303

Progress of Theoretical Physics, Vol. 66, No. 1, July 1981

Generalized Dirae Equation

with Four Orthogonal Families of Spin 1/2 Solutions
Ikuo SOGAMI

Department of Physics, Kyoto Sangyo University, Kyoto 603

(Received January 6, 1981)

For the description of a family of leptons—and that of quarks—a new concept of fused
system with attribute both of the elementary particle and of the composite system is introduced
and a new fusion theory is developed. The fused system is postulated to be characterized by
a Dirac-like wave-equation with coefficients belonging to an algebra consisting of triple-direct-
products of y-matrices. Four Lorentz invariant manifolds of solutions of the wave equation
represent the spin 1/2 particles with the same internal quantum number and different masses
such as e, g, r and the fourth charged lepton all of which have the Dirac g-value of 2. In sharp
contrast to the conventional composite model of leptons and quarks no spin 3/ 2 particle appears
in this scheme,

§1. Introduction

The discovery of the tau lepton and the determination of its properties have
revived the old electron-muon puzzle in an intensified form. Without the dif-
ference among their masses the three charged leptons e, ¢ and t are confirmed to
be indistinguishable.” This fact— along with the similar increase of quark genera-
tions and the parallelism between leptons and quarks—has naturally led to the
hypothesis that leptons— and quarks—are composite and have intrinsic spacetime
structure.? On the other hand, however, the precise agreement between theory®
and experiment® for the gyromagnetic ratios of electron and muon has demon-
strated definitely the validity of perturbative quantum electrodynamics, in which
the electron and muon are postulated to be indivisible point-like particles obeying
the Dirac equation. It seems very hard for the composite models of leptons® to
give a satisfactory reason for the accurate experimental result that the lepton g-
values, except for the QED correction calculated up to the third power of the fine
structure constant, are identical with the Dirac value of 2.

In order to harmonize these apparently incompatible features of leptons, i. e.,
their elementarity and multiplicity, we propose in this paper a new viewpoint in
which the leptons—similarly the quarks—carrying the same internal quantum
numbers and different masses are identified with orthogonal eigenmodes of
certain entity whose behaviour is described by a single generalized-wave-equation
of Dirac type. Such an entity, which will be called a fused system, is considered
to have intermediate properties in between the elementary particle and the com-
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304 1. Sogami

posite system. To make the wave equation characterizing the fused system have
plural Lorentz-invariant-manifolds of solutions representing the particle states
with “a spin angular momentum of half a quantum and a magnetic moment of unit
magneton”,” we generalize the Dirac equation so that coefficient matrices belong
to a new algebra larger than that of usual y-matrices. We call it a fusion
algebra and construct it explicitly from the triple-direct-products of y-matrices.

In § 2 we clarify the distinction between the well-known algebra for the
composite system and the fusion algebra which includes four sets of quartette
product-matrices satisfying the anticommutation relations of Dirac type. The
fusion algebra is proved to have 64 dimensions as a vector space and the order of
its centre is shown to be 4 in § 3. For the description of the fused system we
postulate a wave equation with coefficients belonging to the fusion algebra, prove
its covariance under the proper and improper Lorentz transformations, and carry
out the quantization in § 4. Corresponding to the order of the centre of fusion
algebra the wave equation has four irreducible manifolds of solutions representing
spin 1/ 2 particles. Section 5 is assigned to derive explicitly such solutions in the
rest frame of fused system. In contrast to the composite system consisting of
three Dirac particles the fused system has no particle-mode with spin 3/2. We
make the interpretation that four orthogonal solutions describe the fundamental
fermions with the same internal quantum number such as electron, muon, r-lepton
and another charged lepton whose existence is predicted in this paper, and give
further comments on the unification of leptons and quarks in § 6.

§ 2. Fusion matrices

To distinguish our approach from the standard theory of composite system, let
us consider first a system of three Dirac partiéles. The total spin angular
momentum of the system is the vector sum of spin operators of constituents. In
terms of relativity this means that the generators of spacetime rotation of the
composite system M are given by the sums of direct-products of the component

generators 0w =1/ 2[7«, 7.] as follows:”

,‘fu’:% qu’:%owxzxzﬂ X%GWXZ+1><Z><-%GW, (1)

where I symbolizes the 4X4 unit matrix. It is straightforward to verify that

the resultant operators M satisfy the general commutation rules

[%m&,%uu] - Z'g,cp W}W+ Z'g/cu%,{y - Z'gu/j’lm + z'gwﬂm (2)

for the generators of Lorentz group Mu..

*) We adopt the metric {gu)=(+ — — —) and the representation of y-matrices 7°= o :((1) ;?) and

7”:*7’1‘:(0,5], 66) for j=1, 2 and 3.

20z Iudy gz uo ysenb Aq 265998 L/£0€/1/99/8101ne/did/Wwod dno-ojwapede//:sdpy Wolj PapeojumoQ



Generalized Divac Equation with Four Orthogonal Families 305

We must notice, however, that it is possible to construct another set of

product-operators obeying the rules (2) in the following form:

1 _ 1
Mﬂu—? th* _7Gyu>< Opy X Opy . (3)

The comparison between the space parts of both operators M{Y and M. shows
that, while the former embodies faithfully the addition law of spins, the latter
does not allow the conventional interpretation of spin synthesis. In fact, in
contrast to the spin quantum numbers 1/2 and 3/2 which the resultant spin
operators (M35, MSP, MfS’) can take, the new operators ( Mzs, Ms1, Mi») are directly
confirmed to have the spin quantum number 1/ 2 exclusively.® Therefore, M, are
not the Lorentz generators of composite system in the usual sense. Nevertheless,
M, constitute the representation of the Lie algebra of Lorentz group, and it is this
peculiar representation with which we are going to formulate the theory for the
fused system.

In order to develop the new fusion theory so that the operators M., receive a
proper interpretation, it is adequate to follow the method exploited in the ordinary
fusion theory.” Just alike 0., is generated out of y-matrices, the composite
operators X&) are expressed by the commutators

L?:%[F#(C), Fu(c)] (4)
provided that I, is defined by
FO=yu X IXT+IXyuXI+IXIX 7y (5)

We must find such kinds of product-matrices, which generate not the conventional
Lorentz operators M. but the new Lorentz operators M., in the (16)°=4096
dimensional linear space consisting of triple-direct-products of 1, 7s, Ouy, 757« and
ys. Four sets*® of product-matrices satisfying this requirement are hunted down
as follows:
(0)=Ts=v XX 7,
F1(0)5F1:71X71><')’1 s
O =e=72 Xy X7s,

(0)=T5=ys X y3s X 73,

(6)

*) While the operator M&)=(M$$)?+ (M$5)? + (M) obeys the (minimal) equation

(ME—SD(Me -2 =0,
4 4
the operator M= (Mas)*+(Ms1)*+(M,2)* satisfies
3
2_ Y 75—
M 4 1=0.

**) As for the problem whether more than four sets of product-matrices generating M,, exist or not,
see the comment (3) given in § 6.
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306 1. Sogami

1
Po(l):ﬁ(%?’lX7’57’2><757’3+7’57’2><7’57’3X7’571+7’57’3><7’571><7’57’2),
Fl(l):%(%?'oxnx72+7s><72><7570+72><7570><y3),

(7)
Fz(l):%ﬁg(%x7’57’0><v?’1+7’570><7’1><7’3+71><7’3><757’o),
Fs(l):%(ﬁx71><7570+71><757’o><7'z+7570><7'z><71),
Fo(3):%(7573x7’57’2><757’1+7’57’1X7’57’3><7572+7572X7’57’1><7573),
FI(S):%(VZX7’3><757’0+7’57’0X')'2><73+73><')’57’0><}’2),

(8)
5(3):%(7’1X?’57’0><7’3+7’3><71X7’57’0+7’57’0X73><71),
F3(3):%(7’570><7’1X?’2+7’2X757’0><7’1+7’1><7’2><7’s7’o)

and
FO(Z):FO(O)FO(].)FO(B),
F1(2):*F1(0)F1(1)F1(3)7 (9)
I(2)=—T(0) (1) 1%(3),
]_'3(2): _F3(0)F3(1)F3(3)

In fact it can be readily demonstrated that all these four sets of fusion matrices
I'.(a) build up the common Lorentz generators X, in Eq. (3), i.e.,

Y= — O X owmwzﬁ;[n(m, r(a)] (10)

for a=0, 1, 2 and 3. These fusion matrices turn out to satisfy the following
clear-cut algebraic relations as

I'la)'(a)+T'(a)w(a)=2gwl , (11)

) W(D)Y+ () u(a)=0 for u=xv (12)
and

() I(0)—Tu(D)(a)=0, (13)

where I=1X1X].

Notice that, in spite of the simple form (5), the algebra of composite matrices
.9 is known to be very complicated. This is nothing but the direct reflection of
the composite structure of system described by I'x'“. On the other hand, despite
the ostensible complexity of the representations (6)~(9), the algebra of fusion
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Generalized Divac Equation with Four Orthogonal Families 307

matrices has the remarkable simplicity. In particular, the four subsets of gene-
rators {Iw(a): ©=0,1,2,3} for a=0, 1,2 and 3 have exactly the same structure
with the basic y-matrices. This fact seems to support our design that the fusion
matrices I'x(a) and consequently the new Lorentz generators M,w:% 2 de-
scribe, not the composite system, but the physical entity retaining the elementarity
which is considered to be characterized solely by the Dirac equation as well as the
multiplicity which is not describable by that too genuine equation.

At this stage we should recognize definitely the different roles played
respectively by the fusion I -matrices and the component y-matrices. Since X,,
and I:(a) satisfy the relations

[Zﬂu, FA(d)]ZZigAyFy(d)_2igAﬂFu(a), (14)

every quartette (Io(a), In(a), [2(a), I:(a)) for a=0,1, 2 and 3 forms separately

the Lorentz invariant set (see § 4). Therefore, the index p of I'«(a) discrimi-

nates covariantly the component of spacetime coordinates of the Minkowskian
continuum in which the fused system exists. On the other hand, as is recognized
from the explicit forms of I'«(a) in Eqs. (6) ~(9), y-matrices play no more role than
the building-blocks of fusion matrices and their indices should not be considered to
be immediately related to the spacetime coordinates.®

§ 3. Fusion algebra

The Dirac algebra spans the 16 dimensional linear space with the standard
basis {1, 7, Ouv, 757s, 75} generated from the products of y-matrices. Similarly,

by forming products of [I'-matrices and selecting out linearly-independent ele-

ments, we are able to generate the, fusion algebra.
First of all there are four linearly-independent scalar** matrices. Namely, in
addition to the identity /=17(0), we have

[ =" u(3) =T (0)Tu(D)
:71__3_(012X623><G31+0<23X0_31><012+O31 XOIZXGZS), (15)
I[(3) =4 (D))= () 1(3)

:\/1§(0<31X023><0.12+O<12><631X023+023X612XG31) (].6)

*) Nevertheless it is interesting to observe that, if the operation of direct product in the expressions
(6)~(9) is replaced by the ordinary multiplication of component y-matrices, all the I'u(a) reduce to ..

**) For the sake of brevity we use the concepts (pseudo) scalar, (axial) vector and tensor in advance
of the analysis of Lorentz transformation made in detail in the next section.
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308 1. Sogami

and
Q)= T3 T D)= (0 [W2)=I(3)I(1) (17)

which are commutative with all I.(2) and involutorial as
I{a)y=1, a=1, 2, 3. (18)

In the defining equations (15)~ (17) the summation convention, according to which
repeated covariant and contravariant indices are summed, is used provided that
the index of fusion matrices I «{a) is raised by I'“(a)=g¢"*I'.(a). Corresponding-
ly we have four pseudoscalars

O =Ts=id (o) ' (a) () (a)=—ysXys X 75 (19)
and

I(a)=Ts1(a), a=1,2, 3, (20)

which are commutative with each other and anticommutative with all I«(a), and
satisfy the relations Is(1)15(2)15(3)=1% and [s(a)*=1 for a=0, 1, 2 and 3.

A similar quadruplicate structure is found also for the axial-vector and tensor
matrices. Four linearly-independent axial-vector matrices are synthesized by

Iil(a)=Ta) s, a=0,1, 2 3. (21)
Over and above the original Lorentz generators 2w = 2..(0) in Eq. (10), we have
three sets of tensor matrices such as

Zul @)= Bare 4 ITu(8), T O] = S I(a), a=1,2,3, (22)

where Sase=1 if (@, b, ¢) is a permutation of (1,2,3) and Sasc=0 otherwise.
Representing one kind of matrices among I{a), I'u(a), Yula), IsTw(a) and I's(a)
by the symbol A(a), we find generally the relations

[(tl) A(b):(aab —28a06b0)/1(0)
+8aoA(b)‘f‘abo/l(CZ)‘*‘&(,OA(&)‘*‘(SabcA(C)- (23)

In this way it is confirmed that the six generators lo, 11, I3, I3, I(1) and
1(3) generate the fusion algebra R[I']|={I(a),(a), Euw(a), IsTu(a),[{a): 1, v,
a=0,1, 2, 3}, the dimension of which is 64. The centre Z{{"] of this algebra, i. e.,
Z[={zeR[I"']: xz=zx,YxeR[I']}, is {I(a): @=0,1,2,3} and its order is 4.
The identity 7 has the decomposition

[:'(Zh+af2+'ctfa+’(b4 (24)

in terms of the projection operators defined by

20z Iudy gz uo ysenb Aq 265998 L/£0€/1/99/8101ne/did/Wwod dno-ojwapede//:sdpy Wolj PapeojumoQ



Generalized Divac Equation with Four Orthogonal Fawmilies 309

o= =TI +1(3)], (25)

@=L 1 1)), (26)

ws= L+ IDIT+1(3)) (27)
and

a742%[1r—1(1)][1—1(3)] (28)

which belong to the centre and satisfy the relations @»@» = 8-~ @». Similarly the
semisimple algebra R[I'] is decomposed into the direct sum of ideals as

R:R1+R2+R3+R4, (29)

where R-= Ra, =wrR are ideals of R[[']. The physical implications of these
decompositions are expounded in the later sections.

The transpose of fusion matrices is defined by the direct product of trans-
posed-component-matrices, and likewise the complex conjugate and the Hermite
conjugate of fusion matrices. Immediately we get

{ I (a)=¢eddv(a), N(a)=—e01(a), (30)
IV (a)=¢eo2(a), I (a)=—e3(a),
{Fo*(a)zeafo(a), Fl*(d):&zFl(a),
(31)
I2*(a)=—¢eod2(a), I3*(a)=c.l%(a)
and
I (a)=To(b)Tu(a)o(b) (32)

for @, b=0, 1, 2 and 3, where ¢, =(—1)% are sign factors.

§4. Wave equation, proof of covariance and quantization

We postulate that the fused system is described at a very good approximation
by a local field obeying the Dirac-like wave-equation with coefficients belonging to
the fusion algebra R[I"]. There are four candidates for such a differential
equation for free field as follows:

[ile(a@)o”—M(a)l¢(x :a)=0, a=0,1,2, 3. (33)

In order that the free fused system has an appropriate energy-momentum relation,
the solution ¢(x : @) of these equations should satisfy the conditions of Klein-
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310 L Sogami

Gordon type
[0.0*+M(a)*]¢(x :a)=0, a=0,1, 2, 3. (34)

This natural requirement demands the mass operators M(a) to be commutative
with the generating matrices I «(a). Accordingly M () must belong to the centre
Z|[I'] and have the general form M(a)= 2171 m.(a)w, with unknown real param-
eters m-(a).

To select the most suitable equation ruling the behaviour of the fused system
out of the four candidates (33), we must find their mutual relationships. For that
purpose let us operate the Lorentz scalar /(a) to Eq. (33) with fixed . Noting
the identity I(a@)I«(a)=Iw(0)=1" and the fact that J{a)M(a) can be equated to
M{(0)= M if the unspecified parameters m-{a) are properly adjusted, we recognize
that the three equations of (33) for ¢=1, 2 and 3 are equivalent to the one equation
of (33) for «=0. In other words, all the equations (33) are equivalent with each
other granting the adjustment of parameters in mass operators. Taking account
of the facts that the quartette I.(0)=1. has the simplest y-structure, we
postulate without loss of generality that the field ¢(x:0)=¢(x) of free fused
system obeys Eq. (33) with «=0 which is rewritten here in the concise form

(i7" —M)¢(x)=0 (35)
with
M = mior + matye + msws T M . (36)

Under the proper Lorentz transformation x'n= Amx” where Azt =gp
and det || =1, we assume the field ¢(x) to be transformed as

P(x)=S(A)¢(x) (37)
as usual. The form invariance of Eq. (35) leads to
ST MNCS(AN) =A™ and STHAYMS(A)=M (38)
which result in the transformation matrix
S(A)= exp( —%Eww””> (39)
for a spacetime rotation through a covariant angle wg. in the x-v plane. Since
S(A) has the property
SHM=ISY (M5, (40)
the adjoint field defined by
Glx)=¢" () (41)
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Generalized Divac Equation with Four Orthogonal Fawmilies 311

is subject to the Lorentz transformation
d(x)=¢(x)SH(A). (42)

Next let us turn our attention to the discrete symmetry. For its purpose it
is adequate to examine the field equation in the presence of electromagnetic fields
Au(x) as

[Iu{i0" —eA"(x)}—M]d(x)=0 (43)
by postulating the minimal-coupling substitution p.— pu —eAx(x) for the fused

system which is assumed to have an electric charge e¢. In order that Eq. (43) is
form-invariant under the space inversion *'=—a and ' =¢, i.e.,

(M {id*—eA"(x)}—M]y'(x')=0, (44)
where A .(x") are related to Ax(x) by A(x' )= —A(x) and A'o(x")= Ao(x), the
field ¢(x) must have the transformation property

P(x)=Ph(x)=T"P(x). (45)

As far as the proper Lorentz transformation and the space inversion are
concerned, the present scheme has been shown to retain the same structure with
the Dirac theory.” The literal parallelism, however, is lost for the time-reversal
and charge conjugation transformations, since the [ '-matrices have different
properties from the component y-matrices with respect to the complex conjugate
and transpose operations. The time-reversal transformation &'=x and t'=—1
brings the electromagnetic fields A.(x) to A(x")=— A(x) and A'o(x")= Ao(x)
and Eq. (43) is converted into

[Fu{id*—eA ™ (x )} —M]'(x)=0 (46)
in the timereversed frame, provided that the field ¢{(x) has the transforma-
tion property

P(x )= p(x)= T (x)=i "I ES*(x). (47)
The charge conjugation transmutes Eq. (43) into

[Iufio* +eA(x)}—M]de(x)=0, (48)

where the charge conjugate of ¢{x) is defined by
e(x)=F ¢(x)= Cp*(x)= I T°5Y*(x), (49)

where C satisfies

*) Since I(a) for a=1, 2 and 3 are commutative with P and S(A), it is legitimated to term I(a),

Tda)=Td(a), Zula)=2Xuwi{a), IIa)=IsTwI(e) and Iy(a)=TI5I(a), respectively, Lorentz
scalars, vectors, tensors, axial vectors and pseudoscalars.
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312 1. Sogami

C_lryC: ‘F,uT . (50)

The operator = in the formulae (47) and (49) has the form

E=4 U~ IR

+%[1+1(2)]-—%~[1—(1>< G12 X 012+ 012 X I Xoz+ oz X o2 X 1)), (51)

where R works to reverse the ordering in the direct-product of undors. The

involution = being commutative with I, induces the interchanges among the
projection operators as follows:

_ — (52)
EmE '=ws and EwouE l=ws.
By this function which reduces the complex-conjugated mass-operator M* back to
M, 1e.,

EM*E'=M, (53)
Z plays an indispensable role to preserve the form invariance of the theory under

the time-reversal and charge-conjugation transformations.*
Combining Egs. (44)~(49), we find that the PZY operation transforms

¢(x) into
Prer(x)=PET $(x)=i*P(x) (54)
and Eq. (43) into
[Tu{io0™”+eA™(x" )}~ M]dprer(x")=0. (55)

Therefore, the Stiickelberg-Feynman interpretation on antiparticles holds true in
this scheme just like in the conventional Dirac theory.

There is no obstacle to the canonical quantization of fusion field ¢(x). The
Lorentz covariance and the Fermi-Dirac statistics require the anticommutation
relations

{¢(x), $(»)}=—iS(x—y), (56)
{¢(x), ()} ={d(x), d(»)}=0,
where
S(x—v)= (272;_)3 fd(4)k(Fﬂk”+M)8(k2’MZ)E(ko)efik(I“y) . (57)

*) Although = does not belong to R[I'], it is not necessary at all to enlarge the fusion algebra so
as to include it since the & and & transformations are discrete symmetries.
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Generalized Divac Equation with Four Orthogonal Families 313

The causal propagator is defined by
Srlx—y)=i<0| T[¢(x) $(¥)]I0>

1
(27)*

fd<4’/e(nkhM+ je) tem ke (58)

In the integral representations (57) and (58) the kernel function and distribution
are defind on the fusion algebra R[I"] and have the decompositions

(B = M+ ie)™ = S —mi*+ ie) ', (59)
and
4
8(F—M*)= 31 6(K~ mr*)orr (60)

§5. Solutions of free wave equation

The best way to elucidate the characteristic features of the present scheme
is to solve Eq. (35) explicitly. In the rest frame of the fused system let us derive
the solutions of the simultaneous eigenvalue problems

(il060— M) ¢(x)=0, (61)

M¢(x)=md(x) (62)
and

Seg(x)=2¢(x) (63)

in the form ¢(x:e¢, s)=uv(e, s)exp(—iemt) where e==*1 and s= 1, { signify,
respectively, the positive or negative frequency solution and the up or down spin
solution. Table I summarizes the eigenvalues of Iy, 12, M and @,(7=1, 2, 3, 4)
and the simultaneous eigenvectors. In this table we adopt the symbols

and ¢ = (64)

[ e
O DO e O
o = o O
—_o O O

and w=exp(7 27/3) is a cubic root of unity. Eigenvectors are definite linear

combinations of triple-direct-products of undors and satisfy the orthonormal rela-

tions

er(g, S)Z}r’(S/, S,):Sarr'aee’ass’ (65)

20z Iudy gz uo ysenb Aq 265998 L/€0€/1/99/8101ne/did/Wwod dno-djwepede//:sdpy Wolj PapeojumoQ



314 1. Sogami

Table I. Explicit solutions of the free wave equation. Eigenvectors for the down-spin states v-(+, ! )
are obtained by making the replacements ?«—»Jj and T'—'l in the up-spin solutions v-(£, 1).

Eigenvalues
Simultaneous eigenvectors

Li 5w & @ @ @ M

w4, D= [7+ o7 7+ 794/ V3 1 1 1 0 0 0 m
nl(—, 1)=(? {11+ +12,)/V3 -1 1 1 0 0 0 m
o+, =7+, +e*770)/ V3 1 1 0 1 0 0 m
va(—, )=+t T+ %))/ V3 -1 1 0 1 0 0 ma
vs(+, 1)=CL77+ 74T+ 778 —iv3iid)/ve 1 1 0 0 1 0 m
vs(—, )=+ 1T+ —iv3{{{)/ V6 -1 1 0 0 1 0 ms
va(+, (é??+%‘f+?%+zf&%) 1 1 "0 0 0 1 ma
o=, 1)=(LIT+ 240+ P2 +iv3{Ld)/v6 -1 1 0 0 0 1 ma

for », »'=1,2,3,4;e,e’=%1and s, s'= 1, {. Notice that such states as 77}
and |/} | coexist in the solutions vs and vs. As a matter of fact, therefore, these
solutions are not the eigenstates of the composite spin operator 3 and it is not

allowed to interpret the states ¢, |, ¥ and | as the constituent spin eigen-

states.

Applying the Lorentz booster (39), we find the plane-wave solutions with
momentum p of free field equation (35) as

dr(x e, s)=vp:g, s)e i* (66)
with

vr(p e, s):exp[‘%plﬁo['-p tanh_l(%fﬁMﬂ vr(e, s) (67)

for r=1,2,3,4, e=%1and s= 1, | . The manifold of general solutions of Eq.
(35) is the direct sum of the submanifolds {v-(p : ¢, s):e=%1;s=1, | ; peR?},
every one of which is invariant under the Lorentz transformation and represents
the particle and antiparticle states carrying the definite mass and spin 1/ 2.

§ 6. Discussion

In the viewpoint of one-particle quantum mechanics Eq. (43) is regarded as
describing the time development of the fused system in the presence of external
electromagnetic field. The Hamiltonian has the form H =a-(p—¢eA)+ Ao+ 8M
with 8=1% and a:=Is]"". Following the familiar procedure we arrive at the
results that the fused system has the total angular momentum J=rXp+ % 2
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Generalized Divac Equation with Four Orthogonal Families 315

and the magnetic moment g= — ; eM™'> where M '=3,m, ‘@r-. Consequently
the fused system turns out to have the four orthogonal particle-modes with spin
1/2 and g-value of 2. These results justify to interpret that the three particle-
modes ¢ri=an¢, ¢.=w2¢ and ¢s=0s¢ represent electron, muon and z-lepton,
respectively, and that the remaining mode ¢«=w.¢ predicts the existence of the
fourth lepton.

In order to establish the e-u-7 universality it is necessary to presuppose the
vector and axialvector currents.heing composed exclusively of I'n and 157
Namely the matrices Ix(a) and I'sI'.(a) with a¥0 are forbidden to appear in
those currents. Then the Lorentz invariant decompositions of the currents

N A , | L% ,
9/’{]}11}&11 —§1¢T{F5Fﬂ}</} r (68)
guarantee the universality of four kinds of particle modes.

In this way two paradoxical aspects of leptons elementarity and horizon-
tal multiplicity—have been successfully formulated in terms of the simple
mathematical language of new fusion algebra. Although this theory has no power
to explain the mass spectrum of leptons at the present stage of development, it has
certainly cut one promising way toward the resolution of the e-#-r puzzle. In
particular the non-appearance of the spin 3/2 particle-mode makes the present
approach much prominent over the conventional composite model. In all the
composite models where leptons and quarks are assumed to be made of three
Dirac particles it is recognized® that no algebraic constraint works to remove the
composite field of spin 3/ 2 while retaining all physical fields. The spin 3/2 state
being repugnant in the cofhposite model is reincarnated in our fusion theory as two
orthogonal particle modes with spin 1/ 2 and carrying different masses which are
represented by the eigenvectors us(e, s) and wvi(e, s) in Table 1.

Here the emphasis should be laid on the fact that it is not necessary at all in
this theory of leptons and quarks to challenge the dynamical problem of confine-
ment in front, which must be solved inevitably at the level of hadrons regarded as
the composite systems of quarks and also at the level of leptons and quarks if the
composite model is adopted. Without doubt this is another advantage of fusion
approach over the composite model of leptons and quarks. This kind of conver-
sion of dynamical difficulty into a formal and kinematical problem seems to be
unavoidable in order to understand the deeper levels of material world.

We conclude by making several comments for further developments of the

fusion theory:

(1) So far the theory has been developed only in reference to one kind of fused
system with integral charge ¢ which has four orthogonal particle-modes inter-
preted as charged leptons. There are two different ways to generalize the theory
in the vertical direction so as to attain the unification of leptons and quarks. The
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simplest way is to assume the existence of eight kinds of fused systems with
different electric and colour charges correspondingly to the first generation &, u,
d and ve of basic fermions. Describing the fourfold generations wholly in terms
of eight independent fusion fields, we are able to formulate the standard gauge
theory of strong and electroweak interaction based on the SU:(3) X SU(2) < U(1)
group, and at the very high energy limit of the scale ~10" GeV we may further
postulate the grand unification based on a simple group such as SU(5).

(2) Another way to the unification is to apply our fusion scheme to the internal
degrees of freedom, i. e., to melt the composite model of leptons and quarks totally
into the fusion theory. To see this let us consider here the most economical model
proposed by Harari and Shupe® in which leptons and quarks are assumed to be the
three-body composite systems of two kinds of fundamental Dirac-like entities T
and V. This “very radical model” attempts to explain not only the modes of
existence of composite fermions but also to generate the symmetries of colour
SU.(3) and weak-isospin at the level of composite fermions. As the I'-matrices
are defined by the triple-direct-products of building-block y-matrices, our fusion
theory suggests to construct the Lie algebra of SU:A(3)X SU(2) X U(1) symmetry

as the triple-direct-products of generators of basic SU(2) group whose fundamen-

tal representation is the rishon doublet (7", V). Furthermore, if we succeed in
“fusing” simultaneously the symmetries of spacetime and internal degrees of
freedom, we will obtain the key to open the secret of the world of leptons and
quarks.

(3) From the viewpoint of the composite model, the solutions of the free wave
equation v+, s) and v-(—, s) listed in Table I are formally——except for the
interpretation of spin——related to the composite systems of three fundamental
particles and three fundamental antiparticles, respectively. Namely our fusion
field describes exclusively the eigenmodes of fused system corresponding to the

(fundamental particle)® and (fundamental antiparticle)® configurations. Theo-

retically speaking, however, there is no a priori reason to prohibit the fused
system from having such mixed eigenmodes as corresponding to the configurations
(fundamental particle)’ (fundamental antiparticle) and (fundamental particle)
(fundamental antiparticle)®?. In fact it is possible to find out a larger algebra
which includes our fusion algebra R[I'] and allows to describe the mixed and
unmixed eigenmodes in a unified way. The considerations on this problem will be
left in the future task.
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