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First a general expression for an eigenstate [t) of the time operator T defined by the 

commutation relation [T, H] =ih is given in terms of the eigenvectors of the Hamiltonian H. 

Then the time operator itself is constructed as T= S dt t [t) <t[. When a compound state 

corresponding to transitions is introduced, it leads directly to the time-energy uncertainty 

relationship formulated previously by the same author. 

§ I. Introduction 

The time operator T defined by the commutation relation 

[T,H]=ilt (1·1) 

has been a subject of much debate for 1nany years1J m relation to the supposed 

time-energy uncertainty relation 

At· LlE>It/2 . (1· 2) 

For the simplest case of a nonrelativistic free particle of mass m in one dimension 

with the Hamiltonian H = P2/2m one can conceive quite formally of a time operator 

(1· 3) 

Because of the nonnegative character of the energy spectrum it 1s not, however, 

believed to be well defined in the Hilbert space!) On the other hand, as was 

stressed recently by the author, 3J an undoubtedly well defined time operator 

T= -P/k (1· 4) 

corresponds to the nonrelativistic Hamiltonian 

(1· 5) 

with the constant u = 1/6mhk for a one-dimensional motion of a partide of mass 

m m a constant uniform field of force specified by the force constant k Never­

theless, no rational recipe for constructing the time operator T corresponding to a 

general Hamiltonian H has been put forward up to the present. Only the sojourn-
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Quanta! Time Operator, Construction and Signification 19 

time operator4> 

(1· 6) 

with the evolution operator UJI(t) =exp(-itiijfz) was proposed in 1971 by 
Ekstein and Siegert as a substitute for the nonexistent time operator. 

In 1945 11andelstamm and Tamm5> suggested to base the time-energy uncertain­
ty relation (1· 2) on the Heisenberg equation of motion ifzd.Aj dt = [A, H] for a 
certain observable ..:1. Especially if this is to be equivalent to the time parameter 
t, then the condition 

dTjdt=1 (1· 7) 

defines the time operator T, which is subject to the commutation relation (1·1). 
Therefore, in one single normalized state i<l) of the system one can construct at 
once a kind of uncertainty relation 

(JT) 1, · (!JH) ~>fz/2 

with the definitions 

(1· 8) 

(1· 9) 

(1·10) 

However the meaning of Eq. (1· 8) is quite obscure, :for the state I cf;) is thought 
of at a definite instant of time, so that the scatter (!lT) ~ must vanish identically, 
as was pointed out in 1970 by Bunge.6> Then should we conclude that the welcome 
commutation relation (1·1) never leads to the desired relationship (1· 2)? 

The present article is aimed first at giving a general recipe for constructing 
an eigenstate It) of the time operator T defined by Eq. (1·1) for an arbitrarily 
prescribed Hamiltonian 1-I, and then at showing that the time operator itself is 
defined simply by 

T= fdt tlt)(ti. (1·11) 

The genume uncertainty relation (l· 2) is thus seen to be nothing but Eq. (1· 8) 
reformulated on the basis of transitions of the system in just the same way as 
\vas argc;cd by the same autbor.n 

Algoris1n for position and m.o1ncntum operators 

Fir~t of all, we shall recapitulate the algorism for po:;ition and momentum 
operLitors subject to the fundamental commutation relation 

[q,jJ] =iii. ·1) 
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20 I. Fujiwara 

In the momentum space we have, as is well known, 

(p' IP") = o (p'-P") and s dp' IP')(P' I = 1 , (2· 2) 

and the standard ket,8l such that (P'IS(P))=1 for an arbitrary eigenvalue p', is 

defined by 

IS(p))= s dp'IP'). (2·3) 

Completely the same relationships hold also for the position operator q. The com­

mutation relation (2·1) is equivalent to the Fourier transform: 

lq') = s dp' IP')(P' lq') 

= s dp' IP') exp C -ip' q' /Pi) I Jh 

=Up(q') IS(p))j./h, (2·4) 

wherein the displacement operator UB (a) = exp (- iaB/Pt) 1s introduced for an 

eigenvalue a of an observable A such that [A, B] =in. If IO (q)) denotes a 

position eigenket lq') with q' = 0, then Eq. (2 · 4) reduces to 

./hiO(q) )= IS(p)), (2. 5) 

so that 

lq') =up (q') 10 (q) >. (2. 6) 

Thus 

q= s dq'q'lq')(q'l 

= s dq'q'Up(q') IS(p))(S(p) IUp+(q')/h. (2·7) 

In the second line the eigenvalue q' of the position operator enters simply as a 

e-n umber. 

§ 3. Construction of the time operator 

In order to pursue the parallelism between the commutation relations (1·1) and 

(2·1) we have to assume that the energy eigenvectors IE') defined by HIE') 

= E' IE') form a complete orthonormal set over a continuous and unbounded energy 

spectrum in the same way as in Eq. (2 · 2): 

(E'IE")=o(E'-E") and fdE'IE')(E'I=l. (3 ·1) 
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Quantal Time Operator, Construction and Signification 21 

If the time parameter t is regarded as one of the eigenvalues of the time operator 

T in such a way that 

Tlt)=tlt), (3·2) 

and moreover if the eigenket It) with t = 0 is denoted by IO (T) ), one obtains, 

corresponding to Eq s. (2 · 3) , (2 · 4) , (2 · 5) and (2 · 6) , 

Thus we have 

IS(H) )= s dE' IE')= JhiO(T)), 

lt)=UJI(t) IO(T))=UJI(t) IS(H))/Jh. 

H 1 t) =iii (a /Ot) 1 t) , 

and just as for the position eigenket I q') 

(t'lt")=o(t'-t") and Jdtlt)(tl=l. 

Then Eq. (2 · 7) is transcribed straightforwardly to give 

T= s_==dttlt)(tl 

= s dt tUu(t) IS(H) )(S(H) IU1/ (t) /h, 

and Eq. (3 · 5) leads after a formal integration by parts to 

[T,H]/ili=- fdtt(a/at)lt)(tl=l 

1n complete agreement with Eq. (1·1). Furthermore we have 

TIE')= -iii (8/aE') IE') 

corresponding to Eq. (3 · 5) and 

(3· 3) 

(3 ·4) 

(3·5) 

(3. 6) 

(3. 7) 

(3·8) 

(3. 9) 

(3 ·10) 

as is required by Eq. (1· 7). It is important to note m the second line of 

Eq. (3·7) that the eigenvalue t may be regarded as a simple time parameter. 

For the Hamiltonian (1· 5) the orthonormal energy eigenket reads 

(3 ·11) 

with q' = E' / k. Thus Eq. (3 · 3) is eva I uated as 

lki- 112 IS (H))= exp (iuP3) IS (q)) = JhjO (p)) (3 -12) 
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22 I. Fujiwara 

with ./hiO(p))=IS(q))=Jdq'lq'). In view of the unitary transformation (1·5) 

we see that 

Uu ( t) = exp ( iujJ3) Uq (ht) exp (- iuJi) , (3 ·13) 

so that Eq. (3 · 4) is rewritten with IP') = Uq (-p') IO (P)) as 

(3 ·14) 

with j>' = - kt. Hence Eq. (3 · 7) leads at once to the desired result (1· 4) as 

T=- s djJ'P'IP')(P'I/1::= -pjl::. (3 ·15) 

§ 4. Time-energy uncertainty relation 

The foregoing discussion enables one to show how the time operator T defined 

generally by Eq. (3 · 7) leads to the time-energy uncertainty (1· 2). As was 

pointed out by the present author,7),gl the relationship (1· 2) is established on the 

basis of the transition amplitude 

IF(t) =N(vJIUJI_,_(t) 1¢)/./h 

= sclE'(])(E')exp(itE'/h)/.Jh (4·1) 

with the energy amplitude 

(]) (E') =N(c/;IE')(E'I¢) (4· 2) 

and a normalization constant 1V being positive and adjusted so that 

s dtlW(t) 1
2 = s dE'I(])(E') 1

2 =1. (4·3) 

Since Eqs. (3 ·1) and (3 · 3) give 

It/;)= s dE'IE')(E'Ic/J)=cp(H) IS(H)) (4· 4) 

with cp (E') = (E' I VJ ), the transition amplitude ( 4 ·1) is rewritten with the aid of 

Eq. (3·4) as 

IF (t) =N(S(H) 14;* (H) UII' (t) 1¢)/ .Jh =(tl1fJ") (4·5) 

for a compound state corresponding to transitions: 

IP)= lvJ*¢)=Nc/;* (H) 1¢). (4·6) 

In the same way, Eq. ( 4 · 2) is transcribed as 

(]) (E') = (E'j1JJ"), (4·7) 
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Quantal Time Operator, Construction and Signification 23 

and Eq. (4·3) is nothing but the normalization condition: 

(4·8) 

The pair of transition amplitudes ?Jf (t) and (/) (E') respectively in time and 

energy are related with each other by the Fourier transform (4·1). This is 

exactly of the same form as that derived from Eq. (2 · 4): 

<q'I<J!)= S dp'(p'I<J!) exp(ip'q'/11)/Jh (4·9) 

for the amplitudes <q'I<J!) and (p'I<JI) that are defined just in one single normalized 

state I <J!) of a system contemplated at a definite instant of time. The compound 

state IW)= I<JI*¢) refers to a transition between a pair of normalized states I <f) and 

I¢) separated by a finite interval of time, so that the expectation value 

(4 ·10) 

defines the average transition time or equivalently the arrival time investigated 

extensively in 1969 by Allcock. 10l On the other hand, 

<PIH/?Jf)= s dE'E'IrJJ(E') 12 (4 ·11) 

specifies the central energy value of the energy channel of the transition, which 

is determined statistically by the probability lrJJ (E') 12• Equations (1· 9) and 

(1·10), wherein the one single state I <f) is replaced by our new compound state 

IW), give the scatters 

(Lit) •·~ = (LiT) p· and (LiE) M = (LiH) p·, (4·12) 

to which applies quite automatically the inequality 

(LiT)¥'· (LiH) p->11/2 . ( 4 -13) 

This is nothing but the desired time-energy uncertainty relation (1· 2). Here the 

uncertainty in time measures the sojourn time,') which should not vanish in gene­

ral.6l On the other hand, the uncertainty in energy measures the width of the 

energy channel of transition. 

§ 5. Explicit demonstrations 

An explicit construction of the time-energy uncertainty relation has been given 

recently by the present author in collaboration with Wakita and Yoro9l for the 

system specified by the Hamiltonian (1· 5). It is based on the principles and 

interpretations proposed by the authorn in 1970 and 1979. The content of that 

article may be reformulated with the aid of the time operator (3 -15) in the 
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24 I. Fujiwara 

following way. *J 

A normalized state [1;) rewritten here as [a) is defined conveniently 111 the 

energy-space by 

(E' [a)= N" exp (ipAE' jhk) [1 + (E'- E 0) 2/ c2] -a (5 ·1) 

with the constants c, PA, Eo and the normalization constant 

Na = (rrc2) - 114 [T (2a) I r (2a -1/2) J 112• (5. 2) 

Here the continuous parameter a is assumed to be larger than 3/4. Then one 

obtains the expectation value <a [ H [a) = E 0 and 

(.dH) "2 = (a[l-I"[a) -(a[H[a)"= c2/ (4a-3). (5 · 3) 

On the other hand, for the momentum we have the expectation value (a[p[a) 

=PA and 

(.dp) a 2 =(a[p2 [a)-(a[p[a)" 

=a(a-1/4) (hk/c) 2/(a+1/2), (5· 4) 

so that corresponding to the commutation relation [H, P] = illk we arrive at the 

uncertainty relation 

(.dp · .dH) "= [1 + 3/ (2a + 1) (4a- 3)] 112Pl[k[/2. (5·5) 

All the above results are concerned with one single state [<{~)=[a) contemplated 

at a definite instant of time. 

In order to think of a transition of the system we have to assume another 

state [ ¢) = [ /1) defined by 

(E' [/1) = Np exp (ipBE' /hk) [1 + (E'- E 0) 2/ c2] -P (5·6) 

with the normalization constant Np which is obtained by substituting J1 for a 1n 

Eq. (5·2). In the compound state (4·6) we thus have N=Na+PINaNp and 

(5·7) 

Therefore the energy amplitude (4·7) is obtained at once as 

which is nothing but Eq. (5·1) wherein only a and PA are replaced respectively 

by a+/1 and PB-PA· Hence (lfi[H[P")=E0 and Eq. (5·3) is rewritten as 

(.dH) p 2 =c2/ (4a+4/1-3). (5·9) 

Since T= -pjk in the present case, one obtains at once the arrival time (lfi[T[lfl) 

*l For the details of the computation, readers are requested to refer to Ref. 9). 
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Quantal Time Operator, Construction and Signification 25 

= (PA- PB) jk, which is in complete agreement with the classical result. Moreover, 

Eq. (5 · 4) is transcribed as 

(!1Th 2 = (a+S) (a+P'-1/4)1t2/(a+P'+1/2)c2, (5·10) 

so that the inequality ( 4 ·13) is written explicitly as 

(LiTh· (!lH)q = [1 + 3/ (2a + 2f)' + 1) ( 4a + 4f)'- 3)] 1121t/2 . (5 ·11) 

The right side is larger than lt/2 for finite values of a and f)', but in the Gaussian 

limit9J with a, P'-">= it reaches the minimum uncertainty product lt/2. 

§ 6. Decay process and mean lifetime 

If the normalized state 1¢) happens to be identical with lcf!), the time amplitude 

(4·1) reduces to 

(6·1) 

of which the absolute square is an even function in t. Therefore in this particular 

case (W,,ITIP"f)=O in Eq. (4·10), and accordingly the arrival time vanishes as 

it should. If the probability i1[1f (t) 12 decreases sufficiently rapidly starting with 

N 2/h at t=O, then we have a decay process investigated in 1947 by Fock and 

Krylov.w Now as a modified form of the sojourn time we can define the mean 

lifetime of the state lv1) by 

(6·2) 

subject 111 general to the condition 

(6·3) 

which 1s obtained from the Schwarz inequality 

rdt[f(t)] 2 • rdt[g(t)J">( rdtf(t)g(t) r 
with f(t)/t=g(t) = IP"f(t) I. For the Hamiltonian (1·5) and the state (5·1) the 

mean lifetime is evaluated to give 

"" = nr (2a + 1/2) 2T (4a) /2c~nar (2a) 2T (4a-1/2), (6·4) 

which 1s always smaller than 

(!it)"·"= n [2a (a-1/8) 1 (a+ 1/4) J 112/ c (6·5) 

for a>l/8. But both of them vanish at a=1/8. 
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26 I. Fujiwara 

§ 7. Concluding remarks 

All the above discussions based on the formal parallelism between the com­
mutation relations [q, p J = ilt and [T, H] = ilt are valid only when the conditions 

(3 ·1) are guaranteed over a continuous and unbounded energy spectrum. There­
fore the scherne established above <;:an be applied safely to the Hamiltonians such 

as 

I-I= P'/2m- nuv'q'/2 (7 ·1) 

for a one-dimensional hyperbolic oscillator and then the Hamiltonian (1· 5) extended 

directly to the case of an electron: 

(7. 2) 

wherein }]p denotes the free Dirac Hamiltonian, since for both of them the energy 

spectrum must be continuous and unbounded. Especially for the latter Hamiltonian 
we shall show that Eq. (3 · 7) leads to the time operator T = - jJ3I/ 1:: instead of 

Eq. (3 ·15), wherein the 4 X 4 identity matrix is denoted by I. 
On the other hand, one may conclude that the assumed time operator (1· 3) 

for a nonrelativistic free particle does not fit into our present scheme, for the 

energy spectrum of the Hamiltonian H = P'/2m is believed to be nonnegative. 

However, as will be reported in the immediate future, our general recipe (3 · 7) 
reproduces it indeed when the Hilbert space is extended adequately to include 
the negative energy spectrum. Finally we may be allowed to add that the Hamil­

tonian 

H =P'/2m + mcv'q'/2 =/to) (a+ a+ 1/2) (7. 3) 

for one-dimensional harmonic oscillator is now under investigation, corresponding 
to which the time operator 

T= i (log a-log a+) /2w (7. 4) 

1s very likely to result too from our equation (3 · 7). Here, of course, a and a+ 
denote the construction operators. 
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