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It is known that Ashtekar's formulation for pure Einstein gravity can be cast into the form of a 
topological field theory, namely, the SU(2) BF theory, with the two-form fields subject to an algebraic 
constraint. We extend this relation between Ashtekar's formalism and BF theories to N = 1 and N 
=2 supergravities. The relevant gauge groups in these cases become graded Lie groups of SU(2), 
which are generated by left-handed local Lorentz transformations and left-supersymmetry transfor
mations. As a corollary of these relations, we provide topological solutions for N=2 supergravity 
with a vanishing cosmological constant. It is also shown that, due to the algebraic constraints, the 
Kalb-Ramond symmetry which is characteristic of BF theories breaks down to the symmetry under 
diffeomorphisms and right-supersymmetry transformations. 

§ 1. Introduction 

Since its birth in the mid eighties, Ashtekar's formulation for canonical gravity1
l 

has been vigorously investigated by many researchers as a promising approach to the 
nonperturbative quantum gravity.2

l A merit of Ashtekar's formalism is that the 
Hamiltonian constraint, or the Wheeler-DeWitt equation,3

l takes a polynomial form in 
terms of new canonical variables. Thus we expect that, using Ashtekar's formalism, 
we can solve the constraint equations, which have not been solved in the conventional 
metric formulation. 4

l 

In fact, several types of solutions are found. These are roughly classified into 
two types, "loop solutions", which consist of Wilson loops5

Hl and "topological 
solutions", which are also solutions for a topological field theory.8

l The latter type 
includes the Chern-Simons solution in the case with a nonvanishing cosmological 
constant A.9

l The existence of these topological solutions suggests a relationship 
between Ashtekar's formalism and a topological field theory, namely, the SU(2) BF 
theory.10J It was indeed shown that Ashtekar's formalism can be obtained from the 
SU(2) (strictly speaking the chiral SL(2, C)) BF theory with the two-form field 
subject to an algebraic constraint.11

H
3

J 

Ashtekar's formalism is also applied to supergravities with N = l 14
J,uJ and with N 

=2.15J In the case N=l supergravity also, topological solutions16
J including Chern

Simons solutions17
J,IBJ were found. As for the N =2 case, only the Chern-Simons 

solution was found.l7) This fact implies a relation between N=l, 2 supergravities 
and BF theories with appropriate gauge groups. We expect that, if these relations 
can be made transparent, we can make further progress in the investigation of 
quantum gravity both technically and conceptually. 

In this paper we show explicitly that Ashtekar's formulation for N=l and N=2 
supergravities can indeed be cast into the form of BF theories with two-form fields 

*l Supported by JSPS. 
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864 K. Ezawa 

subject to algebraic constraints. The relevant gauge groups in these cases are 
provided by graded versions of SU(2), which are generated by left-handed local 
Lorentz transformations and local left-supersymmetry transformations (plus U(1) 
gauge transformations in the N=2 case). These relations not only elegantly explain 
the existence of the above-mentioned topological solutions but also predict the 
existence of topological solutions in the case N=2 and A=O. We also show how the 
algebraic constraints for two-form fields break the Kalb-Ramond symmetry of the BF 
theories19>' 10> down to symmetry under diffeomorphisms and right-supersymmetry 
transformations. 

The presentation of this paper is as follows. Once the relations to the BF 
theories are established, the arguments are almost parallel for the cases of pure 
gravity and N = 1, 2 supergravities. So only the N = 1 case is dealt with in detail. 
After briefly reviewing the relation between pure gravity and the SU(2) BF theory in 
§ 2, we derive the action of N=1 chiral supergravity from that of the GSU(2) BF 
theory in § 3. Canonical quantization of the GSU(2) BF theory is also discussed in 
§ 3. The A=O case is a little peculiar and the reduced phase space in this case is 
shown to be the cotangent bundle over the moduli space of flat GSU(2) connections 
on the spatial manifold M<3> modulo gauge transformations. In § 4 we show that N 
=2 supergravity is obtained from the BF theory whose gauge group is an appropriate 
graded version of SU(2), which we will henceforth call G2SU(2). Unlike in the pure 
gravity and N=1 cases, we cannot find the relation easily because the N=2 chiral 
action involves a quadratic term in auxiliary fields. Replacing this quadratic term by 
linear terms in auxiliary fields, we make the relation to the G2SU(2) BF theory 
manifest. For N = 2 supergravity the A= 0 case is somewhat different from those in 
the N =0, 1 cases because the reduced phase space does not possess cotangent bundle 
structure. We also provide the formal "topological" solutions for the N = 2, A= 0 
case. In § 5 we discuss possibilities for future developments. 

Let us now define the notation used in this paper: i) tt, v, ... stand for spacetime 
indices; ii) a, b, ... are used for spatial indices; iii) A, B, ... represent left-handed 
SL(2, C) spinor indices; iv) i, j, ···denote indices for the adjoint representation of (the 
left-handed part of) SL(2, C); v) €abc( E abc) is the Levi-Civita alternating tensor 
density of weight + 1 ( -1) with € 123 = E 123=1; vi) Euk is the antisymmetric (pseudo-) 
tensor with t 123 = 1; vii) EA8

( EAB) is the antisymmetric spin or with E
12 = E12 = 1;*> viii) 

the relation between a symmetric rank-2 spinor ¢AB and its equivalent vector¢; in the 
adjoint representation is given by ¢A8 =¢i((l/2i)A8

, where (O"i)AB are the Pauli 
matrices with (O"i)Ac(if)cB=auai+iEi.ik(O"k)AB; ix) D=dJ/"D,., denotes the covariant 
exterior derivative with respect to the SU(2) connection A=A;h x) indices located 
between (and) ([and]) are regarded as symmetrized (antisymmetrized). 

For simplicity we will restrict our analysis to the case where the spacetime has 
the topology R X M(3), with M<3> being a compact, oriented, 3-dimensional manifold 
without boundary. 

*) These antisymmetric spinors are used to raise and lower the spinor index: <pA=EA
8

<ps, 'PA=<p
8

€sA. 
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Ashtekar's Formulation for N=l, 2 Supergravities 865 

§ 2. SU(2) BF theory and Ashtekar's formalism 

In this section we provide a brief review of the relationship between SU(2) (or, 
strictly speaking, chiral SL(2, C)) BF theory and Ashtekar's formulation for pure 
gravity. 11

H
3

l We start with the action of the BF theory: 

- ilsF= /Tr( S 1\F-1 S 1\S), (2 ·1) 

where S=S'],=(1/2)S~vdx~' 1\ dxv]; is an SU(2) Lie algebra-valued two-form and F 
=dA +AI\ A is the curvature two-form of an SU(2) connection A=A'],=A/dx~'],.*l 

This action is invariant under SU(2) gauge (or left-handed local Lorentz) trans-
formations: 

oeS=[B, S], 

oeA=-D8=-d8-[A, 8], (2·2) 

where 8=8'], is an SU(2)-valued scalar. The action (2·1) has an additional symme
try, the (generalized) Kalb-Ramond symmetry:19

).Io) 

o9S=- D¢=-d¢-A/\ ¢-¢1\A, 

A oif>A=-3 ¢, (2·3) 

where ¢= ¢'], is an SU(2)-valued one form. This Kalb-Ramond symmetry includes 
symmetry under the diffeomorphisms. We use as ¢ the field-dependent parameter ¢~' 
= vv Spv. Then by using equations of motion 

F-_!l_S=DS=O 
3 ' 

we obtain the infinitesimal diffeomorphism generated by the vector v = v~'(o/ox~') plus 
the SU(2) gauge transformation generated by 8=v~'A~': 

(2·4) 

where..£ v denotes the Lie derivative with respect to the vector v. The derivation of 
these equations requires the equations of motion. However, the equations of motion 
for the BF theory are either first class constraints or equations which yield conditions 
for the temporal components of the fields. As is seen shortly, in the canonical 
formalism, temporal components are considered to be Lagrange multipliers which 
play the role of the gauge parameters. The diffeomorphism invariance is thus 
considered to be a particular form of the Kalb-Ramond symmetry as far as the 
physical content of the BF theory is concerned. 

*l ]; denote the SU(2) generators subject to the commutation relations [J,,Jj]=cuJ•· Tr is the 

SU(2)-invariant bilinear form: Tr(] Jj) = i'Ju. 
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866 K. Ezawa 

In order to rewrite the action (2·1) in canonical form, we simply identify the 
zeroth coordinate x 0 with time t. The result is 

(2·5) 

where we have set if 0 = ifai];=(l/2) gabcsbc and A=(a/at)A. This system involves 
two types of first class constraints. Gauss' law constraint 

generates the SU(2) gauge transformations, and the remaining constraint 

(2·7) 

generates the Kalb-Ramond transformations. 
Let us now quantize this system following Dirac's quantization procedure.20> We 

first read off canonical commutation relations from the symplectic structure. The 
result is 

If we use as wavefunctions the functionals of the connection Aa;, the conjugate 
momenta are represented by functional differentiations: 

(2·8) 

Next we impose the first class constraints as conditions to which the physical 
wavefunctions are subject. Gauss' law constraint simply tells us that the wavefunc
tions are SU(2) gauge invariant. The other constraint can also be solved easily. 

For A =0, this is solved by the wavefunctions with support only on the fiat 
connections. The formal solutions for the A=O case are given by 

(2·9) 

where ¢ is an arbitrary SU(2) gauge invariant functional of the connection. This 
solution coincides with that obtained in Ref. 8). This is effectively equivalent to 
dealing with the functions on the moduli space of fiat SU(2) connections modulo (the 
identity-connected component of) gauge transformations.*> 

For A =1=0 this remaining constraint has the unique solution 

W[A]=exp[- 2~L ... Tr(AdA+ ~A!\A!\A)], (2·10) 

*> Because the constraints are at most linear in the conjugate momenta Jt•, we expect that Dirac's 
quantization yields the same result as the reduced phase space quantization, up to minor subtleties.21) 
Particularly in the A=O case, the result of these two quantizations should be identical, because the reduced 
phase space turns out to be the cotangent bundle on the moduli space of flat SU(2) connections. 
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Ashtekar's Formulation for N = 1, 2 Supergravities 867 

which coincides with the Chern-Simons solution found in Ref. 9). 
Ashtekar's formulation for pure gravity is obtained from the action (2 ·1), ac

companied by the following algebraic constraint on the two-form field (we set 4AB 
=4i(6i/2i)AB): 

(2·11) 

Solving this algebraic constraint for 4/a and substituting the result into the action 
(2 · 5), we find 

(2 ·12) 

This is nothing but the action for Ashtekar's formalism. Thus we easily see that the 
solutions to the SU(2) BF theory are necessarily included in the solution space of 
Ashtekar's constraints provided that we take the ordering with the momenta ftat to 
the left. This seems to be natural, because we know that the constraint algebra 
formally closes under such ordering. 

§ 3. GSU(2) BF theory and Ashtekar's formulation 
for N=l supergravity 

In this section we show explicitly that N = 1 supergravity in Ashtekar's form can 
be cast into the form of the GSU(2) BF theory with the two-form field subject to 
algebraic constraints. 

3.1. GSU(2) BF theory 

We start with the BF action 

(3·1) 

where 93=4;];-(1/A.g)xA]A is a GSU(2)-valued two-form, and :E=dJl+Jli\Jl is the 
curvature two-form of the GSU(2) connection Jl=A?t+ ¢A]A.*> Ut.fA) are the 
generators of the graded Lie albebra GSU(2)22>: 

(3·2) 

where {,} denotes the anti-commutation relation. STr stands for the GSU(2) invar
iant bilinear form which is unique up to an overall constant factor 

STr(JJj)=ot,;, STr(JJB)= -2MEAB, STr(JJ;)=STr(JJA)=O. (3·3) 

*> Note that xA and ¢A are Grassmann odd fields. Whether an object is Grassmann even or odd can be 
determined by whether the number of its Lorentz spinor indices is even or odd. 
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868 K. Ezawa 

If we use Eqs. (3 · 2) and (3 · 3) and rewrite the action (3 ·1) in terms of component fields, 
the result is as follows: 

- iJfF=l= J( J:i A( P + ?tg( g; t/A l'd/! 8 )+2xA ADc/JA- ~
2 

J:i 1\J:i- 3~ xAAxA). (3·4) 

This action (3·1), or equivalently the action (3·4), necessarily possesses the 
symmetry under GSU(2) gauge transformations 

opJl=-aJp=-dp-[Jl, p], 

(3·5) 

where p=8i];+€A]A is a GSU(2)-valued scalar, and the Kalb-Ramond symmetry 

g2 
o(Jl=-3~' 

8(93 =-g)~=- d~-Jl !\ ~- ~ !\Jl, (3·6) 

where ~=¢/];-(1/?tg)rl!A is a GSU(2)-valued one-form. Of course these transforma
tions can be translated in terms of component fields. The GSU(2) gauge transforma
tion (3 · 7) is 

apAi =-Dei+ 2?tg( g;) AB €Ac/JB, 

Opr = ei( g; r B<PB- D€A ' 

And the Kalb-Ramond symmetry is decomposed as 

~ ,f,A_ g 71 A 
V('f/ -ll'' ' 

0(2:;=- D¢;+2( g; tBTJA !\ <PB' 

D(XA =ltg¢;( g; r B !\ <PB- Dr;A. 

(3·7) 

(3·8) 

In almost the same way as in the SU(2) case, we can show that a diffeomorphism is 
generated by the Kalb-Ramond transformation (3·6) (or the transformation (3·8)) 
with ~p=v11 93pll, up to a GSU(2) gauge transformation generated by p=v~'Jlp. 

Let us now investigate the canonical formalism. In a manner similar to the 
SU(2) case, we perform a (3+ I)-decomposition of the action. The result is 
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Ashtekar's Formulation for N=l, 2 Supergravities 869 

where we have set fia=(1/2) €abcfBbc= ifai];-(1/?..g)ifaA]A. From the symplectic 
potential 

(3 ·10) 

we can read off Poisson brackets between the canonical variables: 

{Aai(x), ifbj(y )}PB=- ioaboijo3(x, y), { ¢aA(x), ifb8 (y )}PB= -; 1 oaboA8 o3(x, y) 

(3·11) 

with the rest being zero. 
There are two types of first class constraints. One is the Gauss' law constraint 

which generates GSU(2) gauge transformations of the canonical variables under the 
Poisson bracket 

(3·12) 

The other type of constraint is that which generates the Kalb-Ramond transforma
tions 

These constraints indeed form a closed algebra under the Poisson bracket. To see 
this it is convenient to use smeared constraints: 

=Gi(Bi)+ LA(€A)' (3·14) 

tP(~)=i ( d3xSTr(~atPa)=i ( d3x(¢ai(T)ai_27JaA(T)aA) 
JM!3) JM!3> 

(3 ·15) 
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870 K. Ezawa 

The calculation of Poisson brackets is not so difficult if we recall that these smeared 
constraints generate the GSU(2) gauge transformation (3·5) and the Kalb-Ramond 
transformation (3·6) on the canonical variables. The result is neatly written as 

{ G(p), G(p')}pa= G([p, p']), 

{ tP(.;), G(p)}pe= tP([.;, p]), 

{ tP(.;), tP(,;')}pe=O. (3 ·16) 

Of course these involve all the information on the constraint algebra written in terms 
of component fields. For instance, the Poisson algebra between the components of 
Gauss' law constraint reads 

{iGi(x), iGi(y)}pe=83(x, y)€ii~<(ic~<(x)), 

{iGi(x), -2iLA{y)}pa=83(x, y)( g; t 8

( -2iLa(x)), 

{ -2iLA(x), -2iLa(y)}pa=~(x, y)( -2,;\g)( g; t
8
(iGi(x)). (3 ·17) 

This precisely coincides with the GSU(2) algebra. 
One may suspect that the case with g=O requires careful consideration because 

the definition of 93 is singular at g=O. However, we do not have to be so careful 
since no negative power of g appears either in the action or in the smeared constraints, 
provided that these are expressed in terms of component fields. Indeed if we start 
with the action for the component fields 

(3·18) 

and consider linear combinations of the constraints appearing in the last expressions 
of Eqs. (3 ·14) and (3 ·15), the result of the constraint algebra reproduces the g--+ 0 limit 
of Eqs. (3·16) and (3·17). 

One of the properties characteristic of the g=O case is that the symplectic 
potential (3·10) is inherited by the reduced phase space.*> To see this explicitly we 
compute the transformation property of the symplectic potential under the GSU(2) 

gauge transformations and the Kalb-Ramond transformations. We find 

86B=i ( d 3xGiMJi 
JM<3l ' 

*> Reduced phase space is the quotient space of the constraint surface modulo gauge transformations in 
a broader sense. The constraint surface is the subspace of the phase space on which the first class constraints 
vanish. Gauge transformations in a broader sense are the transformations generated by the first class 

constraints. 
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Ashtekar's Formulation for N=l, 2 Supergravities 871 

(3·19) 

These expressions vanish on the constraint surface G;=LA=(])ai=(/)Aa=O. This 
implies that the reduced phase space has a well-defined cotangent bundle structure. 
The base space of this cotangent bundle is provided by the reduced configuration 
space, which in this case turns out to be the moduli space 'Jlo of fiat GSU(2) connec
tions Jla=Aa];+ ¢aA]A on M<3> modulo GSU(2) gauge transformations. The reduced 
phase space in the g=O case is therefore the cotangent bundle T*'Jlo over the moduli 
space 'Jlo of fiat GSU(2) connections. 

To quantize this system canonically, we have only to replace (i-times) the basic 
poisson brackets (3 ·11) by the commutation relations. If we use as wave functions 
the functionals lfT[Jla] of the connection Jla=Aa];+¢aA]A, the conjugate momenta 
become the functional derivatives: 

Next we solve the constraint equations. Gauss' law constraint 

(3·21) 

requires the wavefunctions to be invariant under the (identity-connected component of 
the) GSU(2) gauge transformations. The remaining constraint 

(3·22) 

can easily be solved (at least formally). 
For g=O, this constraint requires the wavefunctions to have support only on the 

fiat GSU(2) connections. The solutions to all the constraints are therefore provided 
formally by 

(3·23) 

where F[Jla] is an arbitrary GSU(2)-invariant functional of the connection Jla. Due 
to the delta functions, F[ Jl] reduces to the function on the moduli space 'Jl o of fiat 
GSU(2) connections. Thus, naively, these solutions are considered to be "Fourier 
transforms" of the topological solutions found in Ref. 16). 

For g*O, we can rewrite Eq. (3·22) as 

(alai+ 2!2STr(];€abc:f be))· lfT[Jla]=O, 

( 0:aA- 2!2STr(r€abC:f bc))·W[Jla]=O. 

These equations have a unique solution, 

lfT[Jl]=e-<3J2g•>w8's"', 

where Wc~= 1 is the Chern-Simons functional for the GSU(2) connection Jl: 

(3·24) 

(3·25) 
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872 K. Ezawa 

wts=1= L,., sTr(..JldJl+ ~ JlAJli\Jl) 

= ( (A;dA;+l_EiikAi 1\Ai I\Ak-2).g¢AI\D¢A). 
)M'" 3 

(3·26) 

The solution (3·25) coincides with the N=1 Chern-Simons solution found in Refs. 17) 
and 18). 

3.2. Ashtekar's formalism for N = 1 supergravity 

We are now in a position to discuss the relation of the N=1 Ashtekar formalism 
to the GSU(2) BF theory. First we note that the action (3·4) is identical to the chiral 
action for N = 1 supergravity10 with the cosmological constant A= g2 if we identify 
A;, ¢A, J;A8 =I;;(11;/2i)AB and xA with the anti-self-dual part of the spin connection, the 
left-handed gravitino, the chiral two-form e;t, 1\ eBA' constructed from the vierbein eAA' 
= e,_,AA' dxP., and with the chiral two-form d_, 1\ ¢A' constructed from the right-handed 
gravitino r·, respectively.*> As a consequence of this identification the components 
(I:;, xA) of the 93 field are subject to the algebraic constraints 

(3·27) 

In order to obtain the action for Ashtekar's formalism we first solve the algebraic 
constraints (3 · 27) for the time components (I: fa, xfa) and then substitute the result into 
the canonical action (3·9). General solutions to Eq. (3·27) are given by 

By substituting this expression into Eq. (3·9), we find 

- ilfst., 1=fdt ( d 3x( ifaiAa; +2ifaA¢aA 
}Mc3) 

with the new constraints 

RA=- c ct.Jk:;;:bJ:;;:Ck _ AI a 1 .. . ( IJ; )AB 
2 J::._ abC<oO IL IL 2 i IV B , 

11r _ 1 -biA\Ci+ -bAA\ C 
.Jt a -z f._ abc 7r IV f._ abc 7r IV A . 

(3·28) 

(3·29) 

(3·30) 

Physically, RA generates right-supersymmetry transformations, ,j{ generates bubble

*> Our action is in fact twice the action used in Refs. 17) and 18). 
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Ashtekar's Formulation for N=l, 2 Supergravities 873 

time evolutions, and ${a generates spatial diffeomorphisms. In passing, we note that 
among the GSU(2) gauge transformations, the transformations generated by the G; 
are reinterpreted as local Lorentz transformations for left-handed fields, and the 
transformations generated by LA are regarded as left-supersymmetry transforma
tions. 

Let us now briefly consider the canonical quantization. Here we also use W[Jla] 
as wavefunctions. Because the Gauss' law constraint remains intact, the wavefunc
tions must be invariant under the GSU(2) gauge transformations. When we solve the 
new constraints (RA, ${,${a), we should note that these constraints are linear combi
nations of the constraints ( f/>a;, f!>aA) in the BF theory, with the coefficients being 
polynomials in the momenta (ifa;, ifaA). As a consequence, if we take the ordering 
with the momenta to the left, the solutions (3·23) and (3·25) for the GSU(2) BF theory 
are involved into the solution space for quantum N = 1 supergravity in the Ashtekar 
form. These solutions are the topological solutions found in Refs. 16) ~ 18). 

Before ending this section we investigate how the symmetry of the theory is 
influenced by the algebraic constraints (3 · 27). For this purpose we look into the 
variation of the constraints (l'Ascn, EAse) under the gauge transformations (in a 
broader sense). Because these constraints transform covariantly under the GSU(2) 
gauge transformations (see the Appendix), the GSU(2) gauge symmetry is preserved 
even after imposing the algebraic constraints. However, the Kalb-Ramond symme
try (3·6) in general breaks down because the variation of (l'Ascn, EA8c) does not vanish 
even after imposing all the constraints. More precisely, by computing the variation 
using Eq. (3·8) and equations of motion which are derived from the variation of the 
action (3·1) w.r.t. the connection Jl, we find 

o~l'ABCD =-2D( ¢<AB 1\ .rcn>) + 2{ ¢(AB 1\ XC+ .r<AB 1\ 7/} 1\ ¢D) ' 

(3·31) 

In order words, the Kalb-Ramond symmetry survives if the parameter I; is such that 
the variation (3 · 31) vanishes. A sufficient condition for not violating the Kalb
Ramond symmetry is provided by 

(3·32) 

If we assume the vierbein eAA' to be nondegenerate, this equation is completely solved 
by the superposition of the diffeomorphisms 

and the right-supersymmetry transformations 

ifJi =Q' l'(AB 1\ 7JC)=Q. 

(3·33) 

(3·34) 

Thus we have seen explicitly that the imposition of the algebraic constraints (3·27) 
breaks the Kalb-Ramond symmetry down to a symmetry under the diffeomorphisms 
and the right-supersymmetry transformations. 

In the Lagrangian formalism, we impose the algebraic constraints by introducing 
the linear terms in the auxiliary fields ( WAscn = lfi(Ascn>, KAsc = K<Aso): 
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874 K. Ezawa 

"J,N=l- {;( 111" '\'ABI\ '\'CD 2 '\'ABI\ C) - Z aux -) 1 - or ABCD£1 £~ - KABC£1 X . (3·35) 

The transformation properties of the fields are somewhat modified, while the essential 
features remain valid. This is explained in the Appendix. 

§ 4. G2SU(2) BF theory and Ashtekar's formulation 
for N=2 supergravity 

In this section we demonstrate that N=2 supergravity can be cast into the form 
of the "constrained" BF theory with the gauge group being an appropriate graded 
version of SU(2). Except for a few subtleties, the argument proceeds in almost the 
same manner as in the previous two cases. Thus we briefly explain the overview, 
focusing on the subtleties. 

The relevant graded Lie algebra is provided by 

[l;,]j]=cu,Jk, [J;,JA<a>]=(~;t
8

]B<a>, [J;,j]=Q, 

[!, ]A<a>]=g(r3)ap]A(fl), [!, J]=O, 

{]}a>, ]B<P>)=- €afi€AJ +4g(r3)afl( ~; tli' (4 ·1) 

where a, /3, ··· denotes the spinor indices for the internal SU(2) symmetry existing in 
the N=2 supergravity with a vanishing cosmological constant A= -6g2=0. r3 is the 
third component of the Pauli matrices: 

(4 ·2) 

In this paper we tentatively refer to this graded algebra (4 ·1) as G2 SU(2). 
Let us investigate the G2 SU(2) BF theory. The action is 

- iJfr=2 = jsTr(fB 1\:£ + g2fB 1\fB), (4·3) 

where fB =I;];-(1/2g)(r3)~xl]A<a>+(1/4g2)B] is a G2SU(2)-valued two-form, and :£ 
=..Jl+..Jli\..Jl is the curvature two-form of a G2 SU(2) connection ..Jl=Ai];+cf!aA]A<a> 
+A]. STr used here is the unique G2 SU(2)-invariant bilinear form: 

STr(/Jj)=Bu, STr(JA<a>]a<P>)=4g€AB(r3)aP, STr(/J)=4g2
, 

STr(!JA<a>)=STr(JJ)=STr(]}a>J)=O. 

We can now rewrite the action (4·3) in terms of the component fields 

- iffr=2= f ( Ii 1\ (pi+ 2g</JAa 1\ cp/( r3)~( ~;) AB) 

+2xaA 1\(D</JAa- g(r3)~AI\ </JAil)+ B 1\F 

(4·4) 
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(4 ·5) 

where we have set F=dA-(1/2)1/Jl/\r/JAa. This action obviously possesses the 
symmetry under the G2SU(2) gauge transformations 

opJl= -fl)p= -dp-[Jl, p], 

(4 ·6) 

with p=OiJ;+EaA]A<a>+AJ being a G2SU(2)-valued scalar, and the Kalb-Ramond 
symmetry 

ofJl=2g2~, 

of!B= -fl)~= -d~-Jl/\~-~1\Jl (4 ·7) 

with ~=¢/P-(1/2g)(r3)~TJlJA<a>+(l/4g2)K] being a G2SU(2)-valued one-form. 
These transformations written in terms of component fields are as follows. The 
G2SU(2) gauge transformations are 

opA;=-D8;+4g(g;t/r3 )a.Br/JaAE/, 

( 
i )A ( i )A 1 opxaA=e; gi 8x/+2g(r3)~E/ gi 8.l';+2EaAB+gA(r3)~xl, 

opB=2g€Aa(r3)~xl. (4 ·8) 

In the N =2 supergravity, transformations generated by e;, by El and by A are 
respectively interpreted as local Lorentz transformations, left-SUSY transformations, 
and U(l) gauge transformations. The Kalb-Ramons transformations for the compo
nent fields are given by 

ofx/=2g(r3)~ g;y// 1\ r/J/- DTJaA-g(r3)~A/\ TJ/- ~ r/J/ 1\ K, 

ofB= -2g(r3)~r/JAa 1\ TJl- dK. (4 ·9) 
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As we will see shortly, these transformations are closely related to the 
diffeomorphisms and the right-SUSY transformations in the N=2 supergravity. 

Let us now briefly look into the canonical quantization. In the canonical formal
ism, the action (4·3) is rewritten as follows: 

- z1fF= 2 = { dt { d 3xSTr[ffa._la +..JltG + iB ta<l>a] , ji JM(31 
(4 ·10) 

where we have set ffa=(1/2) gabc iB be= ita?;-(1/2g)(r3)~itla!A(a>+(1/4r/)ita]. In 
terms of the component fields, this canonical action becomes 

- iifF=2 = fdt f d 3x( itaiAai +2 itaaA ¢ 1a + itaAa 
)

1 
}Mc3) 

+ A/G;- 2r/!1tLaA + AtG 

+l'fael>ai+2x:tael>Aaa+Bta<1>a). (4·11) 

As in the previous cases, this system has two types of first class constraints. Gauss' 
law constraint 

G=!:JJaffa 

= G;];- 2~ (r3)~L/]A(a)+ 4~2 GJ (4 ·12) 

generates the G2SU(2) transformations (4·8). And the remaining constraint 

(4 ·13) 

generates the Kalb-Ramond symmetry (4·9). The explicit form of Gauss' law con
straint can be seen in Refs. 15) and 17). Expressions for the remaining constraints are 
also seen implicitly in these references. 

Canonical quantization of this theory can be handled in a manner analogous to 
the GSU(2) case (except for g=O). We will use as wavefunctions the functionals 
W[..Jla] of the G2SU(2) connection ..Jladxa. Gauss' law constraint tells us that W[..Jla] 
should be invariant under (the identity-connected component of) the G2SU(2) gauge 
transformations. For g=t=O, the remaining constraint can be solved similarly to the 
way it was solved in the GSU(2) case. In this case we have the unique solution 

wts=2= L,., STr(..Jld..Jl+ ~..JlA..JlA..Jl) 

= { [AidA; +l_€;jkAi AAj AAk 
)M<3< 3 

(4 ·14) 
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This coincides with the N=2 super-extended version of the Chern-Simons solution 
found in Ref. 17). 

For g=O, a special consideration is needed, because in the present case a remnant 
of the "cosmological term" g2 fB 1\ fB exists even in the limit g->0. Particularly, the 
reduced phase space loses the cotangent bundle structure, unlike in the case of SU(2) 
or GSU(2). We can nevertheless construct solutions to the quantum constraints, at 
least formally. As in the g=I=O case, Gauss' law constraint merely requires the 
wavefunctions to be G2 SU(2) gauge invariant. The remaining constraints in the g=O 

case are written as 

(4 ·15) 

where Fbc=2()!tAcJ is the field strength of the U(1) connection A. Formal solutions 
to these equations are given by 

where F[A;, ¢'Aa] is a G2SU(2) gauge invariant function of (Aa;, ¢''la), and 

Wu(l)= r (AdA-A/\¢'aA/\¢'Aa). 
JM!3> 

(4·16) 

As it is, however, Eq. (4 ·16) is not G2 SU(2) gauge invariant. There is no problem in 
the delta function part, because the curvatures (Fi, D¢Aa) transform covariantly under 
the G2 SU(2) gauge transformations, and because their gauge transformations do not 
involve the U(1) part F= dA -(1/2)¢/ 1\ \f!Aa. The functional Wu<t> is, however, not 
invariant under the left-SUSY transformations. After a somewhat lengthy calcula
tion, we see that Wuo> transforms as*> 

e
-iL(E) TU eiL(E) _ UT 

VVU(I) VVU(!) 

(4 ·17) 

where L(€)=-2ifM, .. d 3x€aALAa is the generator of the left-SUSY transformations. 
We should note that the U(1) connection A does not appear anywhere on the r.h.s of 
the above expression. The wavefunction (4 ·16) with Wu<t> replaced by 
e-ii<•>wu(l)eii<•> therefore remains as the solution of Eq. (4·15). Now we can give 
formal solutions to all the constaint equations in the g=O case: 

*l We have assumed that Ftc=Dio'NIA=O hold. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/95/5/863/1866413 by guest on 24 April 2024



878 K. Ezawa 

(4·18) 

where [d€/] denotes an SU(2) invariant measure. 
In passing, let us note that F[Ai, ¢Aa] can be interpreted as the gauge invariant 

functional of the "truncated" connection ..l=AiJ;+¢,/ JA<a>, where (h JA<a>) are the 
generators of the following truncated algebra: 

[] J ] - J [J 1- <a>]-( (Ji) BJ_ <a> {]- <a> ]- <P>}-O i, j - €ij k , i, A - '[[" A B , A , B - . (4·19) 

This is possible because the U(1) part] in the G2SU(2) algebra (4·1) with g=O almost 
decouples from the remaining generators (];, ]A<a>). 

The relation to N=2 supergravity is not so simple. This is because the chiral 
action of N=2 supergravity15>·17> 

involves the terms which are (at most) quadratic in the auxiliary field qi: 

-iLu<l)=- F 1\F+ qiF 1\J:;-! cpiqiJ:i 1\J:i+ <pi( g;tBx/ 1\xBa. (4·21) 

First we translate this quadratic part - iLuo> into terms which are at most linear in 
the auxiliary fields as follows. We know how to deal with auxiliary fields which 
appear in the action at most quadratically: we have only to solve equations of motion 
obtained from the variation w.r.t the auxiliary fields and to substitute the result into 
the action. In the present case the desired equations of motion are 

J:i /\B=2( g; tBx/ 1\xBa' (4. 22) 

where we have set B=cpiJ:i-2F. Using this, Eq. (4·21) is rewritten as 

Arranging this expression neatly and taking account of the algebraic constraint 
(4 ·22), the quadratic part (4 · 21) turns out to be equivalent to the following expression, 
which is at most linear in the new auxiliary field <pAB:*> 

- iLuo>=B 1\F+! B 1\B- <j)AB(J:AB 1\B- XaA l\x8 a). (4 ·23) 

Substituting this into the chiral N=2 action (4·20) and comparing the result with the 
G2SU(2) BF action (4·5), we find 

*> 9':.U. can be identified with 9'AB=9''(a'/2i)As if B is integrated out. 
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- il:U":. 2 = j[- l[JABCDJ;AB 1\J:CD -2K'J.BcJ:AB 1\xac- rpAB(J;AB 1\ B- xll\ X8 a)] . 

(4. 24) 

Thus we have established the relation between N=2 supergravity and the G2SU(2) 
BF theory. Namely, N=2 supergravity in Ashtekar's form is regarded as the 
G2SU(2) BF theory (4·3), with the fB fields being subject to the algebraic constraints 

(4·25) 

As in the N=1 case, Ashtekar's formalism for N=2 supergravity is derived by 
solving these algebraic constraints for the time components (l:fa, x:ta, Bta) and by 
substituting the solution into the canonical BF action (4 ·11). The Gauss' law con
straint is inherited as it is from the BF theory. In addition we have three types of 
constraints: the Hamiltonian constraint&, the diffeomorphism constraint & a, and the 
constraint R/' which generates right-SUSY transformations. These are given by 
linear combinations of the constraints ( l[)ai, I[)Aaa. I[) a) in the G2 SU(2) BF theory: 

(4·26) 

where we have set (&.J)=(&, & a, RaA). The crucial point here is that the coefficients 
depend only on the momenta jja and not on the connections .Jla. The solutions (4 ·14) 
and (4·18) to the quantum G2SU(2) BF theory are thus included in the solution space 
of canonically quantized N=2 supergravity, provided that we take the ordering with 
the momenta to the left. 

Similar to the N=1 case, the Kalb-Ramond symmetry (4·9) in general breaks 
down owing to the algebraic constraint (4·25). By an argument parallel to that in the 
previous section we can find a sufficient condition for the Kalb-Ramond symmetry to 
preserve the algebraic constraints 

(4·27) 

Assuming that the vierbein eAA' to be nondegenerate, these equations are completely 
solved by the superposition of the diffeomorphisms 

(4·28) 

and the right-SUSY transformations 

(4·29) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/95/5/863/1866413 by guest on 24 April 2024



880 K. Ezawa 

§ 5. Discussion 

In this paper we have shown explicitly that N=I and N=2 supergravities in 
Ashtekar's form can be cast into the form of BF theories with the two-form fields 
subject to the algebraic constraints. Once we have established these relations, it is 
expected that considerable progress will be made on the canonical quantum gravity 
both technically and conceptually. 

For example, we may use the technique developed in the BF theory10> at least 
when we investigate the topological sector of the canonical quantum gravity. With 
regard to pure gravity, some works of this kind can be seen in Refs. 13), 23) and 24). 
The results in this paper suggest that we can exploit similar methods also for studying 
N = 1, 2 supergravities. Because the BF theory resembles the Chern-Simons gauge 
theory,25

> the methods for studying (2 +I)-dimensional Einstein gravity in the Chern
Simons form26>'27> may be applied. It is of particular interest to investigate the 
physical significance of the topological solutions. While geometrical interpretation 
of the Chern-Simons solutions has been studied in considerably detail,9>,lB),zs> we do not 
know any works on the geometrical interpretation of the topological solutions in the 
case where the cosmological constant vanishes. Naively, we can expect that a 
topological solution in pure gravity corresponds semiclassically to a family of flat 
spacetimes. This is because the topological solution has support only on the flat 
anti-self-dual connections and because classical imposition of the reality conditions 
indicates that the self-dual connection should also be flat in the semiclassical region.29

> 

In supergravities, however, topological solutions do not always correspond to flat 
spacetimes even semiclassically because of the presence of nontrivial gravitino modes. 
It is interesting to investigate how these gravitino modes influence the spacetime 
geometry.30

> 

Recently an attempt appeared to extend the loop representation6
> to N=l super

gravity.30 As we have shown that N =2 supergravity is described by the G2 SU(2) 
connection, the loop representation may be extended also to N=2 supergravity. 

There have been several attempts to interpret Einstein gravity as an "unbroken 
phase" of some topological field theories.32>'33> We may extend these ideas to super
gravities. Probably this deserves study because the existence of the supersymmetry 
is believed by many researchers, and thus supergravities seem to be more realistic 
than pure gravity. 

N=2 supergravity is of interest in its own right because the twisted version of N 
=2 supergravity gives rise to a topological gravity.34

> Ashtekar's formalism can be 
applied also to this twisted N=2 supergravity.35

> To see whether twisted N=2 
supergravity is related to a BF theory or not is left to future investigation. 
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Appendix A 

In this appendix we look into the symmetry of the N = 1 Ashtekar's formalism in 
the Lagrangian form. The relevant action is 

(A·1) 

where -ilfF:=I is the GSU(2) BF action (3·1) and -il:U':.1 is the linear term (3·35) in 
the auxiliary fields ( lffAscn, KAsc). When we discuss the symmetry of the action, we 
cannot use equations of motion. This is because the equations of motion are nothing 
but the condition for the action to be stationary under any variations of the fields. 
Thus a careful consideration is necessary. 

In order to make Ifs~/ invariant under the GSU(2) gauge transformations, we 
have only to consider ( lffAscn, KAsc) to be covariant under these transformations. For 
SU(2) transformations, it is obvious that ( lffAscn, KAsc) should transform as is suggest
ed by their spinor indices. Because the algebraic constraints transform under the 
left-SUSY transformations as 

(A·2) 

the auxiliary fields are required to transform as follows: 

(A·3) 

Next we consider the Kalb-Ramond symmetry. The transformations of the 
algebraic constraints under off-shell are 

8t:£Ascn= -z¢<AB 1\ {D:£cn>_ ¢c /\x0 >}+(terms appeared in Eq. (3·31)), 

8t£ABC = _ rp<AB 1\ {Dxc> _ A.g:£0D 1\ r/Jv} + {D:£(AB _ rP(A 1\ XB} 1\ r;c> 

+(terms appeared in Eq. (3·31)). (A·4) 

We should be aware that the expressions in the braces are the equations of motion 
obtained from the variation of the action (A ·1) w.r.t the connection Jl. This implies 
that, under the condition (3 · 32), we can render the action - i/fst.1 invariant by adding 
some extra terms to the transformation of the connection. Adding these extra terms 
to the original transformations (3 · 8), we find the total transformation of the connec
tion 

8tr/JA= fA rJA+KABCr/JBC. (A·5) 

If we set ¢/ =0, this exactly coincides with the right-SUSY transformation in Refs. 17) 
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and 18). We can also show that, similar to the cases of BF theories, the transforma
tion (A·5) with the parameter ~,=vvfB,v yields the diffeomorphism generated by 
v"(o/ox") under on-shell. 
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