Abstract

The relations are discussed among a number of different formulations of perturbation theory for an effective Hamiltonian of a general quantum system. Although the definitions and the formulations are apparently different, it is shown that the effective Hamiltonians, which have appeared in the history of time-independent approaches, can be written simply in a unified form. Expansion formulae are given explicitly for both the non-Hermitian and Hermitian effective Hamiltonians, and a discussion is given on a method for summing up the expansion series and obtaining a convergent result.

References

1)
Kuo
T. T. S.
Lecture Notes in Physics
1981
, vol. 
144
 
Springer-Verlag
pg. 
248
 
2)
Klein
D. J.
J. Chem. Phys.
1974
, vol. 
61
 pg. 
786
 
3)
Brandow
B. H.
Lecture Notes in Physics
1975
, vol. 
40
 
Springer-Verlag
pg. 
1
  
Int. J. Quantum Chem. 15 (1979), 207
4)
Jørgensen
F.
Mol. Phys.
1975
, vol. 
29
 pg. 
1137
 
5)
Lee
S. Y.
Suzuki
K.
Phys. Lett.
1980
, vol. 
91B
 pg. 
173
  
K. Suzuki and S. Y. Lee, Prog. Theor. Phys. 64 (1980),
6)
Feshbach
H.
Ann. of Phys.
1962
, vol. 
19
 pg. 
287
 
7)
Löwdin
P. O.
Wilcox
C. H.
Perturbation Theory and Its Application to Quantum Mechanics
1966
N.Y.
J. Wiley
8)
Ōkubo
S.
Prog. Theor. Phys.
1954
, vol. 
12
 pg. 
603
 
9)
Poves
A.
Zuker
A.
Phys. Rep.
1981
, vol. 
71
 pg. 
141
 
10)
Schucan
T. H.
Weidenmüller
H. A.
Ann. of Phys.
1972
, vol. 
73
 pg. 
108
 
11)
Van Vleck
J. H.
Phys. Rev.
1929
, vol. 
33
 pg. 
467
 
12)
Jordahl
O.M.
Phys. Rev.
1934
, vol. 
45
 pg. 
87
 
13)
Kemble
E. C.
Fundamental Principle of Quantum Mechanics
1958
N.Y.
Dover Publ. Inc.
14)
Primas
H.
Rev. Mod. Phys.
1963
, vol. 
35
 pg. 
710
 
15)
Kvasnička
V.
Czech. J. of Phys.
1974
, vol. 
B24
 pg. 
605
 
16)
Suzuki
K.
Prog. Theor. Phys.
1982
, vol. 
68
 pg. 
246
 
17)
Lindgren
I.
J. of Phys.
1974
, vol. 
B7
 pg. 
2441
 
18)
Kato
T.
Prog. Theor. Phys.
1949
, vol. 
4
 pg. 
514
 
19)
Bloch
C.
Horowitz
J.
Nucl. Phys.
1958
, vol. 
8
 pg. 
91
 
20)
Bloch
C.
Nucl. Phys.
1958
, vol. 
6
 pg. 
329
 
21)
des Cloizeaux
J.
Nucl. Phys.
1960
, vol. 
20
 pg. 
321
 
22)
Brandow
B. H.
Rev. Mod. Phys.
1967
, vol. 
39
 pg. 
771
  
Ann. of Phys. 57 (1970),
23)
Fukuda
N.
Sawada
K.
Taketani
M.
Prog. Theor. Phys.
1954
, vol. 
12
 pg. 
156
 
24)
Kuo
T. T. S.
Lee
S. Y.
Ratcliff
K. F.
Nucl. Phys.
1971
, vol. 
A176
 pg. 
65
 
25)
Lee
S. Y.
 
Thesis, SUNY (Stony Brook 1972), unpublished
26)
Krenciglowa
E. M.
Kuo
T. T. S.
Nucl. Phys.
1974
, vol. 
A235
 pg. 
171
 
27)
Bandō
H.
Motoba
T.
Suzuki
K.
Prog. Theor. Phys.
1981
, vol. 
65
 pg. 
919
 
28)
Shurpin
J.
Kuo
T. T. S.
Strottman
D.
 
Preprint LA-UR-83-1
29)
Suzuki
K.
Prog. Theor. Phys.
1982
, vol. 
68
 pg. 
1627
  
ibid. 68 (1982),
30)
Kuo
T. T. S.
Shurpin
J.
Tam
K. C.
Osnes
E.
Ellis
P. J.
Ann. of Phys.
1981
, vol. 
132
 pg. 
237
 
31)
Andō
K.
Bandō
H.
Prog. Theor. Phys.
1975
, vol. 
53
  
K. Andō, H. Bandō and S. Nagata, Prog. Theor. Phys. s57 (1977),
 
ibid. 57 (1977),
 
K. Andō, H. Bandō and E. M. Krenciglowa, Prog. Theor. Phys. Suppl. No. 65 (1979),
 
S. K. Adhikari and H. Bandō, Phys. Rev. C22 (1980),
32)
Kirson
M. W.
Ann. of Phys.
1974
, vol. 
82
 pg. 
345
 
33)
Shavitt
I.
Redmon
L. T.
J. Chem. Phys.5711
1980
, vol. 
73
 pg. 
5711
 
34)
Westhaus
P.
Int. J. Quantum Chem.
1981
, vol. 
20
 pg. 
1243
 

Citing Article(s):

  1. Progress of Theoretical Physics Vol. 71 No. 6 (1984) pp. 1221-1238

    General Structure of Effective Interaction in Degenerate Perturbation Theory Kenji Suzuki and Ryoji Okamoto

  2. Progress of Theoretical Physics Vol. 72 No. 3 (1984) pp. 534-548

    Perturbation Theory for Quasidegenerate System in Quantum Mechanics Kenji Suzuki and Ryoji Okamoto

  3. Progress of Theoretical Physics Vol. 75 No. 6 (1986) pp. 1388-1404

    Unitary-Model-Operator Approach to Nuclear Many-Body Problem. I Kenji Suzuki and Ryoji Okamoto

  4. Progress of Theoretical Physics Vol. 76 No. 1 (1986) pp. 127-142

    Unitary-Model-Operator Approach to Nuclear Many-Body Problem. II Kenji Suzuki and Ryoji Okamoto

  5. Progress of Theoretical Physics Vol. 79 No. 2 (1988) pp. 330-342

    Theory of Many-Fermion System on Unitary-Transformation Method Kenji Suzuki

  6. Progress of Theoretical Physics Vol. 92 No. 6 (1994) pp. 1045-1080

    Effective Interaction Theory and Unitary-Model-Operator Approach to Nuclear Saturation Problem Kenji Suzuki and Ryoji Okamoto

  7. Progress of Theoretical Physics Vol. 93 No. 5 (1995) pp. 905-917

    Effective Operators in Time-Independent Approach Kenji Suzuki and Ryoji Okamoto