrupole-effect de

pends, is just the same, as the quadrupole

moment calculated in (7) by quite another 
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A Simple Composite Model Calculation 
for the Inelastic Structure Function 
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It is the purpose of this paper to derive 

in a reliable wayD the characteristic prop

erties of the electroproduction structure 

functions from a composite model field 

theory. We take a super-renormalizable 

theory, which is known to reproduce2> some 

of the features of the parton modet.S> 

We consider a two-body bound state 

(hadron) of mass M where a charged spin 

0 boson (quark) with a mass m and a 

neutral boson without the mass and spin 

*> Fellow of the Japan Society for the 

Promotion of Science. 

The arguments following Eq. (5) give 

the rigorous justification of the admissibility 

of a power-series expansion of F(R) in a 

certain region of the E-l phase-space of 

the particle. 
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are interacting via the interaction Lagran

gian .£I=gljJ(jJ¢. To derive the qualitative 

features of the structure function we per

form the ladder approximation; the bound 

state wave function (/) (P, q) is represented 

by the Wick-Cutkosky solution of the 

Bethe-Salpeter equation, (/) (P, q) = fl-1dz 

X (1-lzD [ -q2 +Pqz+m2 -M2/4] - 8• 

To investigate the structure function 

F(x) in the inelastic region, we apply the 

operator expansion near the light-cone for 

the product of currents. 4> F(x) is then 

given by the following expression with 

standard notations 

1 sno+i= 
F(x)=-2 . dnx-n• 1A(n), 

7rt n 0 -i= 
(1) 

where n 0>0. A (n) is given by the re

duced hadron matrix element of the expan

sion operator: 

(PJlpo 11,···8 11nqJIP)=A(n) [Pp, ···, Pl'n]. 
(2) 

The bracket denotes the totally symmetric 
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