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SUMMARY
Singularities are considered in the solution of the laminar boundary-layer equa-

tions at a position of separation. A singularity of the typo here considered occurred
in a careful numerical computation by Hartree for a linearly decreasing velocity
distribution outside the boundary layer; it may occur generally. Whenever it does
occur, the boundary-layer equations cease to be valid at and near separation on the
upstream side, and also downstream of separation. The work suggests that singu-
larities may arise in the solution of non-linear parabolic equations due to their
non-linearity. The formulae found may help computers of laminar boundary layers,
who desire more than a rough solution, to have an end-point at which to aim.

1. Introduction and summary
FOB a flow at a large Reynolds number along an immersed solid surface
a boundary layer is formed through which the velocity rises rapidly from
zero at the surface to its value in the main stream. The approximate
equations for the two-dimensional flow of a fluid of constant density p
and kinematic viscosity v in a boundary layer are

du du 1 dp d2u
U \-V = —~\-V 5

dx dy pdx dy'

U = dy' V=~8x

where x is distance measured along the solid boundary in the plane of
the flow, y is distance normal to the surface, u, v are the velocity com-
ponents in the directions of x and y increasing, p the pressure, and if> the
stream function. According to the approximations of boundary-layer
theory, p and dp/dx may be taken independent of y, and if U is the
velocity just outside the boundary layer in the main stream,

p dx dx

Moreover, according to these approximations v/u and (dujdx)/(du/dy) are
small.

As boundary conditions we have that u = 0 and v = 0 (or ifi = 0) at
y = 0, u is given as a function of y for some initial value of x, and the
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44 S. GOLDSTEIN

velocity passes over smoothly into the velocity of the main stream, i.e.
u^-U, dujdy -> 0, d2u/8y2 -> 0, etc., as y -+ oo.

If dU/dx < 0 and dp/dx > 0, then dujdy at the wall y = 0 decreases
as x increases until it vanishes; beyond the section at which it is zero, a
slow back flow sets in along the wall, and the boundary layer separates
from the surface.

Let d be any representative length of the system, Uo a representative
velocity, such as the undisturbed stream velocity, and B the Reynolds
number Uod/v. The equations may be made non-dimensional by writing

x' = xld, y' = R*yld, u'= u/U0, v' = Rh/U0, p'= p\PTJ\. (3)

In the non-dimensional form, let x' = 0 be the initial section, at which u'
is given as or approximated by a polynomial or power-series

u' = aiy'+a2y'*+..., (4)

and let - | L ' = po+Plx'+Pax'*+.... (5)

Then it is known that if there is to be a solution without singularities,
certain equations must be satisfied:

2a2+p0=0, a3 = 0, 5\a5+2alPl = 0, e l a , - ^ , , ^ = 0, etc. (6)

Only av a4, a7,... are at our disposal. When the conditions are broken,
the solution has an algebraic singularity at x = 0 (l).f

At the position of separation 8u/dy = 0 at y = 0, i.e. ax = 0. The
conditions for the absence of singularities when ax = 0 are considerably
more complicated than those above.J If we suppose u expanded in a
power series in x (we drop the dashes for the present)

u = uo+u1x+u2x
i+..., (7)

where u0, %, u2 are functions of y, expressible as power series,

(8)

the conditions are
2a2+p0=0, a3 = 0, a4 = 0, a5 = 0, 6lae=2PoPv\

a7 = 0, a9 = 0, etc. J
Only a8, a12, a16, a20,... are at our disposal. In addition blt cv dv... are
determined, not from the equations for uv u2, u3,... respectively, but from

t In. the last term in equation (5) on p. 4 of ref. (1), the denominator should be 8a|, not
4a*; I am indebted to Prof. Hartree for this correction. See also ref. (2) at end.

X Goldstein, loc. cit., pp. 17, 18. [In the last line of p. 17 of ref. (1), in the equations
of the footnote, for 6!a8 = 2p0p,, read 6!ae = 2pBpl.]
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ON LAMINAR BOUNDARY-LAYER FLOW 45

the conditions for the absence of singularities in u2, u3, zt4,... respectively.
There is also an ambiguity of sign, which can be determined only from
physical considerations. If the conditions are broken there is a formal
solution for the flow downstream of the form

where f = z*, 17 = y/4xl. (11)

This formal solution fails, however, in certain circumstances, one of which
is that the condition o = u

is satisfied, while the other conditions are not satisfied.
No other work has been reported on possible singularities at separation.
No analytical solution is known for a boundary-layer flow involving

separation, and the methods used are approximate and numerical. The
published methods of computation are rather rough, but recently more
exact methods have been suggested and tried. The work described here
arose out of an unpublished communication from Professor Hartree, in
which he repeated Dr. Howarth's computation (3) for a linearly decreasing
velocity distribution, U = fig—fax, with u=U at x = 0. Professor
Hartree replaces the partial derivatives with respect to x by finite
differences, and retains the ̂ -derivatives, so the partial differential equa-
tion is replaced approximately by a sequence of ordinary differential
equations, each of which relates the velocity distribution through the
boundary layer at one section to that at another section a short distance
upstream, where it is known. The ordinary differential equations were
solved laboriously on hand calculating machines rather than on the
Differential Analyser in order that more significant figures might be
retained.

Now all computations in which any attempt was made to obtain real
accuracy at and near separation seem to have met with considerable
difficulty. As a result of his computations, Professor Hartree was con-
vinced that there was a singularity in the solution at the position of
separation, and I undertook to try to find some formulae that would
hold near this singularity and would help in finishing the computation.

To study the singularity near separation, the equations are put into
non-dimensional form in a special way. Let xa, Ua, U's be the values of
x, U, dU/dx at separation, so that Us > 0, U's < 0. We are not interested
in any other properties or dimensions of the system, so as representative-
length I and Reynolds number E we take

l=-UJU'e, R=Usl/v. (13)
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46 S. GOLDSTEIN

We are also concerned with the flow upstream of separation, so for our
non-dimensional distances we write

Also put

Ui _ u/jjgj Vi = Eh/Ua, Ux = U/Us, px =
(15)

The equations become
dux dux 8px 82ux

8xx dyx 8xx 8yx

(16)

8ll= -u^l
dxx * dxx

It is easy to see that Ux = 1 and dU1ldx1 = 1 at xx = 0, so we may
write «

p = -(1+P1x1+P2^+...), (17)

i.e. p0 (in our previous notation) = — 1. For the linear velocity distribu-
tion U = po-pxx,

g i = - ( l + x j , P 1 = l , P2 = P 3 = . . . = 0. (18)

Formulae for the Pv P2>... are easily found in the general case, and if U is
taken as a given function of x, it is easily found that the P's are inde-
pendent of the position of separation if

U = (constant)e-^, or U = QSo-ftz)"1 or (/30+/3i*)~m> (!9)
the constants j3, j30, &, m being positive. (However, since I = —UJU'S,
the scale varies as x8 varies in the last two cases.) For other values
of U, the P's depend on xs, the position of separation.

The boundary conditions are ipx = 0, ux = 0 at yx = 0, and ux -> Ult etc.,
as y± ->• oo. Since xx = 0 is a position of separation, (.duxldyx)Vl=Q = 0 at

*i = 0 ' s o «1 = «22/?+a3y?+... at xx = 0. (20)

Singularities in the solution for the corresponding system of equations for
the motion downstream have been considered (see equations (10) and
(11)); near xx = 0, yx — 0, tpx is a function of x\ and y-Jx\. The skin-
friction is fi(du/dy)v=0 and the determining quantity is (3%/3yi)tfl=0. which
is an ascending series of powers of x\, beginning with a multiple of x\.
If, however, 2a2-\-p0 = 0, which corresponds to a2 = \ in the new nota-
tion, there are special features in the solution; in particular the series for

^o n o w begins with a term in x\. Now Professor Hartree was
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ON LAMINAE, BOUNDARY-LAYER FLOW 47

quite certain that this particular feature was present in his computed
solution. The calculations reported here therefore rest on three assump-
tions, all of which were satisfied in Hartree's numerical solution: (i) there
is a singularity at separation; (ii) there is a finite value of ux at separation
for yx ^ 0; (iii) a2 = \. Related to (iii) Professor Hartree found (em-
pirically) that in his solution (Suxldy1)yi=0 behaved near xx = 0 like a
multiple of xx, where r is certainly less than 1 and greater than J. Thus,
we must take , , , , , , „ ,„, .

ui = $y2+a3y
3+- at xx = 0, (21)

and as a result we find that

(8ux/8yx)m=0 = &(ai3%+alaxt+atazl+ctl4+...), (22)
where the a's are constants. (The factor 2} is inserted to conform to the
notation in §2.)

The first purpose of the calculations was to find the connexions between
a3, a4, o5, a6,... and <xv a2, a3>... and other formulae for u at and near xx = 0
to see if the results fitted the numerical values for the special solution.
There is no mathematical proof that a solution exists with singularities
of the type considered near separation, but with the above assumptions
it is difficult to see how the solution could be of a different type.

We may remark that in assuming that a2 = £, we are in effect assuming
that (82ux/dyl)Vl=Q is continuous at xx = 0, and then (dnux/dyx)Vl=0 is found
to be continuous at xx = 0 for n = 1, 2, 3, 4 and discontinuous for n = 5
and 6 and probably for all n ^ 5, though dnux\dy\ is continuous for yx ^ 0.
More important, it is found that at separation vx and 8ux/8xx become
infinite in such a way that x\ vx and x\ dux/dxx have finite non-zero limits
as xx ->• 0 for all non-zero yx. The basic assumptions of boundary-layer
theory therefore do not hold at and near separation. Nevertheless, large
cross-velocities are to be expected at separation, otherwise the assump-
tions of boundary-layer theory would not break down.

The formal solution for the motion upstream is found by writing

(23)

l (24)

] (25)
in (16), and equating powers of £. Since tfix = 0 and ux = 0 at yx = 0,
/r(0) =fi.(0) = 0, and from the value (21) of ux at xx = 0 we find the
condition ,,

lim A-2 = 2*'ar+2 (r = 0,l,2,...). (26)

The solution for fr must have a double zero at the origin, and must not
involve exponentially large terms as ij ->co.
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48 S. GOLDSTEIN

The condition u: -> V1 as y1 ->• oo is satisfied for xx > 0 if it is satisfied
at xx = 0, i.e. if v^ -*• 1 as yt -> oo at xx = 0.

With a2 = £, the solution for /„ is found to be f0 = TJ3/6. The solution
for/i is/x = a^2, and a> = ^ f = °- (27)

Then / 8 = o a ,«_f | ,5 > (28)

and a4 = — £af. (29)

[The a's and a's are as in (21) and (22).] The equation for/3 becomes

SI'—i7?3/^+21?a/3 — 677/3 = 5/i/2~7/l/2 + 4/l/2- (30)
The equations for all succeeding / 's are non-homogeneous linear equa-

tions, with the right-hand side rapidly becoming more and more compli-
cated; thus for/4 it involves/p/2, /3, Pv for/5 the first four/'s, and so on.
The complementary functions involve integrals of confluent hypergeo -
metric functions; the particular integrals are very involved. The condition
for the absence of exponentially large terms in / 3 isf

«2 = 57Tmai ' (31)

and then from (26) a6 = I7\2ai- (32)

The condition for the absence of exponentially large terms in /4 is

(33)

and from (26) a6 = g--^)^- A. (34)

The condition for the absence of exponentially large terms in/5 gives <x4 as
a multiple of <x\, though the constant must be found numerically, and then
a7 is found; but the condition for the absence of exponentially large terms
in/ 6 does not give a5; it requires that

4 ! i S ) ( ¥ ) (35)

0
where H6 is a complicated function of 77, involving /5.

Again, a6 is determined from /7 in terms of a1; a5, and Px, a7 from /8

in terms of alt a5, and Pv aflQ so on until we come to /10. I t is possible,
though it has not been proved, that as is determined from /10, a9 from /14,

t x! is written for T(x+1).

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/1/1/43/1883631 by guest on 23 April 2024



ON LAMINAR BOUNDARY-LAYER FLOW 49

and so on. If so, then only a± remains to be determined, and a4 (and
therefore a )̂ is probably determined by the condition ux -> 1 as y1 -> oo
at xx = 0. If so the whole solution is determined at separation. In fact,
if it is true that all the other constants are determinate in terms of a4 and
the P's, there is a solution only if it is possible to choose a4 so that the
condition % -> 1 as yx -> oo at x1 = 0 is satisfied. Unless this condition
is satisfied for every value of a4, it will presumably fix a4 in terms of the
P's. If a4 is so fixed, the non-dimensional velocity distribution at separa-
tion, x± = 0, and just upstream of separation, for small positive values
of xx, is fixed in terms of the P's. Suppose now we have a problem in
which U is a given decreasing function of x, and u a given function of y
for some x < xs. There are some U's for which the P's are independent
of a;g; otherwise they vary with xa. When separation takes place, the non-
dimensional velocity distribution at and near separation is independent
of the initial distribution of u for the former values of U, and for the
others it is the same for all initial distributions of u for which separation
takes place at the same value of x. This suggests that what has been
found is an asymptotic solution at and near separation, and that the full
non-dimensional solutions in the above cases all behave asymptotically
in the same way near separation.

It appears that the singularity at separation is due to the non-linear
character of the equations. It is possible to simulate the phenomenon of
separation by a linear system of equations, and there is then no singularity
at separation. For example, the solution of

— = —1-1 -, u = 1 at t = 0, u = 0 at y = 0, u finite as y -> oo,
at oy*

(36)
( 3 7 )

(38)

X

where erfx = ^- f er^ dw,

so (cu/dy)v=0 = 0 at t = £. (39)

We should remark also that in equations that are linear but are other-
wise similar to the equations here considered (the equation for the
temperature in the theory of the conduction of heat,f for example), if
we attempt to work backwards (i.e. to solve for negative time) from a

t The relationship of the boundary -layer equations to the equation of heat conduction
has been stressed by Prandtl (2) (loc. cit., pp. 79, 80) in connexion with difficulties to be
expected when u < 0.

5092.1 B
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50 S. GOLDSTEIN

singularity we encounter exponentially large terms. With given initial
and boundary conditions, however, the solution for such a linear equation
is free from singularities for positive non-zero time, whereas the basis of
the present discussion is the assumption that singularities may occur at
separation in the solution of the non-linear equations considered.

The special case considered by Professor Hartree is one in which by
a correct choice of scale the P 's may be made independent of xB. There
is always the possibility, therefore, that the occurrence of a singularity
at separation is restricted to such cases. Another possibility is that a
singularity will always occur except for certain special pressure variations
in the neighbourhood of separation, and that, experimentally, whatever
we may do, the pressure variations near separation will always be such
that no singularity will occur.

It is a necessary consequence of the discussion of the motion upstream
of separation that at is negative or zero. Professor Hartree finds a negative
a4 from his special numerical solution. When we consider the motion
downstream of separation in a similar way, we find that when a4 is negative
the solution downstream is not real. When there is a singularity at
separation there is no real solution at all farther downstream. When
o4 = 0 there is a solution downstream, but then we have a case in which
the whole solution is free from singularities. These cases include that in
which (du/dy)v=0 = 0 for all x. There must, of course, be restrictions on
the pressure distributions in order that this should happen, and these
conditions arise from the condition that ux -*• 1 as yx -> oo at xx = 0. This
our method does not permit us to discuss, but one solution (due to Falkner
and Skan, 4f) is known in which U = cxm, m = —0-0904 approximately.

As far as numerical values are concerned, and comparison with the
computed values, Professor Harti-je fitted his solution to the formulae
here obtained, and considered that he had obtained a reasonable fit. The
matter has been recently reconsidered by Mr. C. W. Jones, who has
tabulated f3, ft, /5 and has found that within the accuracy of his com-
putation, the integral condition (35) for the absence of exponentially large
terms in/ 6 is satisfied.

Mr. Jones has compared the skin-friction, the velocity distributions at
separation not far from the wall, the transition to main-stream conditions
at separation, and the velocity distribution just downstream of separation
(at {tfJPJx = 0-956, where U = po—pix&nd(8^jpo)xs = 0-959). A satis-
factory fit is obtained with ax about 0-47 or 0-48. A satisfactory transition
to main-stream conditions seems to be obtained, but it is not sensitive to
changes in av

t See also (5).
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ON LAMINAR BOUNDARY-LAYER FLOW 51

If we assume that Mr. Jones's numerical work is sufficient to answer
certain questions, and to make it plausible that our formulae fit the
solution in the case considered, we still do not know for certain that as,
a9;... are determined from the equations for/9,/13,..., and, if they are, that
a4 (and therefore ax) can be determined from the condition ux -»• 1 as
yx -> oo at xx = 0. It is clear that an adequate discussion is not possible
by the method used here. Three more important questions also remain:

(1) Is it correct that the formulae represent an asymptotic solution at
and near separation ?

(2) What are the most general restrictions on the pressure distribution
in order that solutions should exist for which (du/dy)v=0 = 0 for
alls?

(3) A singularity when U = f$0—fixx being assumed, is the occurrence
of a singularity restricted to cases in which the P's are independent
of xa ? Or does a singularity always occur unless (du/8y)y=0 = 0
for all x? Or does a singularity always occur except for certain
special pressure distributions near separation, and are experimental
pressure distributions always of the special type ?

It should be remarked that although there is a certain physical plausi-
bility in the notion that large cross-velocities should occur at separation,
the existing experimental information is insufficient to settle the question.

The work described may be summed up by saying that it throws doubt
on the validity of the boundary-layer equations at and near separation
on the upstream side, and also downstream of separation; inferences from
these equations in these regions, which are fairly common in the literature,
are therefore also in doubt; mathematically the work suggests that singu-
larities may arise in the solution of non-linear parabolic equations, due to
their non-linearity; and formulae have been found which may help com-
puters of laminar boundary layers, who desire more than a rough solution,
to have an end-point at which to aim.

2. The solution upstream
Substitute (23), (24), and (17) into (16), and equate coefficients of powers

of £. The equation for /„, obtained from the coefficient of £°, is

./o"-3/o/o'+2/o2 = I- (40)
Since tfix = 0 and ux = 0 at yx = 0,

/r(0)=/;(0) = 0 (r = 0,l,2,...). (41)

When $ -> 0, -q ->oo if yx =£ 0, and since 2*̂ 77 = yv l im^ is given by

(21) if f

l i m ^ = 2*'ar+2 (r = 0,l,2,...). (42)
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52 S. GOLDSTEIN

The condition that the velocity should pass over smoothly into the velocity
of the main stream will be considered in § 3, when the solution for large
values of yjx\ is considered.

Since a2 = £, the solution for /„ is

/o = *?3/6. (43)

The equation for/ r is then found to be

ir —£'?yrH'£(r~l~4)1>?2./r — (^+3)ij/r = Or, (44)

where O1 = 0, G2 = 4/1/1"-3/;2 , (45)

and for r ^ 2,

s-i

PrH being put equal to zero except when \r is integral. The solution for
fx with a double zero at the origin is

A = <*x if, (47)
where oc1 is a constant; hence from (42),

a3 = lim— = 0. (48)

The solution for f2 with a double zero at the origin is now found to be

-S 'A (49)
where a2 is a constant; hence from (42)

a4 = - K - (50)

In order to write down the general solution for f3 with a double zero at
the origin, and to consider its behaviour as -q -> oo, some discussion is
necessary of the complementary functions, and it is advisable to break
off and discuss generally the complementary functions of the equation
for/r.

Three independent complementary functions are tf, gr, and hr, where,
if the function ^ ( o , 6, x) is defined by

thent a = - S (m-i
1 Vr Z,m\(—I—Jr)!,m\(—I—Jr)!(m+J)!8m(4m— 1)

/rt^-i-i^VS)-!}^, (52)
o

t x\ is written for F(a:+1), as before.
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ON LAMINAR BOUNDARY-LA VliR FLOW 53

and h = - V
r ^Z wi! (—J—Jr)! (w — 1)! «*"(J-w— 1)

= i-2,«JYVK-l-l'-i'?4/* -i:^- (53)
o

The series for gr terminates when r = 4m+2, and that for hr terminates
when r = 4ra+l, m being a positive integer or zero.

As regards asymptotic expansions, in addition to the solution TJ2 the
equation (44) with GT put equal to zero lias two solutions whose asymptotic
expansions for large -q commence with multiples of

7?r+3 and of T?-('-+
10'exp(7?

4/8)
respectively.

When x is large and positive (6),f •

^(a, b, x) ~ ^"HJe**"^ X
x L [ (6-q)(l-q) ( (6-o)(6-o+l)(l-«)(2-o) | } ( g 4 )

so

^ | f j^exp(7 ?V8)^-<^ ' ){ l + ...} (r # 4m+2)

(55)
and

O(3r+10)/4/ 5\l

(56)
Hence

O(3r+17)/4/3\|
£ ^ (57)

( ) / _
and K~l \• //•exp(i?«/8h-fr+10»{l + - } (r # 4m+l). (58)

Exponentially large terms must not occur in the solution for/r, so when
r ^ 4»n-j-]. or 4m+2, yr and Ar must occur in the combination

(59)
ButJ

(60)
t The formula is on p. 258 of ref. (6).
j Barnes (5), op. cit., p. 259.
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54 S. GOLDSTEIN

hence

and

(2+r)(2-r)(3+r)(l-r) (2+r)(2-r)(6-r)(3+r)(l-r)(5-r) 1
2.4.1J8 2.4.6.ij12 " 1" '" /

(r ^ 4 r a + l or 4TO+2) (61)

2.4.(r—7)

(2+r)(2-r)(6-r)(3+r)(l-r)(5-r)7? '-
9

2.4.6.(r—11) "*"
+constant. 172 (r = 4m). (62)

When r = 4m+3 the term with a zero denominator must be replaced by

( _ _ 1 \fflQ—Wl—6/4/ /yyi 0 \ I / ify% i 5\ I \y

^^ J. i o i ~-~ ***^~~"ii • v ~~"~ '^~5/ ^^

5.9.13...(4m+5).3.5.7...(2m+3) 2]
X (m+1)! ^ ° g T / '

( 1)»»+1 2 i 7T* ( 6 ) !
which reduces to —̂ * —^-'^logr;. (63)

(62) may be verified and the constant multiplier of rf found by considering

(64)

taken round a contour consisting of the straight line from — N—\—cot
to — N—J-j-ooi and the part of a circle of infinite radius to the right of
the line. When r =£ 4m+3 the constant multiple of tf in (62) is found
t o b e 2 -»M-i ) ! (-$-!»•)! *»"• (65)
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ON LAMINAR BOUNDARY-LAYER FLOW 55

When r = 4 m + 3 the term with a zero denominator in (62) must be
omitted, and (65) replaced by

? 3 (66)

where g(z) =-^-logz!. (67)
dz

The multiplier of ij2log -q agrees with that in (63). If y is Euler's constant
(equal to 0-5772...)

g(-f)==2-21og2-y,

so (66) is equal to

- ^ - 5 ] - (69)

In particular, since

(70)
it follows from (62), (65), and (69) that

3.2*.77» 77 ( a 15 1 . 15.1.3 16 15 1
7 2 +:3 10.(£!)3!/3 160(i!)2l ' 2! TJ2 r 2.3!

15.1.3.3.7 1
3.4!

and
, 7.2*.TT« n* irf 3.7 3 3.1.7.3 1

4 64(J ! ) 3 ? 4 ~ 48.2*.J!\ 5 " i f 3.2! ^

3.1.1.7.3.1 1 3.1.1.3.7.3.1.5 1
7.3! ^ iX~4! ^e +

3.1.1.3.5.7.3.1.5.9 1 ) 21.2*.TT* 2

y 3 " j eioTJI)4"'7' ( '+ 15.5!

We now return to the equation for f3, which is

fZ'-W/Z+hVa-Wz = -lOcx^^-la3.,». (73)
The general integral with a double zero at the origin is

/s = «3^+4« 1 a 2 ( 1 ? - S r 3 ) - | a 3 ( l+^ -A 3 ) , (74)

where 03 is a constant. In order that exponentially large terms should
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56 S. GOLDSTEIN

not occur in /3 , g3 anil h3 must appear in (74) in the same combination
as in (71). Hence we must have

2k-ni 2 (IK

and

i! (—I)! (m—£)! 8m(2ra—1)

. N _ _ ^ *—'- , 1. (76)

For large values of rj,

, IT A . 15 1 , 15.1.3 I 15.1.3.3.7 1 ,
J3 60(J!)2 1\' 2! r)2^ 2 . 3 ! TJ6 3 .4 ! T)10

Hence, from (42), a5 = - _ i ^ - a 3 . (78)

We now turn to the equation for /4, wrhich on substituting in (44) we
find to be

(16m2—20m+3)(w—1)! (—|)! i]
m!(—|)!(m-J)!8m(2m—1)

(16m2— 12m-l)(m-^)\j\v)
l) / ' ( '

The general solution of (79) with a double zero at the origin is (with a4

denoting a constant)
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ON LAMINAR BOUNDARY-LAYER FLOW 57

where
L=S (w- | ) ! ' -J)!(2TO-3)T?

4'»+3'

"~ 40(£!)3 Z, TO!(-|)!(m+|)!8'»(4TO+3)(4m+4)' * *'
"AT 771 = 1Now

^ ^ ] } (82)
and since, from (61) and (70)

3.7.1.3 3.7.11.1.3.5 \

the asymptotic expansion of L may be deduced apart from an additive
constant and an additive multiple of 17. The resulting expression may be
checked, and the constant and the multiple of 77 determined, by considering

—s—1)! (—s—I)! (s—I)!— -— ds (84)
8"(4s+3)(45+4)

taken round a contour consisting of the straight line from — N—\—ooi
to —N—^+coi and the part of a circle of infinite radius to the right of
the line. After some calculation it is found thatf

_W, 1 1 1.3.3 1 1.3.5.3.7 1 \
!)»\5+1.2!i j» 2.3! V ^Ti] ^~'")32(|!)a

(85)
As before y denotes Euler's constant, and use has been made of (70), of
the first equation of (68) with m = 1, and of the formulae

5 ( - i ) = frr-31og2-y, 8 f ( - i )=-21og2-y . (86)
The asymptotic expansions of all the terms in the expression for/4 in (80)
are now known. In order that exponentially large terms should be absent
from the asymptotic expansion of/4, g4 and ht must occur in (80) in the
same combination as in (72). The terms containing gt and A4 in (80) are

(87)

t I am indebted to Mr. C. W. Jonos for the correction of three errors in (85) as first
written.
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58 S. GOLDSTEIN

Compare with (72), and use the value of a2 from (75). We must have

7-7T3

J ^ * (88)

and O , = i_^_(35-8.2*) a5. (89)

Substituting for the coefficients of gt and ht in (80) from (88) and (75), we
find that

8.2*.77* AL . lff\ 7.2*.w» ,) ,OA.
1 ^ ) ( s r ) ) ( 9 0 )

The series expansions of L, gr4, and A4 are given by (81), (52), and (53), so
that the series expansion of/4 is easily written down. Its asymptotic
expansion is found from (72) and (85) to be

} PA 7 2».7T*

3.7 3 3.1.7.3 1 3.1.1.7.3.1

IT71 v. 77 ~" 7T31

3.1.1.3.7.3.1.5 1 ,
1 1 . 4 ! 7)9 '

n fr« 1 1 1.3.3 1 1.3.5.3.7 1 j
(J!)2 ' 15^1.2! TJ3 2.3! TJ7"1" 3.4! V1"' "T

It follows from (42) that

360'

The analytical discussion of /4 is now complete. The equations for f6,
f6, etc., have not been completely solved, but some discussion of these
equations will now be given.

In addition to the complementary function C^TJ2, the equation for/r has
one complementary function whose asymptotic expansion for large positive
values of -q commences with a multiple of ij"(r+lo)exp(ij4/8), and another
complementary function whose asymptotic expansion commences with a
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ON LAMINAR BOUNDARY-LAYER FLOW 59

multiple of tf^ followed by a multiple of if-1. For the solution to be
successful, exponentially large terms must not occur in the asymptotic
expansion of fr, which must begm with a multiple of r)r+s. For r ^ 4 this
condition is satisfied, and, moreover, the next term in the asymptotic
expansion is a multiple of ij r+ l . Assume for the moment that these state-
ments are correct for r ^ n—1. Consider the asymptotic expansion of
Gn, the left-hand side of the equation for /„ in (44). The terms of highest
degree occurring could be multiples of r)n+i, but it is not difficult to prove
that the terms in »jn+4 always cancel, and that in fact the asymptotic
expansion of Gn begins with a multiple of 7jn+2. It follows that the equation
for fn has a particular integral, which we denote by / , whose asymptotic
expansion begins with a multiple of ijn+1 . Any particular integral may
be expressed as the sum of / and multiples of the complementary func-
tions. The particular integral with a" double zero at the origin is indetermi-
nate only to the extent of an additive multiple of ij2, and what is required
is that it should not involve the complementary function that is expo-
nentially large at infinity. If the presence of the exponentially large
complementary function can be avoided, the asymptotic expansion of the
solution with a double zero at the origin will begin with a multiple of
7)n+3 (from the other complementary function), followed by a multiple
of rjn+1 (from / ) . Hence by induction it will be true generally that the
asymptotic expansion of fr will begin with a multiple of ijr+3, followed by
a multiple of ?f+1.

Now /„_! contains a term an-1 rf, where an_x is a constant which is
undetermined at that stage of the solution at wluch we solve for fn-x.
The only terms in Gn containing an_x arise from the terms in the expression
for Gn which contain fn-i or its derivatives, and it is easy to see that the
sum of the terms in Gn containing un_x is —{2n+4:)(x1oin_1i}

2. The corre-
sponding term in the solution for fn with a double zero at the origin is
4aian-i('7~Srn)- Unless n = 4m+2, where m is a positive integer or zero,
the asymptotic expansion of gn involves exponentially large terms. Other
exponentially large terms occurring in the solution for fn can arise only
from multiples of gn or (when n ^ 4m+l) from multiples of hn. Since
a suitable combination of hn and gn has an asymptotic expansion devoid
of exponentially large terms, and this combination involves hn unless
n = 4m+2, it follows that when n ^ 4nn-\-2 the presence of exponentially
large terms in the solution for fn can always be avoided by a suitable
choice of <xn_1. In this way, when n ^ 4m+2, an_x is determined.

On the other hand, when n = 4m+2 the series for gn in (52)
terminates, the term of highest degree in gn being a multiple of r;n+3.
In such cases it is not possible to arrange for the absence of exponentially
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60 S. GOLDSTEIN

large terms in fn by a suitable choice of an_1, and some other condition
must be satisfied.

At each stage, in solving for /„, the value of an+2 is fixed by (42)
in terms of such of the Pr as have occurred in the equations up to and
including the equation for /„ and of such of the aT, for r ̂  n—1, as
have not been determined by the conditions for the absence of exponen-
tially large terms.

In order to proceed farther, we consider in some detail the equations
for/5 and/6. The equation for/5 may be written

-af^Tj), (93)

where H5(r]) is a function of 77 independent of <xv ex4, and Pv and the solution
with a double zero at the origin is

«, P

where &5(ij) is a function of 77 independent of a1; c ,̂ a5, and Px. The presence
of exponentially large terms in the asymptotic expansion of /5 can be
avoided by a suitable choice of a4, of the form

a4 = (constant)a*. (95)

The equation for /6 is then found to be of the form

(96)

where H6(T)) is independent of a1; a4, as, and Pv and the solution with a
double zero at the origin is

A = ccrf+^^v-gJ-^^-^t+alktir,), (97)

where k6(r)) is independent of «,, a5, a6, and Pv From (52)

a =-nA.il. !?!_. (98)
if6 ' ^ 1 5 1260

Hence

In order that the asymptotic expansion of/6 should contain no exponen-
tially large terms it is necessary that the asymptotic expansion of A;6 should
contain no exponentially large terms, i.e. that the particular integral of

with a double zero at the origin should contain no exponentially large
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ON LAMINAR BOUNDARY-LAYER FLOW 61

terms. This particular integral is indeterminate only to the extent of an
additive multiple of ij2, and since the expansion of H6 in ascending powers
of 77 begins with a multiple of ij2, we may consider the condition to refer
to the particular integral of which the expansion in ascending powers of 17
begins with a multiple of ij5. The condition may be given a more definite

form. Put / , = , * * and y'6 = z6. (101)
Then (100) becomes

•n%+&r)-W)A+$+W)z« = H6(V). (102)
A complementary function of (102) (corresponding with the complemen-
tary function g6{t)) of the equation for /6) is

U' = ~>+T-Wo- ( 1 0 3 >
If we put z6 = u6v6 and v'6 = we, (104)
(102) becomes

^ rj*l8). (105)

The expansion of the right-hand side of (105) in ascending powers
of i] begins with a multiple of if. As explained, the expansion of the
required particular integral for /6 begins with a multiple of 175, and hence
the expansion of «2T;6w6exp(—?j4/8) begins with a multiple of t]5. The
required solution of (105) is therefore

ueV M>eexP(—ij4/8) = Heu6ij
4exp(—T)i/&)dr). (106)

0

If the asymptotic expansion of/6 contains no exponentially large terms,
the asymptotic expansion of wB contains no exponentially large terms,
and the left-hand side of (106)->0 when TJ->OO. Hence the required
condition is „

Jflr6«6rj
4exp(—r]4l8)dr) = 0, (107)

0
CO

i.e. j HArp — JL^.2L-)exp(—T)4/8)dr{ = 0. (108)

0

The expression for He is easily found from the expression for G6 in (46), but
I have not been able to evaluate analytically the integral on the right
of (108). The matter has been further considered by Mr. C. W. Jones, who
finds numerically that the integral condition is satisfied to the accuracy of
his computations.

If we assume for the present that the condition (108) is satisfied, we
may proceed to consider the equations for/7, /8, etc., in the same way as
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62 S. GOLDSTEIN

we considered the equations for / 5 and /6. From the condition for the
absence of exponentially large terms in the asymptotic expansion of/7,
a6 is determined in terms of a1( a5, and Pv Similarly a, is determined from
*he equation for/8 in terms of xv a5, and P1,f and so on until we come to
the equation for /10. In the right-hand side, G10, of the equation for /10,
a9 occurs only in the term — 24a1a9 -rf, and the corresponding part of the
particular integral with a double zero at the origin is 4a1a9(Tj—g10). Since
the series for g10 terminates, the term of highest degree being a multiple
of TJ13, this part of the particular integral contains no exponentially large
terms, and <xg will not be determined from the condition that the asymp-
totic expansion of/10 should contain no exponentially large terms. G10 also
contains a multiple of <x\ rj2 and certain very complicated terms linear in
a5, in particular a term in af a5. (It further contains in particular compli-
cated terms that are multiples of a\° and aj Pv) The part of the particular
integral that corresponds with the multiple of a§ij2 in G10 will be a
multiple of oc\{r]—gw), and will not be exponentially large at infinity.
Unless, therefore, the part of the particular integral corresponding with
those complicated terms in G10 which are linoar in a5 also fails to become
exponentially large at infinity, *5 wili be determined from the condition
that /10 as a whole should not be exponentially large, which condition it
will thus always be possible to fulfil. In other words, it seems probable
(though I have not proved it) that a5 is determined from the equation for
Ac a9 from the equation for /14, and so on. If this is correct, then only
ax remains undetermined among the a's, and therefore only a4 among
the a's. As explained in the introduction, o4 is then probably determined
by the condition ux-> 1 as y1->co at xx = 0, in which case the whole
solution is determined at separation, and probably what we have con-
sidered is an asymptotic solution at and near separation, applying (in the
non-dimensional form here considered) to all cases in which the P's are
the same.

3. The solution upstream for large values of y-Jx\
Our first aim in this section is to exhibit the form of the solution for

large values of yjx^. By carrying through the suggested calculation in
some detail we also provide a check on part of the work in the preceding
section.

t The right-hand side, (7e, of the equation for/8 contains P, and a term, ^l'?4"''?*)'

in P%. The corresponding parts of the particular integral with a double zero at the origin

- -
and contain no exponentially large terms, so that the expression for a, will involvo neither
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ON LAMINAR BOUNDARY-LAYER FLOW 63

According to the solution in the preceding section, fa is found in the
form of the series (24), where

/o = | , /i = «iT. A = « 2 ^ - | 7 5 , (109)

c«2 is given by (75), and for large positive values of -q

f3~A3r,*+C371*+E'3r}Hogr,+E3-q*+F3V+G3+K3r1-*+..., (110)
where

— _ a , v 3

and
ft~At7]

(Ill)

; , log ,+<? 4

where
(112)

A - \ 4 ^ 2 1 4 -Pi n _ it 4
4 ~ 1.63 150(i!)*Jai 630' °4 ~ ~5[^°l1'

n 2*.»r» 4 „ P j ("16 7jr2 ] 4

21 2^ 77*
^4 = c*4— * ' ctj (a4 has not been calculated), (113)

Now substitute the expressions for/0, /1( /2 and the asymptotic formulae
for/3 and/ 4 into the series (24) for ifilt substitute for rj from 2i^rj = ylt

and rearrange in powers of £ and logf. The work is purely formal, and
no justification is attempted. The result, which can hold only for large
values of yxlx\, is

(114)
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64 S. GOLDSTEIN

We are therefore led to assume, as a form valid for sufficiently large values

(115)
and the initial terms of the expansions of the \ m powers of y1 are found
by comparing with (114). In fact, since the form (115) is not valid unless
yjx\ is sufficiently large, the boundary conditions at yx = 0 cannot be
applied, and the solution found must be joined to the solution in the
preceding section by using the first few terms of the expansions of the x's

as given by (114). On the other hand, the solution in this section should
satisfy the condition ux -> TJX as yx -> oo.

From (115)

| , (116)

We substitute in the reduced equation of motion (16) (with dpjdx^^ as in
(17)), multiply by 4£2, equate coefficients of | ° , £, £2, £2logf, and P , and
obtain the following equations:

(119)

(120)

(121)

6(XS X5-X0 Xs) = 5X2 X3-3X2 X3~2x2 Xa- (122)
%A 1A

Now Xo = & 2 -K2/ i + ^ / f + ^ + " - . (123)

and is, of course, the value of % at £ = 0, namely,

as may be verified from the values of A3, Ait a3, a4, a5, a6.
The solution of (118) is

X2 = (constant)xi- (124)
The constant multiplier is determined by making the coefficient of y\

in the expansion of \2 equal to 2*a1. Hence

X2=2*alXo- (125)
(It may now be verified that the coefficients of y\ and y\ in the expansion
of x% a r e the same as in (114), and the values of C3 and Ct are thus checked.)

Similarly from (119) and (121) it follows that ^3 &n<i X4 a r e constant
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ON LAMINAR BOUNDARY-LAYER FLOW 65

multiples of x'0>
 a n ( i the multipliers are determined from the coefficients

of y\ by comparison with (114). In these multipliers the values of <x2 and
E"z are substituted from (75) and (111), and it is found that

| ^ ( 1 2 6 )

(127)

(The coefficient of y\ in the expansion of xz m a y now be verified, and the
value of Z)4 so checked.)

In (120) the terms in £4 may be omitted, since they cancel by (121),
and the value of X2 m a y be substituted from (125). The equation for
Xt. is thus seen to be

(128)

The expression on the right of (128) may be expanded in a series of ascending
powers of y±; tho first terms are

120.2*.^,

Hence the solution of (128) is

(129)

dyi_+
Xo ill

-120.2*.^3xolog2/1+(constant)xo. (130)
The constant multiplier of x'o ™ found from the coefficient of y\ to be
equal to

^ J Z L ) (131)
(The coefficients of yflog^ and y\ may now be verified, and the values
of E'z and E^ so checked.)

When we substitute for ^2 and Xz from (125) and (126), the equation
(122) for Xb reduces to

XoXs—XoXs = ~5(Tn3"ai^o— XoXo) (132)
with the solution

^f (133)

From the coefficient of y\ the constant multiplier is seen to be 2'.P4) but
it cannot be fully determined from results already found, since the
expression for Ft in (113) contains a4, which has not been calculated.

6092.1 F
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(The coefficient of yx in the expansion of Xs is determined without a
knowledge of the constant multiplier, and is easily seen to be 2F3, as in
(114). The value of F3 is thus checked.)

I t remains to consider the condition that the velocity should pass
smoothly over into the velocity of the main stream. As explained, we
must suppose that this condition is satisfied at xx = 0; as far as our
formulae go, ux is given by (116), so if the condition is satisfied at xx = 0,
X<>-> 1, and the second and higher derivatives -> 0, as yx-*-co. From
(125), (126), (127), and (133) it follows at once that x'2> Xz, Xi> Xs a n d t h e i r

derivatives all -> 0 as yx -*• oo. As regards x*> w© suppose that, as yx -*• oo,
Xo -> 0 more rapidly than y^1; it may then be proved that as yx -*• oo, X4 is
asymptotically equal to a multiple of ylt plus a constant, plus terms which
-»• 0, so that Xi -> °° as yx -*• oo; but xo Xt ~* 0> and we may then show from
(118) that xi -> 1 and the second and higher derivatives ->• 0, as yx->co.
We thus check that, as far as (116) goes, ux-> Ux (since f4 = xx and
U1= 1, dUx/dxx = 1 at xx = 0), while du1/dy1 and higher derivatives -*• 0.

4. Discussion of the solution u p s t r e a m
The solution in the preceding section holds only for large values of 77.

The solution in §2 applies for small or moderate values of 17; it is valid
also for large values of 77 (the asymptotic expansions of / 3 and /4 being
used), but is then useful only for small values of ylt since in such a case
it is essentially equivalent to the solution in § 3 with the x's expanded in
series and with only a few terms in each expansion known. The results
that can be obtained from §2 when 77 is large may therefore be more
advantageously obtained from §3 after we have obtained the formulae
for the coefficients an in the expansion, in powers of ylt of the value of
% at xx = 0. (It should also be remembered that the asymptotic formulae
of § 2 were necessary for the completion of the solution in § 3.)

Thus the formulae in §§2 and 3 are useful in different regions. In
particular, the fornv ' e of § 2 will be useful for studying the values a t
yx = 0, xx # 0 of the derivatives of ux with respect to yv etc., whereas
the formulae of § 3 will be useful for studying the nature of the solution
at xx = 0,yx^z 0. The formulae of § 2 show that lim (dntijdy^) o ^ n\an

x,->0

for n = 5 and 6. For any non-zero value of yx, however, c^ujdy^ is
continuous at xx = 0. On the other hand, the formulae of § 3 show that
vx (and dujdxj) are infinite at xx = 0.

Because of the singularity at xx = 0 the usual assumptions of boundary-
layer theory are invalid at xx = 0 and in the immediate neighbourhood.
Nevertheless, the mathematical result that vx is infinite may be taken to
indicate that large cross-velocities are to be expected at separation;
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otherwise the assumptions of boundary-layer theory would not break
down.

5. The solution downstream
In considering the motion downstream from separation we reduce the

equations of motion and continuity to non-dimensional form by the same
substitutions as before, except that in place of x1 we use

*i = -* i = (x-*8)lh (134)
so that x't is positive downstream. The governing equations are obtained
by replacing x± by — x\ in (16) and (17), and in place of (23) and (24) we

(135)

} +...]. (136)

We obtain differential equations for the F in the same way as before;
moreover, the boundary conditions are the same, for the conditions ^ = 0
and ux = 0 at yx = 0 lead to

Fr(0) = F'r(0) = 0 (r=0, l ,2 , . . . ) (137)

and the condition that limt^ is given by (21) leads to

= 0,1,2,...). (138)

The equation for Fo is

FZ+SF0F;-2F£ = 1, (139)

and, since a2 = \, the solution is the same as for/0, namely,

Fo = ,'»/6. (140)
The equation for Fx is

and, since a3 = 0, the solution is

F1 = p1v'*, (142)

where /Jx is a constant. The equation for F2 now becomes

F'^\-n^Fl-Z^Fl
2+5r)'F2 = 4jS? v'\ (143)

and the general solution for F2 with a double zero at the origin is

F2 = M2+m^, (144)

where /?2 is a constant. Hence, from (138),

««= m (145)

But, from (50), o4 is zero (in which case at is zero) or negative. If o4
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is negative, there is no real solution downstream of separation. Hence
there is no real solution downstream of separation unless a4 = 0.

6. The special case a4 = 0. The solution without singularities
If we return to § 2, and consider the motion upstream of separation

when ĉ  = 0, the equations for the / are easily integrated, and we may
show that a2 = a4 = a5 = a6 = a8 = a9 = etc. = 0; the whole solution
is free from singularities and may be verified by expanding ifi1 in a double
power series in x1 and yv Moreover, since the solution is free from
singularities it will hold also downstream. It is not possible, however, by
the methods used, to consider if there are pressure distributions for which
ux -*• 1 as yx -> oo at x1 = 0.

The most interesting special case of this solution is that in which
a3 = a7 = ... = 0, when it reduces to one that is easily found inde-
pendently, namely (with x[ = —xx),

JdptfPpi 23Pi(PPi\*
, idPiVl | 1 ^Ply\ [dx'J dx? dx'Xdx'?)

Wl 2 8x[ 3 "'"seO dx? 7 "*" 453600 11 ~1~'"'
(146)

so the expansion of ur in powers of yt contains only multiples of yim+2.
This is a solution in which (8ujdy)y=0 = 0 for all x, but in order that it
should be valid it is necessary that Bp.Jdx^ should be chosen so that
ux -> 1 when y1-^co at x\ = 0. Included in this solution is that special
case of the solution discovered by Falkner and Skan (4) for which
(du/dy)y=0 = 0 at all values of x. In the case considered by Falkner and
Skan the velocity distributions at different values of a; are similar; if more
general solutions of the type shown in (146) exist, the velocity distributions
at different values of x will not be similar in the general case.

It is a fairly straightforward matter to check that the known solution
for U = cxm, when w las the appropriate value, agrees with (146) as far
as that equation goes; but the value of m is determined from the condition
u -> U as y -> oo and cannot be found by the methods used here. Since
the velocity distributions at different values of x are similar, the appro-
priate value of m may be found from the solutions of an ordinary differen-
tial equation, and has been so found by Hartree (5).f No such method is
available in the general case. Meanwhile the formulae of Falkner and
Skan, when (du/8y)y=0 = 0, have been fitted as a very special case into
the formulae of this section, so far e-s those formulae go.

t For negative values of m the solution of the equation with the conditions t/i = 0, u = 0
at y = 0 and u/U —*• 1 as y ->-ao is not unique, but may be made unique by requiring that
X—ujU shall be positive and shall —»• 0 exponentially as y -*• co.
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