Abstract

Background: Statins represent the largest selling class of cardiovascular drug in the world. Previous randomized trials (RCTs) have demonstrated important clinical benefits with statin therapy.

Aim: We combined evidence from all RCTs comparing a statin with placebo or usual care among patients with and without prior coronary heart disease (CHD) to determine clinical outcomes.

Design: We searched independently, in duplicate, 12 electronic databases (from inception to August 2010), including full text journal content databases, to identify all statin versus inert control RCTs. We included RCTs of any statin versus any non-drug control in any populations. We abstracted data in duplicate on reported major clinical events and adverse events. We performed a random-effects meta-analysis and meta-regression. We performed a mixed treatment comparison using Bayesian methods.

Results: We included a total of 76 RCTs involving 170 255 participants. There were a total of 14 878 deaths. Statin therapy reduced all-cause mortality, Relative Risk (RR) 0.90 [95% confidence interval (CI) 0.86–0.94, P ≤ 0.0001, I 2 = 17%]; cardiovascular disease (CVD) mortality (RR 0.80, 95% CI 0.74–0.87, P < 0.0001, I 2 = 27%); fatal myocardial infarction (MI) (RR 0.82, 95% CI 0.75–0.91, P < 0.0001, I 2 = 21%); non-fatal MI (RR 0.74, 95% CI 0.67–0.81, P ≤ 0.001, I 2 = 45%); revascularization (RR 0.76, 95% CI 0.70–0.81, P ≤ 0.0001); and a composite of fatal and non-fatal strokes (0.86, 95% CI 0.78–0.95, P = 0.004, I 2 = 41%). Adverse events were generally mild, but 17 RCTs reported on increased risk of development of incident diabetes [Odds Ratio (OR) 1.09; 95% CI 1.02–1.17, P = 0.001, I 2 = 11%]. Studies did not yield important differences across populations. We did not find any differing treatment effects between statins.

Discussion: Statin therapies offer clear benefits across broad populations. As generic formulations become more available efforts to expand access should be a priority.

Introduction

For over 15 years, randomized trials of 3-hydroxymethyl-3-methylglutaryl coenzyme A reductase inhibitors (statins), have evaluated their impact on cardiovascular morbidity and overall mortality in patients with stable coronary artery disease.1 Since then, statins have been extensively studied in a large variety of patient populations including both primary and secondary prevention of cardiovascular disease (CVD).2,3 There is a widespread interest in the use of statins for broad populations given their effectiveness and relatively inexpensive costs now that three of them (lovastatin, simvastatin and pravastatin) are available in generic form. Statins are currently the largest selling prescription drug worldwide and may one day be widely available over-the-counter (OTC),4 with a 10 mg tablet of simvastatin already on sale OTC in the UK.

Clinicians have recognized that much of a statins therapeutic effect is derived from its low-density lipoprotein (LDL)-lowering effects.5 The greater the LDL reduction, the greater the clinical benefit in terms of risk reduction for CVD events.5 In addition, there is evidence that statins, beyond their LDL-lowering effects, reduce vascular inflammation, improve endothelial function and decrease thrombus formation.6–8 The role of these so-called pleiotropic effects of statins is less well established and it remains unclear if there are differences among available statins translating into different clinical benefit.

Large, up-to-date systematic reviews with meta-analyses are essential to provide clinicians, health economists and policy makers with the most reliable, critically appraised and precise estimates of treatment effects and to monitor for rare adverse events. Therefore, we updated previous meta-analyses of statin trials3,5,9–15 in an effort to assemble the totality of randomized trial (RCT) evidence to date in order to quantify the effects of statin therapy on a wide range of clinical outcomes and populations. Our primary outcome of interest is CVD mortality. We additionally examined whether specific statins exerted important therapeutic differences across the class of drugs adjusted for LDL-lowering effects.

Methods

Eligibility criteria

We included any RCT of atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin and simvastatin for CVD event prevention among both primary and secondary prevention populations. We did not include cerivastatin as it has been withdrawn from the market due to serious adverse events. Studies had to compare a statin to placebo, standard therapy or no-treatment and report on any of the following clinically important cardiovascular outcomes: All-cause mortality; CVD mortality; fatal myocardial infarction (MI); Non-fatal MI; major CV events (stroke, revascularization). We excluded studies only reporting on surrogate outcomes [e.g. LDL and high-density lipoprotein (HDL) levels] and follow-up studies where randomization had been subverted.16 We additionally excluded head–head statin evaluations.

Search strategy

In consultation with a medical librarian, we established a search strategy (available from authors upon request). We searched independently, in duplicate, the following 12 databases (from inception to August 2010): MEDLINE, EMBASE, Cochrane CENTRAL, AMED, CINAHL, TOXNET, Development and Reproductive Toxicology, Hazardous Substances Databank, Psych-info and Web of Science, databases that included the full text of journals, ScienceDirect and Ingenta, including articles in full text from ∼1700 journals since 1993). In addition, we searched the bibliographies of published systematic reviews3,5,9–15 and health technology assessments.17–19 Finally, we searched our own comprehensive rolling database of statin trials, updated monthly. We also contacted the authors of all trials for study clarifications, where required, and the authors of the only individual patient data meta-analysis of statins, that included 14 trials.5,15 Searches were not limited by language, sex or age.

Study selection

Two investigators (E.M., P.W.) working independently, in duplicate, scanned all abstracts and obtained the full text reports of records, that indicated or suggested that the study was a RCT evaluating statin therapy on the outcomes of interest. After obtaining full reports of the candidate trials (either in full peer-reviewed publication or press article) the same reviewers independently assessed eligibility from full text papers.

Data collection

The same two reviewers conducted data extraction independently using a standardized pre-piloted form. The reviewers collected information about the statin and type of interventions tested, the population studied (age, sex, underlying conditions), the treatment effect on specified outcomes, absolute and proportion change in LDL, HDL and total cholesterol and the length of follow-up. Study evaluation included general methodological quality features, including sequence generation, blinding, use of intent-to-treat analysis, percentage follow-up and allocation concealment.20 We extracted data on the incidence of the following clinical outcomes: all-cause mortality, CVD mortality, MI mortality, stroke mortality, non-CVD mortality, major CVD, MI, strokes, revascularization, cancers, rhabdomylosis, diabetes, aspartate and alanine aminotransferase (AST/ALT), and creatinine kinase (CK) increases beyond the upper limit of normal. We entered the data into an electronic database such that duplicate entries existed for each study; when the two entries did not match, we resolved differences through discussion and consensus.

Data analysis

In order to assess inter-rater reliability on inclusion of articles, we calculated the Phi (ϕ) statistic, which provides a measure of inter-observer agreement independent of chance.21 We calculated the Relative Risk [RR] and appropriate 95% Confidence Intervals [CIs] of outcomes according to the number of events reported in the original studies or sub-studies intent-to-treat analyses. Where studies did not report intent-to-treat, we analyzed outcomes as all-patients randomized.22 In the case of an individual patient data meta-analysis of 14 trials, we included outcomes as reported by the meta-analysis, in correspondence with the study’s authors. In the event of zero outcome events in one arm of a trial, we applied the Haldane method and added 0.5 to each arm.23 We pooled studies as an analysis of all-statins combined using the DerSimonian–Laird random effects method,24 which recognizes and anchors studies as a sample of all potential studies, and incorporates an additional between-study component to the estimate of variability.25 We conducted a sensitivity analysis to determine if individual statins exerted differing effects using a mixed-treatment comparison and also on whether baseline population risks differed in treatment outcomes using a Breslow–Day test.26 For adverse events, we calculated event rates using Peto’s Odds Ratio (OR).27 Peto’s odds ratios appears to provide the least biased estimates and CI coverage with rare events.28 Forest plots are displayed for each all-statins analysis of our primary analyses and a combined forest plot for secondary outcomes, showing pooled estimates with 95% CIs, and the overall DerSimmonian–Laird pooled estimate. We calculated the I2 statistic for each all-statin analysis as a measure of the proportion of the overall variation that is attributable to between-study heterogeneity.29 We conducted a multivariable meta-regression analysis to examine the impact of the following co-variates, all chosen a priori: absolute LDL change; proportion of individuals in trials that were men; had a history of coronary heart disease (CHD), had baseline diabetes, or were hypertensive and current smokers.30

In order to evaluate the relative effectiveness of each study drug on CVD mortality, we used the Lu-Ades method for combining indirect evidence in mixed-treatment comparisons.31 We estimated the posterior densities for all unknown parameters using MCMC (Markov chain Monte Carlo) for each model. Each chain used 20 000 iterations with a burn-in of 20 000, thin of 5 and updates varying between 80 and 110. We used the same seed number (SEED = 314 159, equivalent to 10 pi) for all chains. The choice of burn-in was chosen according to Gelman–Rubin approach.32 We applied the covariate of LDL-C change and also statin dosing (high or moderate determined by the Canadian Compendium of Pharmaceuticals and Specialties),33 using an approach developed by Cooper et al.34 We assessed convergence based on trace plots and time series plots. The accuracy of the posterior estimates was done by calculating the Monte Carlo error for each parameter. As a rule of thumb, the Monte Carlo error for each parameter of interest is less than ∼5% of the sample standard deviation. All results for the mixed-treatment analysis are reported as posterior means with corresponding 95% credibility intervals (CrIs). CrIs are the Bayesian equivalent of classical CIs. We assessed the fit of our model using the Deviance Information Criterion (DIC), a measure of model fit that penalizes model complexity. This criterion advocates selecting the model with the lowest DIC value among a series of competing models for the same data, as this model is believed to provide the best fit to the data. DIC’s were not importantly different across models.

Finally, we conducted a trial sequential analysis to determine the strength of information for our meta-analysis on the primary outcome of CVD mortality to determine the conservative number of patients required to provide an authoritative answer of therapeutic efficacy.35 We applied a Lan–DeMets (LD) sequential monitoring boundary that assumes a 4% control event rate, 20% relative risk reduction, 90% power and a two-sided α = 0.05. We plotted the trial sequential analysis to display the heterogeneity-corrected optimal information size (HOIS). Analyses were conducted using StatsDirect (version 2.5.2, www.statsdirect.com), Stata (version 9, www.stata.com) and in WinBUGS version 1.4 (Medical Research Council Biostatistics Unit, Cambridge).

Role of the funding source

No funding sources had a role in study design, data collection, data analysis, data interpretation or writing of the report. The writing group had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

We included a total of 76 RCTs meeting our inclusion criteria (Figure 1). Data were available on 170 255 participants. Women represented ∼26% of trial participants. The average age of included participants was 59.6 [standard deviation (SD) 5.93], ranging from 38 to 75. Trials used four distinct controls as an inert control. These included placebo (52 RCTs),1,36–85 usual care (18 RCTs),8,86–102 no treatment (four RCTs)103–106 and conventional therapy (2 RCTS).89,107 Trials followed patients for an average of 2.7 years (SD 1.60), ranging from 0.5 years to 6.1 years.40 The mean pre-treatment LDL cholesterol was 4.61 mmol/l (179.79 mg/dl) and ranged from 2.43 mmol/l105 (94.77 mg/dl) to 5 mmol/l (195 mg/dl).51Table 1 displays the study characteristics.

Figure 1.

Flow diagram of included studies.

Figure 1.

Flow diagram of included studies.

Table 1

Study characteristics

Study Year Patient status/ condition Treatment comparisons (mg/day) Follow-up, years Randomized Individuals Age, mean, years Men (%) Prior CHD (%) Diabetes (%) Hyper tension (%) Current smokers (%) baseline, mean mg/dl (change)
 
            LDL HDL 

 
CCAIT36 1994 CHD L20–80 vs. placebo 331 53 81 100 14 37 27 172 (–47) 41 (1.0) 
CLAPT86 1999 CHD L20–80 vs. usual care 226 54 100 100 14 42 11 182 (–36) 42 (1.5) 
FATS statin87 1990 CHD L40 vs. usual care 2.5 98 47 100 100 36 24 185 (–78) 36 (3.5) 
MARS37 1993 CHD L73 vs. placebo 2.2 270 58 91 100 80 156 (–65) 43 (2.5) 
ACAPS61 1994 Atherosclerotic–carotid stenosis L10–40 vs. placebo 919 61.7 52 29 12 155 (–42) 52 (2.6) 
AFCAPS62 1998 Primary prevention L20–40 vs. placebo 5.2 6605 58 85 22 12 150 (–40) 37 (1.8) 
EXCEL81 1991 Primary prevention L20–80 vs. placebo 0.9 8245 56 59 33 82 40 18 180 45 
ATHEROMA88 2005 CHD P10–20 vs. usual care 373 59 83 100 15 42 20 142 (–27) 50 (0.5) 
CARE38 1996 CHD P40 vs. placebo 4159 59 86 100 14 42 21 139 (–41) 39 (2.5) 
GISSI-P statin89 2000 CHD P20 vs. usual care 4271 60 86 100 14 37 12 151 (–24) 46 (1.0) 
HARP39 1994 CHD P40 vs. placebo 2.5 79 58 89 100 10 49 137 (–58) 42 (5.4) 
L-CAD90 2000 CHD P20–40 vs. usual care 126 57 80 100 32 67 174 (–50) 32 (–2.0) 
LIPID40 1998 CHD P40 vs. placebo 6.1 9014 62 83 100 42 10 150 (–38) 36 (1.8) 
Makuuchi H91 2005 CHD P10–20 vs. usual care 4.5 335 59 84 100 33 52 42 141 (–20) 41 (3.2) 
PCS41 2003 CHD P10 vs. placebo 5.4 120 60 92 100 18 59 68 128 (–15) 43 (0.4) 
PLAC I,II42 1995 CHD P40 vs. placebo 559 58 80 100 41 16 163 (–47) 41 (1.9) 
PREDICT43 1997 CHD P40 vs. placebo 0.5 695 58 84 100 31 34 156 (–41) 47 (2.0) 
PTT92 2002 CHD P40 vs. usual care 0.5 77 52 83 100 14 23 12 133 (–52) 39 (5.0) 
REGRESS44 1995 CHD P40 vs. placebo 884 56 100 100 28 28 166 (–49) 36 (3.5) 
OACIS-LIPID103 2008 CHD P10 vs. no statin 0.75 353 63 77 100 31 48 58 150 (–19) 48 (–13) 
PROSPER59 2002 Elderly patients P40 vs. placebo 3.2 5 800 75.4 48 44 11 62 27 146 (–46) 50 (5.8) 
ALLHAT-LLT63 2002 Primary prevention P40 vs. placebo 4.8 10 355 66.4 51 14 35 100 23 145 (–22) 48 (2.6) 
CAIUS66 1996 Atherosclerotic–carotid stenosis P40 vs. placebo 305 55 53   24 180 (–43) 53 (1.9) 
FAST98 2002 Atherosclerotic–carotid stenosis P1 vs. usual care 164 66.1 31.3 14.2 22.8 41.5 59.3 166 (–39) 57 (1.8) 
KAPS69 1995 Atherosclerotic–carotid stenosis P40 vs. placebo 447 57.4 100 33 26 185 (–62) 44 (3.9) 
MEGA99 2006 Primary prevention P10–20 vs. usual care 5.3 7832 58.3 32 21 42 21 156 (–23) 58 (2.3) 
WOSCOPS70 1995 Primary prevention P40 vs. placebo 4.9 6595 55.2 100 16 44 192 (–46) 44 (3.1) 
PHYLLIS71 2004 Atherosclerotic–carotid stenosis P40 vs. placebo 2.6 508 58.4 40 100 16 181 (–36) 53 (0.93) 
PMSG74 1993 Primary prevention P20 vs. placebo 0.5 1062 55 77 75 48 29 180 (–47) 44 (2.3) 
KLIS22 2000 Primary prevention P-NA vs. conventional treatment 5.1 4349 58 100 23.59 43.78 39.76 254  
Kobashigawa100 1995 Transplant patients P20–40 vs. usual care 97 52 53 48 158 (–42) 43 (9) 
ALLIANCE93 2004 CHD A40–80 vs. usual care 4.3 2442 61 82 100 22 19 146 (–16) 41 (–0.8) 
Colivicchi8 2002 CHD A80 vs. usual care 81 69 58 100 57 89 130 (–20) 40 (1.0) 
ESTABLISH94 2004 CHD A20 vs. usual care 0.5 70 62 86 100 33 54 61 124 (–50) 45 (–2.0) 
GREACE95 2002 CHD A10–80 vs. usual care 1600 59 78 100 20 43 179 (–74) 39 (2.2) 
Wojnicz R96 2006 CHD A40 vs. usual care 0.5 74 38 81 100 NR 158 (–35) 40 (–12) 
Yamada T45 2007 CHD A10 vs. placebo 38 64 79% 100 22% 20% 37% 117 (–32) NR 
ATAHEB104 2008 CHD A20 vs. no statin 106 70 45 100 95 NR 130 (–30) 41 (–14) 
Vrtovec B105 2008 CHD A10 vs. no statin 110 63 61 100 NR NR NR 95 (–7) 35 (–4) 
Sdringola S46 2008 CHD A80 vs. placebo 0.5 145 65 90 100 NR NR 14.00 130 (–3.0) 44 (–1.3) 
Mohler72 2003 Elderly patients A10 vs. placebo 234 68 77  18  40 125 (–50) 46 (1.0) 
Mohler72 2003 Elderly patients A80 vs. placebo 234 68 77  18  40 125 (–50) 46 (1.0) 
ASCOT-LLA64 2004 Primary prevention A10 vs. placebo 3.3 10 305 63.2 81 25 100 33 132 (–44) 51 (1.3) 
ASPEN65 2006 Diabetics A10 vs. placebo 4.25 2411 61 66 21 100 55 12 113 (–33) 47 (1.1) 
CARDS67 2004 Diabetics A10 vs. placebo 2838 61.6 68 100 84 22 116 (–43) 54 (1.9) 
4D75 2005 Diabetics A20 vs. placebo 1255 65.7 54 29 100  125 (–29) 36 (13) 
Stegmayr101 2005 Renal disease patients A10 vs. usual care 2.8 143 69 67 28 33 65 65 135 (–18) 44 (0) 
SPARCL77 2006 Previous stroke (without peripheral artery disease) A80 vs. placebo 4.9 4731 63 60 17 62 19 133 (–55) 50 (1.1) 
Sola78 2006 Congestive heart failure not secondary to CHD A20 vs. placebo 108 54 63 121 (–25) 43 (1) 
FLARE47 1999 CHD F80 vs. placebo 0.8 834 61 82 100 33 29 152 (–47) 41 (0.77) 
FLORIDA48 2002 CHD F80 vs. placebo 540 61 83 100 11 24 52 137 (–41) 46 (2.1) 
LCAS49 1997 CHD F40 vs. placebo 2.6 429 59 81 100 82 20 145 (–29) 44 (1.6) 
LIPS50 2002 CHD F80 vs. placebo 3.9 1677 60 84 100 12 39 27 131 (–40) 38 (0) 
LiSA51 1999 CHD F40–80 vs. placebo 365 60 62 100 29 10 195 (–38) 55 (1.6) 
O'Rourke52 2004 Transplant patients F40 vs. placebo 79 52 85 100 NR 80 177 (–45) NR 
HYRIM68 2004 Atherosclerotic - carotid stenosis F40 vs. placebo 568 57.3 100  100 18 3.87 (0.76) 1.27 (0.30) 
ALERT73 2003 Transplant patients F40–80 vs. placebo 5.1 2102 50 66 10 19 75 18 4.1 (1) 1.3 (0.5) 
BCAPS79 2001 Atherosclerotic - carotid stenosis F40 vs. placebo 793 62 46 12 31 161 (–37) 53 (0) 
4S1 1994 CHD S20 vs. placebo 5.4 4444 59 81 100 26 26 188 (–68) 46 (3.9) 
Christenson53 2001 CHD S20–40 vs. placebo 77 63 80 100 11 49 46 166 (–38) 52 (3.5) 
CIS54 1997 CHD S20–40 vs. placebo 2.3 254 49 100 100 84 165 (–57) 44 (2.8) 
MAAS55 1994 CHD S20 vs. placebo 381 55 88 100 24 170 (–54) 43 (4.2) 
SCAT56 2000 CHD S10–40 vs. placebo 460 61 89 100 11 36 15 129 (–45) 38 (1.5) 
Petronio A106 2005 CHD S20 vs. no statin 71 61 75 100 70 46 114 (–20) NR 
HPS60 2002 Primary prevention S40 vs. placebo 20 536  75 65 29 41 14 131 (–39) 41 (1.2) 
Beishuizen80 2004 Diabetics S40 vs. placebo 250 59 47 100 51 24 134 (–42) 47 (0.39) 
Krum H57 2007 CHD R10–40 vs. placebo 0.5 86 60 80 100 NR NR 124.8 (–39)  
CORONA58 2007 CHD R10 vs. placebo 5011 73 76 100 29 63 138 (–36) 48 (1.4) 
GISSI-HF85 2008 CHF R10 vs. placebo 3.9 4574 67 82 100 26 55 14 123 (–40) 122 (–2) 
JUPITER76 2008 Primary prevention R20 vs. placebo 17 802 66 61.8 15.8 108 49 
AURORA82 2009 Renal disease patients R10 vs. placebo 3.2 2773 64 62 40 26 NR 15 100 (35) 45 (15) 
MUSASHI-AMI97 2006 CHD AS vs. usual care 1.1 486 64 79 100 30 60 54 133 (–28) 46 (0.5) 
SALTIRE83 2005 Primary prevention A80 vs. placebo 155 68 70 25 66 28 130 (30)  
Sahni107 1991 CHD L 20–40 vs. Conventional therapy 0.5 157 60 70 100 24 43 30 140 (40) 36 (10) 
Wenke102 1997 Transplant patients S 5–20 vs. Usual care 72 48 89 27 10   105  
Lewis84 2007 Liver disease P80 vs. placebo 0.7 326 50 52    140 (30) 48 (10) 
MIRACL108 2001 CHD A80 vs. placebo 0.33 3086 65 65 100 23 55 28 124 46 
Study Year Patient status/ condition Treatment comparisons (mg/day) Follow-up, years Randomized Individuals Age, mean, years Men (%) Prior CHD (%) Diabetes (%) Hyper tension (%) Current smokers (%) baseline, mean mg/dl (change)
 
            LDL HDL 

 
CCAIT36 1994 CHD L20–80 vs. placebo 331 53 81 100 14 37 27 172 (–47) 41 (1.0) 
CLAPT86 1999 CHD L20–80 vs. usual care 226 54 100 100 14 42 11 182 (–36) 42 (1.5) 
FATS statin87 1990 CHD L40 vs. usual care 2.5 98 47 100 100 36 24 185 (–78) 36 (3.5) 
MARS37 1993 CHD L73 vs. placebo 2.2 270 58 91 100 80 156 (–65) 43 (2.5) 
ACAPS61 1994 Atherosclerotic–carotid stenosis L10–40 vs. placebo 919 61.7 52 29 12 155 (–42) 52 (2.6) 
AFCAPS62 1998 Primary prevention L20–40 vs. placebo 5.2 6605 58 85 22 12 150 (–40) 37 (1.8) 
EXCEL81 1991 Primary prevention L20–80 vs. placebo 0.9 8245 56 59 33 82 40 18 180 45 
ATHEROMA88 2005 CHD P10–20 vs. usual care 373 59 83 100 15 42 20 142 (–27) 50 (0.5) 
CARE38 1996 CHD P40 vs. placebo 4159 59 86 100 14 42 21 139 (–41) 39 (2.5) 
GISSI-P statin89 2000 CHD P20 vs. usual care 4271 60 86 100 14 37 12 151 (–24) 46 (1.0) 
HARP39 1994 CHD P40 vs. placebo 2.5 79 58 89 100 10 49 137 (–58) 42 (5.4) 
L-CAD90 2000 CHD P20–40 vs. usual care 126 57 80 100 32 67 174 (–50) 32 (–2.0) 
LIPID40 1998 CHD P40 vs. placebo 6.1 9014 62 83 100 42 10 150 (–38) 36 (1.8) 
Makuuchi H91 2005 CHD P10–20 vs. usual care 4.5 335 59 84 100 33 52 42 141 (–20) 41 (3.2) 
PCS41 2003 CHD P10 vs. placebo 5.4 120 60 92 100 18 59 68 128 (–15) 43 (0.4) 
PLAC I,II42 1995 CHD P40 vs. placebo 559 58 80 100 41 16 163 (–47) 41 (1.9) 
PREDICT43 1997 CHD P40 vs. placebo 0.5 695 58 84 100 31 34 156 (–41) 47 (2.0) 
PTT92 2002 CHD P40 vs. usual care 0.5 77 52 83 100 14 23 12 133 (–52) 39 (5.0) 
REGRESS44 1995 CHD P40 vs. placebo 884 56 100 100 28 28 166 (–49) 36 (3.5) 
OACIS-LIPID103 2008 CHD P10 vs. no statin 0.75 353 63 77 100 31 48 58 150 (–19) 48 (–13) 
PROSPER59 2002 Elderly patients P40 vs. placebo 3.2 5 800 75.4 48 44 11 62 27 146 (–46) 50 (5.8) 
ALLHAT-LLT63 2002 Primary prevention P40 vs. placebo 4.8 10 355 66.4 51 14 35 100 23 145 (–22) 48 (2.6) 
CAIUS66 1996 Atherosclerotic–carotid stenosis P40 vs. placebo 305 55 53   24 180 (–43) 53 (1.9) 
FAST98 2002 Atherosclerotic–carotid stenosis P1 vs. usual care 164 66.1 31.3 14.2 22.8 41.5 59.3 166 (–39) 57 (1.8) 
KAPS69 1995 Atherosclerotic–carotid stenosis P40 vs. placebo 447 57.4 100 33 26 185 (–62) 44 (3.9) 
MEGA99 2006 Primary prevention P10–20 vs. usual care 5.3 7832 58.3 32 21 42 21 156 (–23) 58 (2.3) 
WOSCOPS70 1995 Primary prevention P40 vs. placebo 4.9 6595 55.2 100 16 44 192 (–46) 44 (3.1) 
PHYLLIS71 2004 Atherosclerotic–carotid stenosis P40 vs. placebo 2.6 508 58.4 40 100 16 181 (–36) 53 (0.93) 
PMSG74 1993 Primary prevention P20 vs. placebo 0.5 1062 55 77 75 48 29 180 (–47) 44 (2.3) 
KLIS22 2000 Primary prevention P-NA vs. conventional treatment 5.1 4349 58 100 23.59 43.78 39.76 254  
Kobashigawa100 1995 Transplant patients P20–40 vs. usual care 97 52 53 48 158 (–42) 43 (9) 
ALLIANCE93 2004 CHD A40–80 vs. usual care 4.3 2442 61 82 100 22 19 146 (–16) 41 (–0.8) 
Colivicchi8 2002 CHD A80 vs. usual care 81 69 58 100 57 89 130 (–20) 40 (1.0) 
ESTABLISH94 2004 CHD A20 vs. usual care 0.5 70 62 86 100 33 54 61 124 (–50) 45 (–2.0) 
GREACE95 2002 CHD A10–80 vs. usual care 1600 59 78 100 20 43 179 (–74) 39 (2.2) 
Wojnicz R96 2006 CHD A40 vs. usual care 0.5 74 38 81 100 NR 158 (–35) 40 (–12) 
Yamada T45 2007 CHD A10 vs. placebo 38 64 79% 100 22% 20% 37% 117 (–32) NR 
ATAHEB104 2008 CHD A20 vs. no statin 106 70 45 100 95 NR 130 (–30) 41 (–14) 
Vrtovec B105 2008 CHD A10 vs. no statin 110 63 61 100 NR NR NR 95 (–7) 35 (–4) 
Sdringola S46 2008 CHD A80 vs. placebo 0.5 145 65 90 100 NR NR 14.00 130 (–3.0) 44 (–1.3) 
Mohler72 2003 Elderly patients A10 vs. placebo 234 68 77  18  40 125 (–50) 46 (1.0) 
Mohler72 2003 Elderly patients A80 vs. placebo 234 68 77  18  40 125 (–50) 46 (1.0) 
ASCOT-LLA64 2004 Primary prevention A10 vs. placebo 3.3 10 305 63.2 81 25 100 33 132 (–44) 51 (1.3) 
ASPEN65 2006 Diabetics A10 vs. placebo 4.25 2411 61 66 21 100 55 12 113 (–33) 47 (1.1) 
CARDS67 2004 Diabetics A10 vs. placebo 2838 61.6 68 100 84 22 116 (–43) 54 (1.9) 
4D75 2005 Diabetics A20 vs. placebo 1255 65.7 54 29 100  125 (–29) 36 (13) 
Stegmayr101 2005 Renal disease patients A10 vs. usual care 2.8 143 69 67 28 33 65 65 135 (–18) 44 (0) 
SPARCL77 2006 Previous stroke (without peripheral artery disease) A80 vs. placebo 4.9 4731 63 60 17 62 19 133 (–55) 50 (1.1) 
Sola78 2006 Congestive heart failure not secondary to CHD A20 vs. placebo 108 54 63 121 (–25) 43 (1) 
FLARE47 1999 CHD F80 vs. placebo 0.8 834 61 82 100 33 29 152 (–47) 41 (0.77) 
FLORIDA48 2002 CHD F80 vs. placebo 540 61 83 100 11 24 52 137 (–41) 46 (2.1) 
LCAS49 1997 CHD F40 vs. placebo 2.6 429 59 81 100 82 20 145 (–29) 44 (1.6) 
LIPS50 2002 CHD F80 vs. placebo 3.9 1677 60 84 100 12 39 27 131 (–40) 38 (0) 
LiSA51 1999 CHD F40–80 vs. placebo 365 60 62 100 29 10 195 (–38) 55 (1.6) 
O'Rourke52 2004 Transplant patients F40 vs. placebo 79 52 85 100 NR 80 177 (–45) NR 
HYRIM68 2004 Atherosclerotic - carotid stenosis F40 vs. placebo 568 57.3 100  100 18 3.87 (0.76) 1.27 (0.30) 
ALERT73 2003 Transplant patients F40–80 vs. placebo 5.1 2102 50 66 10 19 75 18 4.1 (1) 1.3 (0.5) 
BCAPS79 2001 Atherosclerotic - carotid stenosis F40 vs. placebo 793 62 46 12 31 161 (–37) 53 (0) 
4S1 1994 CHD S20 vs. placebo 5.4 4444 59 81 100 26 26 188 (–68) 46 (3.9) 
Christenson53 2001 CHD S20–40 vs. placebo 77 63 80 100 11 49 46 166 (–38) 52 (3.5) 
CIS54 1997 CHD S20–40 vs. placebo 2.3 254 49 100 100 84 165 (–57) 44 (2.8) 
MAAS55 1994 CHD S20 vs. placebo 381 55 88 100 24 170 (–54) 43 (4.2) 
SCAT56 2000 CHD S10–40 vs. placebo 460 61 89 100 11 36 15 129 (–45) 38 (1.5) 
Petronio A106 2005 CHD S20 vs. no statin 71 61 75 100 70 46 114 (–20) NR 
HPS60 2002 Primary prevention S40 vs. placebo 20 536  75 65 29 41 14 131 (–39) 41 (1.2) 
Beishuizen80 2004 Diabetics S40 vs. placebo 250 59 47 100 51 24 134 (–42) 47 (0.39) 
Krum H57 2007 CHD R10–40 vs. placebo 0.5 86 60 80 100 NR NR 124.8 (–39)  
CORONA58 2007 CHD R10 vs. placebo 5011 73 76 100 29 63 138 (–36) 48 (1.4) 
GISSI-HF85 2008 CHF R10 vs. placebo 3.9 4574 67 82 100 26 55 14 123 (–40) 122 (–2) 
JUPITER76 2008 Primary prevention R20 vs. placebo 17 802 66 61.8 15.8 108 49 
AURORA82 2009 Renal disease patients R10 vs. placebo 3.2 2773 64 62 40 26 NR 15 100 (35) 45 (15) 
MUSASHI-AMI97 2006 CHD AS vs. usual care 1.1 486 64 79 100 30 60 54 133 (–28) 46 (0.5) 
SALTIRE83 2005 Primary prevention A80 vs. placebo 155 68 70 25 66 28 130 (30)  
Sahni107 1991 CHD L 20–40 vs. Conventional therapy 0.5 157 60 70 100 24 43 30 140 (40) 36 (10) 
Wenke102 1997 Transplant patients S 5–20 vs. Usual care 72 48 89 27 10   105  
Lewis84 2007 Liver disease P80 vs. placebo 0.7 326 50 52    140 (30) 48 (10) 
MIRACL108 2001 CHD A80 vs. placebo 0.33 3086 65 65 100 23 55 28 124 46 

Methodological quality of included studies

We found that the reporting quality of studies varied. Twenty-six studies reported how randomization sequence was generated in their primary publication.1,8,37,44,45,50,52,58–60,63,64,67,71,75,76,80,82,83,85,94,96,98,99,104,105 Eighteen studies reported on how allocation to groups was concealed.38,59,60,63,64,66,67,70,73,75,76,83,91,93,97,99,105,106 Most of the studies (64) reported on loss-to-follow up1,36,38,40–46,48–50,52,53,55–65,67,69–82,8,83–88,90–97,99–104,106–108 and only four studies37,49,78,80 reported that the primary results were based on a per-protocol analysis rather than intent to treat. Sixty-one studies reported on at least one specific group being blinded in the trial, typically patients and caregivers.1,8,36–52,54–56,58–62,64–91,95,96,103,106–108

All cause and cause-specific mortality

There were a total of 14 878 deaths including a total of 7864 from confirmed vascular causes (Figure 2). In all trials combined, there were a total of 7004 (8.1%) deaths among the 86 328 patients receiving a statin and 7713 (9.5%) deaths among 80 365 patients receiving a control intervention. Combined, this represents a 10% reduction in all-cause mortality (RR 0.90, 95% CI 0.86–0.94, P ≤ 0.0001, I2 = 17%). Each 10% change in absolute LDL levels was associated with a 1.1% (95% CI 0.3–1.19, P = 0.003) risk reduction.

Figure 2.

Forest plot of mortality across statins.

Figure 2.

Forest plot of mortality across statins.

The large risk reduction in all-cause mortality was chiefly attributed to the 20% risk reduction in CVD deaths [3605 (4.1%) of statin-treated patients vs. 4248 (5.1%) control-treated patients: RR 0.80, 95% CI 0.74–0.87, P < 0.0001, I2 = 27%]. Applying a univariate regression, each 10% change in LDL levels was associated with a 5.6% (95% CI 2–8%, P ≤ 0.001) risk reduction of CV death. This effect diminished in the multivariable analysis. Table 2 displays the impact of a priori chosen covariates on CVD mortality.

Table 2

Meta-regression, impact of co-variates on estimates of CV death

Independent variable n = 51 Parameter (95% CI) Relative increase in RR (95%CI) (every 10 U increase in predictor) P-value R2 

 
Intercept −0.68 (–1.14 to –0.22) – 0.005 0.45 
Delta-LDL 0.001 (–0.003 to 0.005) – 0.51  
Men (%) 0.001 (–0.004 to 0.007) – 0.60  
Prior CHD (%) 0.002 (–0.00003 to 0.004) 2% (0–4%) 0.05  
Diabetes (%) 0.003 (–0.001 to 0.007) – 0.15  
Hypertension (%) 0.005 (0.002 to 0.008) 5% (2–8%) 0.0003  
Current smokers (%) 0.0008 (–0.005 to 0.007) – 0.78  
High dose −0.096 (–0.194 to 0.001) – 0.054  
Independent variable n = 51 Parameter (95% CI) Relative increase in RR (95%CI) (every 10 U increase in predictor) P-value R2 

 
Intercept −0.68 (–1.14 to –0.22) – 0.005 0.45 
Delta-LDL 0.001 (–0.003 to 0.005) – 0.51  
Men (%) 0.001 (–0.004 to 0.007) – 0.60  
Prior CHD (%) 0.002 (–0.00003 to 0.004) 2% (0–4%) 0.05  
Diabetes (%) 0.003 (–0.001 to 0.007) – 0.15  
Hypertension (%) 0.005 (0.002 to 0.008) 5% (2–8%) 0.0003  
Current smokers (%) 0.0008 (–0.005 to 0.007) – 0.78  
High dose −0.096 (–0.194 to 0.001) – 0.054  

We also found a consistent reduction in fatal MI with an 18% risk reduction (RR 0.82, 95% CI 0.75–0.91, P < 0.0001, I2 = 21%). We found a statistically non-significant reduction in deaths from stroke (RR 0.92, 95% CI 0.80–1.07, P = 0.55) and in non-CVD causes (RR 0.95, 95% CI 0.90–1.00, P = 0.07).

Risk factors across underlying conditions

We assessed whether our pooling of data from all CVD trials across disease conditions was reasonable and divided the RCTs into their specific primary disease populations assessing CVD death. We included 42 CHD RCTs;1,8,36–51,53–58,86–97,103–108 7 atherosclerosis;61,66,68,69,71,79,98 11 primary prevention;60,62–64,70,74,76,81,83,89,99 4 diabetic patients;65,67,75,80 2 elderly patients; 59,72 2 renal disease; 82,101 4 transplant patient;52,73,100,102 1 previous stroke;77 2 RCTs of congestive heart failure;78,85 and 1 RCT with hypercholesterolemic patients with chronic liver disease.84 Studies did not yield an importantly different direction of effect dependent on populations (heterogeneity P = 0.07) (Table 3).

Table 3

CVD deaths across populations in included studies

Population RR (95% CI) 

 
CHD 0.82 (0.76–0.88) 
Atherosclerotic 0.51 (0.22–1.18) 
Primary prevention 0.81 (0.75–0.87) 
Diabetes 0.85 (0.70–1.03) 
Elderly 0.79 (0.60–1.02) 
Renal disease 1.01 (0.89–1.16) 
Transplant 0.68 (0.45–1.03) 
Previous stroke 1.02 (0.66–1.68) 
Congestive heart failure 1.01 (0.91–1.13) 
Population RR (95% CI) 

 
CHD 0.82 (0.76–0.88) 
Atherosclerotic 0.51 (0.22–1.18) 
Primary prevention 0.81 (0.75–0.87) 
Diabetes 0.85 (0.70–1.03) 
Elderly 0.79 (0.60–1.02) 
Renal disease 1.01 (0.89–1.16) 
Transplant 0.68 (0.45–1.03) 
Previous stroke 1.02 (0.66–1.68) 
Congestive heart failure 1.01 (0.91–1.13) 

Heterogeneity P-value = 0.07.

Major cardiovascular events

There were 6318 non-fatal MIs reported in 58 RCTs enrolling 146 041 patients.1,8,37–45,47–52,54–56,58–63,66,67,69–77,79,81,82,84,86–94,95,97–99,101,103,107,108 Overall, there was a highly significant 26% reduction in non-fatal MI [2810 (3.6%) statin vs. 3508 (4.9%) control: RR 0.74, 95% CI 0.67–0.81, P ≤ 0.001, I2 = 45%]. Data were also available on revascularization from 44 RCTs enrolling 118 296 individuals.1,38–41,43,44,47–49,53–56,58–60,62,66,67,69,70,72–77,82,87–91,93–95,98,99,101,103,106–108 We found a highly significant effect of statins on revascularization status [3723 (6.2%) statin vs. 4816 (8.1%) control: RR 0.76, 95% CI 0.70–0.81, P ≤ 0.0001, I2 = 44%].

In addition to assessing fatal strokes, we evaluated fatal and nonfatal strokes excluding transient ischemic events and included data from 53 RCTs enrolling 154 818 individuals.8,36–38,40–44,48,50,52,54–56,58–61,63–65,67,69–77,79,81,82,86,88–95,97–99,101,103,107,108 We found a strongly significant effect favoring statins [2201 (2.7%) statins vs. 2516 (3.4%) controls: RR 0.86, 95% CI 0.78–0.95, P = 0.004, I2 = 41%]. Due to concern that statins raise hemorrhagic stroke risk, we evaluated the number of hemorrhagic strokes reported in 14 RCTs enrolling 61 045 individuals.1,38,40,52,58,60,74,75,82,86,89,91,99,107 We found a low incidence of hemorrhagic strokes [267 (0.86%) statins vs. 310 (1.03%) controls: RR 0.86, 95% CI 0.73–1.01, P = 0.07, I2 = 0%], and our analysis indicated that statins did not increase the risk.

Impact of individual statins on CVD mortality

We assessed the impact of individual statins on CVD death. Figure 3 displays the geometric distribution of the RCTs (Figure 3). We excluded one trial of mixed statins in this analysis.97 Our analysis included 15 RCTs assessing atorvastatin (n = 29 931);8,45,46,64,65,67,72,83,93–96,104,105,108 nine assessing fluvastatin (n = 7383);47–52,68,73,79 eight RCTs evaluating lovastatin (n = 16 827);36,37,61,62,81,86,87,107 25 RCTs evaluating pravastatin (n = 51 011);38–44,59,63,66,69–71,74,84,88–92,98–100,103 five RCTs evaluating rosuvastatin (n = 30 245);57,58,76,82,85 and nine RCTs assessing simvastatin (n = 26 545).1,53–56,60,80,102,106

Figure 3.

Geometric distribution of network of evidence. Geometric distribution of included RCTs in mixed-treatment analysis. Each node in the network represents a drug treatment and each arm is weighted by the number of trials of that intervention versus the common control comparator.

Figure 3.

Geometric distribution of network of evidence. Geometric distribution of included RCTs in mixed-treatment analysis. Each node in the network represents a drug treatment and each arm is weighted by the number of trials of that intervention versus the common control comparator.

Mixed-treatment comparison

We applied a mixed-treatment comparison adjusting for LDL-C changes. Table 4 displays the mixed-treatment comparisons between statins. We did not find a significant difference between any statins. A Bayesian probability estimate suggests that certain statins exert a minimally important difference over other statins (Table 5).

Table 4

Mixed-treatment comparison for CV deaths

Treatment comparison OR (95% Credible Interval) 

 
Pravastatin vs. Control 0.78 (0.65–0.93) 
Atorvastatin vs. Control 0.80 (0.65–0.96) 
Fluvastatin vs. Control 0.61 (0.41–0.88) 
Simvastatin vs. Control 0.74 (0.56–0.98) 
Lovastatin vs. Control 0.73 (0.43–1.22) 
Rosuvastatin vs. Control 0.88 (0.73–1.06) 
Atorvastatin vs. Pravastatin 1.02 (0.79–1.33) 
Fluvastatin vs. Pravastatin 0.78 (0.51–1.19) 
Simvastatin vs. Pravastatin 0.95 (0.68–1.33) 
Lovastatin vs. Pravastatin 0.94 (0.55–1.60) 
Rosuvastatin vs. Pravastatin 1.12 (0.87–1.46) 
Fluvastatin vs. Atorvastatin 0.76 (0.50–1.18) 
Simvastatin vs. Atorvastatin 0.93 (0.66–1.31) 
Lovastatin vs. Atorvastatin 0.91 (0.53–1.58) 
Rosuvastatin vs. Atorvastatin 1.10 (0.84–1.44) 
Simvastatin vs. Fluvastatin 1.22 (0.76–1.97) 
Lovastatin vs. Fluvastatin 1.20 (0.63–2.27) 
Rosuvastatin vs. Fluvastatin 1.44 (0.94–2.20) 
Lovastatin vs. Simvastatin 0.98 (0.55–1.76) 
Rosuvastatin vs. Simvastatin 1.18 (0.85–1.66) 
Rosuvastatin vs. Lovastatin 1.20 (0.69–2.09) 
Treatment comparison OR (95% Credible Interval) 

 
Pravastatin vs. Control 0.78 (0.65–0.93) 
Atorvastatin vs. Control 0.80 (0.65–0.96) 
Fluvastatin vs. Control 0.61 (0.41–0.88) 
Simvastatin vs. Control 0.74 (0.56–0.98) 
Lovastatin vs. Control 0.73 (0.43–1.22) 
Rosuvastatin vs. Control 0.88 (0.73–1.06) 
Atorvastatin vs. Pravastatin 1.02 (0.79–1.33) 
Fluvastatin vs. Pravastatin 0.78 (0.51–1.19) 
Simvastatin vs. Pravastatin 0.95 (0.68–1.33) 
Lovastatin vs. Pravastatin 0.94 (0.55–1.60) 
Rosuvastatin vs. Pravastatin 1.12 (0.87–1.46) 
Fluvastatin vs. Atorvastatin 0.76 (0.50–1.18) 
Simvastatin vs. Atorvastatin 0.93 (0.66–1.31) 
Lovastatin vs. Atorvastatin 0.91 (0.53–1.58) 
Rosuvastatin vs. Atorvastatin 1.10 (0.84–1.44) 
Simvastatin vs. Fluvastatin 1.22 (0.76–1.97) 
Lovastatin vs. Fluvastatin 1.20 (0.63–2.27) 
Rosuvastatin vs. Fluvastatin 1.44 (0.94–2.20) 
Lovastatin vs. Simvastatin 0.98 (0.55–1.76) 
Rosuvastatin vs. Simvastatin 1.18 (0.85–1.66) 
Rosuvastatin vs. Lovastatin 1.20 (0.69–2.09) 
Table 5

CVD mortality and the probability that each treatment is associated with lowest mortality

Treatment Absolute treatment effect (%) Probability that treatment is best 

 
Control 2.37 0.000 
Pravastatin 1.86 0.026 
Atorvastatin 1.91 0.022 
Fluvastatin 1.48 0.595 
Simvastatin 1.79 0.102 
Lovastatin 1.79 0.237 
Rosuvastatin 2.00 0.019 
Treatment Absolute treatment effect (%) Probability that treatment is best 

 
Control 2.37 0.000 
Pravastatin 1.86 0.026 
Atorvastatin 1.91 0.022 
Fluvastatin 1.48 0.595 
Simvastatin 1.79 0.102 
Lovastatin 1.79 0.237 
Rosuvastatin 2.00 0.019 

Adverse events

Data were available from 34 RCTs on first incident cancers recorded after randomization [median follow-up 3.9 years (interquartile range 2.6–4.9)].1,37,38,40,44,47,49,50,55,58–60,62,63,66,67,69–73,75–77,80,85,88–90,93,99–102 The incidence of cancers was not different between statin groups and control groups [3860 (4.5%) vs. 3703 (4.7%): OR 0.99, 95% CI 0.94–1.04, P = 0.76, I2 = 0%]. Rhabdomyolysis information was available from 35 RCTs enrolling a total of 135 243 individuals.1,8,37,38,40,44,47,50,55,57–60,62,64,65,67–70,73–77,80,81,83,84,89,93,95,99,101,104 We did not find a significant difference between groups [176 (0.25%) statins vs. 168 (0.25%) controls: OR 1.04, 95% CI 0.82–1.30, P = 0.73, I2 = 0%].

We evaluated incident diabetes available from 17 RCTs enrolling 111 003 individuals.1,40,44,58–60,64,70,74,76,88,9962,63,85,89 When we evaluated new incident diabetes [2215 (3.8%) statins vs. 2048 (3.5%) controls: OR 1.09; 95% CI 1.02–1.16, P = 0.008, I2 = 26%], we found a significantly increased rate of diabetes. Finally, we examined the impact of statins on elevated AST from 23 RCTs and found a significant association (OR 1.12, 95% CI 1.03–1.22, P = 0.005); the impact of statins on ALT increases from 18 RCTs (OR 1.30, 95% CI 1.13–1.50, P ≤ 0.001, I2 = 0%); and the impact of statins on CK increases beyond normal from 19 RCTs (OR 1.07, 95% CI 0.78–1.46, P = 0.66, I2 = 29%). Figure 4 graphically displays the adverse event effect sizes.

Figure 4.

Adverse events associated with statin use in included trials.

Figure 4.

Adverse events associated with statin use in included trials.

Trial sequential monitoring

We applied the TSM evaluation to determine the strength of inference about statins in preventing our primary outcome, CV deaths (Figure 5). We display that based on events accumulating up to 2001, there is conclusive evidence of CV death protection across broad populations.

Figure 5.

Trial sequential analysis plot, CVD mortality.

Figure 5.

Trial sequential analysis plot, CVD mortality.

Discussion

Our meta-analysis demonstrated consistent benefits from LDL-lowering effects attributed to statin therapy. Our analysis demonstrates that statin therapy reduces major CVD events and all-cause mortality. Risks associated with statins appear limited to changes in biochemical profiles rather than clinical events, although there is now reason to explore the extent to which statins may contribute to increased incidence of diabetes. Reasons for possible increased risk of developing diabetes are poorly understood and genome-wide scans have not identified an association between genes involved in moderating LDL cholesterol and statin pharmacodynamics.109

There are several strengths to consider in our analysis. First, our study is the largest evaluation of statins to date. The findings of our analysis are remarkably similar to the Cholesterol Treatment Trialists Collaboration (CTTC), an individual patient data meta-analysis that has now published findings on LDL-lowering effects and outcomes among diabetic patients.5 While, we included 62 more RCTs than the CTTC analysis, our analysis is based on secondary data and we did not have access to individual level data. We applied rigorous searching, based on our ongoing statins database, and extracted data in such a manner as to reduce the risk of error. We considered the strength of evidence using trial sequential monitoring and found that clear evidence existed in 2001 of statins in CVD risk populations. We demonstrated a harmful effect associated with diabetes incidence, first highlighted in the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial.76 A recent meta-analysis of 13 RCTs, published while this manuscript was under review, found an estimate of RR 1.09 (95% CI 1.02–1.17).110 We compared our previous search with their included studies and added an additional seven studies to our review, an addition of three from theirs. We modified our manuscript as a result. Finally, we applied a mixed-treatment comparison to evaluate the relative effectiveness of specific statins. There are also limitations to consider in our analysis, mainly related to the limitations of the included studies. As with any meta-analysis that uses published manuscripts as the data source, it is possible that the original papers were poorly reported. Examples of this include where the papers may report on all-cause mortality, but not specific elements of the cause of death. Similarly, manuscripts may include a composite endpoint, for example, stroke death and non-fatal stroke, and it is occasionally impossible to extract data on the individual components of the composite.111 We included only trials evaluating statins with inert controls rather than head-to-head trials. Previous analysis of head-to-head trials have demonstrated that these trials evaluate dosing rather than the effectiveness of individual statins.112–115 Our analysis of cancer trials involved a median follow-up of 3.9 years (interquartile range 2.6–4.9). It is possible that longer periods of follow-up would find differing effects as cancers may take years to develop. Finally, while we found concerning evidence of increased diabetes incidence, this appears to be poorly monitored in clinical trials.

Conducting meta-analyses in cardiac trials presents an important methodologic challenge. Many cardiovascular trials use composite endpoints of their primary endpoints, whereby they combine various endpoints, but with little frequency of the same endpoints among trials. For example, a trial may report a primary composite outcome of all-cause mortality, MI and rehospitalization. Such an endpoint is useful for identifying a primary outcome unlikely to occur in a clinical trial, thus conserving power, but is unhelpful if the authors fail to report the individual outcomes across the composite symptoms. We have previously reviewed the role of composite outcomes in cardiovascular trials and found that composite outcomes can be misleading, as they place similar weight upon minor outcomes (such as rehospitalization) with major outcomes (such as all-cause mortality).111,116 We do not believe that composite outcomes of incoherent outcomes should be pooled in a meta-analysis if the individual components of the composite are not provided. In this study, we chose not to utilize the common composite endpoint of coronary heart disease death plus non-fatal MI.

Our mixed-treatment comparison failed to demonstrate significant differences between statins. Previous efforts to assess differences between statins have been based on smaller numbers of trials.2,17–19,117 We believe that, based on using all available evidence, generic versions of statins exert similar therapeutic effects as brand-label statins, a finding consistent across populations.2 Using a Bayesian probability framework, it is possible that lovastatin exerts a larger therapeutic effect. However, for several reasons, this inference may be weakened. Lovastatin trials had frequently smaller sample sizes and were conducted predominantly in the early 1990s, before other statin trials, when less complex patients could be entered into the trials, and when other concomitant therapies (i.e. blood pressure lowering, diuretics, anticoagulants) may have been in less frequent use compared to more recent standards of care.

We applied the trial sequential analysis strategy to determine the strength of inference of the cumulative data on the primary endpoint. Conceptually, the trial sequential analysis is analogous to determining whether a single large trial is sufficiently powered and has a sufficient number of events to warrant stopping a trial due to conservative expectations that a treatment effect is overwhelmingly beyond chance. Due to heterogeneity across included trial populations, treatments and methods, meta-analysis sample size considerations additionally need adjustment for variation across trials.35 Such adjustments are analogous to adjustments for variation across centers in a multi-center trial. In our analysis, we found compelling evidence of effectiveness at approximately 2001, when 31 trials had been conducted. We found that a large number of further inert-controlled trials have been conducted since that period. As with the mixed-treatment comparison, there are several considerations and possible explanations for this phenomenon. First, as drugs are developed and approved for use within comparatively uncomplex patient groups, such as secondary prevention CVD patients, trialists and drug developers seek further opportunities to reduce the risk of events within similar, but more complex patient groups, such as diabetic, renal and transplant patients. Drug companies may seek additional recommendations for their drug and seek increasingly complex patient groups, sometimes with disappointing results.58 Other drug companies may seek to gain access to the drug market and display evidence of similar efficacy within similar populations.

The important individual patient data meta-analysis of 14 large trials, conducted by the CTTC collaboration, found a 12% proportional reduction in all-cause mortality per mmol/l reduction in LDL-C (RR 0.88, 95% CI 0.84–0.91; P ≤ 0.0001).5 Our study examined LDL-C reductions on CVD mortality and found that every 10% absolute reduction in LDL-C was associated with a 2% RR in CVD mortality, consistent with the CTTC analysis. However, in our multivariable regression analysis, this effect was diminished. Meta-analyses by publication are frequently limited in assessing continuous outcome changes as we did not have the individual level data. It is possible that if we had the individual level data we could demonstrate larger treatment effects associated with LDL-C and possibly HDL-C changes.6 Our study demonstrates a clear and consistent benefit of statins, regardless of product. Many of the trials we included were conducted in resource-limited settings. In many of these settings, statins have been an exclusive therapy for wealthier individuals. As generic formulations are now available, and demonstrate consistent effects, there should be a greater effort to expand access to therapy among populations that may have previously been unable to access them.

In conclusion, statins play an important role in reducing clinically relevant cardiovascular outcomes, most likely due to reducing LDL-C levels. Current guidelines aim to establish target LDL-C reductions to improve a patients long-term reduction in clinical events. Given the clear benefits of statins, adherence to statin therapy should now be a major concern for physicians. Efforts to ensure adherence may be learned from other fields of chronic diseases health care, including reminder systems for patients and possibly even resource intensive strategies such as pill-counts and pharmacy refill assessments. There are few interventions in health care that offer such favorable outcomes and so improving access to treatment and adherence to therapy should be a prime concern for physicians and public health. As statin therapy moves into generic formulations, costs are reduced and this may open an opportunity to share these clinically important treatments with those who were previously excluded due to cost.

Acknowledgements

We thank Dr Nicola Cooper for her assistance in providing us with the WinBUGS code.

Conflict of interest: None declared.

References

1
Anonymous
Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S)
Lancet
 , 
1994
, vol. 
344
 (pg. 
1383
-
9
)
2
Mills
EJ
Rachlis
B
Wu
P
Devereaux
PJ
Arora
P
Perri
D
Primary prevention of cardiovascular mortality and events with statin treatments: a network meta-analysis involving more than 65,000 patients
J Am Coll Cardiol
 , 
2008
, vol. 
52
 (pg. 
1769
-
81
)
3
Briel
M
Nordmann
AJ
Bucher
HC
Statin therapy for prevention and treatment of acute and chronic cardiovascular disease: update on recent trials and metaanalyses
Curr Opin Lipidol
 , 
2005
, vol. 
16
 (pg. 
601
-
5
)
4
Tinetti
ME
Over-the-counter sales of statins and other drugs for asymptomatic conditions
N Eng J Med
 , 
2008
, vol. 
358
 (pg. 
2728
-
32
)
5
Baigent
C
Keech
A
Kearney
PM
Blackwell
L
Buck
G
Pollicino
C
, et al.  . 
Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins
Lancet
 , 
2005
, vol. 
366
 (pg. 
1267
-
78
)
6
Colivicchi
F
Tubaro
M
Mocini
D
Genovesi Ebert
A
Strano
S
Melina
G
, et al.  . 
Full-dose atorvastatin versus conventional medical therapy after non-ST-elevation acute myocardial infarction in patients with advanced non-revascularisable coronary artery disease
Curr Med Res Opin
 , 
2010
, vol. 
26
 (pg. 
1277
-
84
)
7
Rajpatrick
SN
Kumbhani
DJ
Crandall
J
Barzilai
N
Alderman
M
Ridker
PM
Statin therapy and risk of developing Type 2 diabetes: a meta-analysis
Diabetes Care
 , 
2009
, vol. 
32
 (pg. 
1924
-
9
)
8
Colivicchi
F
Guido
V
Tubaro
M
Ammirati
F
Montefoschi
N
Varveri
A
, et al.  . 
Effects of atorvastatin 80 mg daily early after onset of unstable angina pectoris or non-Q-wave myocardial infarction
Am J Cardiol
 , 
2002
, vol. 
90
 (pg. 
872
-
4
)
9
Thavendiranathan
P
Bagai
A
Brookhart
MA
Choudhry
NK
Primary prevention of cardiovascular diseases with statin therapy: a meta-analysis of randomized controlled trials
Arch Intern Med
 , 
2006
, vol. 
166
 (pg. 
2307
-
13
)
10
Briel
M
Studer
M
Glass
TR
Bucher
HC
Effects of statins on stroke prevention in patients with and without coronary heart disease: a meta-analysis of randomized controlled trials
Am J Med
 , 
2004
, vol. 
117
 (pg. 
596
-
606
)
11
Bucher
HC
Griffith
LE
Guyatt
GH
Effect of HMGcoA reductase inhibitors on stroke. A meta-analysis of randomized, controlled trials
Ann Intern Med
 , 
1998
, vol. 
128
 (pg. 
89
-
95
)
12
Bucher
HC
Griffith
LE
Guyatt
GH
Systematic review on the risk and benefit of different cholesterol-lowering interventions
Arterioscler Thromb Vasc Biol
 , 
1999
, vol. 
19
 (pg. 
187
-
95
)
13
Studer
M
Briel
M
Leimenstoll
B
Glass
TR
Bucher
HC
Effect of different antilipidemic agents and diets on mortality: a systematic review
Arch Intern Med
 , 
2005
, vol. 
165
 (pg. 
725
-
30
)
14
Zhou
Z
Rahme
E
Pilote
L
Are statins created equal? Evidence from randomized trials of pravastatin, simvastatin, and atorvastatin for cardiovascular disease prevention
Am Heart J
 , 
2006
, vol. 
151
 (pg. 
273
-
81
)
15
Kearney
PM
Blackwell
L
Collins
R
Keech
A
Simes
J
Peto
R
, et al.  . 
Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis
Lancet
 , 
2008
, vol. 
371
 (pg. 
117
-
25
)
16
Ford
I
Murray
H
Packard
CJ
Shepherd
J
Macfarlane
PW
Cobbe
SM
Long-term follow-up of the West of Scotland Coronary Prevention Study
N Engl J Med
 , 
2007
, vol. 
357
 (pg. 
1477
-
86
)
17
Ward
S
Lloyd Jones
M
Pandor
A
Holmes
M
Ara
R
Ryan
A
, et al.  . 
A systematic review and economic evaluation of statins for the prevention of coronary events
Health Technol Assess
 , 
2007
, vol. 
11
 (pg. 
1
-
160, iii–iv
)
18
 
NICE. Assessment Report: Coronary heart disease - statins 2005 [http://www.nice.org.uk/nicemedia/live/11564/33151/33151.pdf] Accessed 28 September 2010
19
Anonymous
HMG Co A reductase inhibitors (statins) in the primary prevention of cardiovascular disease
Canadian Agency for Drugs and Technologies in Health
 , 
2007
20
Schulz
KF
Chalmers
I
Hayes
RJ
Altman
DG
Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials
JAMA
 , 
1995
, vol. 
273
 (pg. 
408
-
12
)
21
Meade
MO
Guyatt
GH
Cook
RJ
Groll
R
Kachura
JR
Wigg
M
, et al.  . 
Agreement between alternative classifications of acute respiratory distress syndrome
Am J Respir Crit Care Med
 , 
2001
, vol. 
163
 (pg. 
490
-
3
)
22
Pravastatin use and risk of coronary events and cerebral infarction in japanese men with moderate hypercholesterolemia: the Kyushu Lipid Intervention Study
J Atheroscler Thromb
 , 
2000
, vol. 
7
 (pg. 
110
-
21
)
23
Sheehe
PR
Combination of log relative risk in retrospective studies of disease
Am J Public Health Nations Health.
 , 
1966
, vol. 
56
 (pg. 
1745
-
50
)
24
Fleiss
JL
The statistical basis of meta-analysis
Stat Methods Med Res
 , 
1993
, vol. 
2
 (pg. 
121
-
45
)
25
DerSimonian
R
Laird
N
Meta-analysis in clinical trials
Control Clin Trials
 , 
1986
, vol. 
7
 (pg. 
177
-
88
)
26
Breslow
NE
Day
NE
Statistical Methods in Cancer Research: Vol. I - The Analysis of Case-Control Studies
 , 
1980
International Agency for Research on Cancer, Lyon
27
Yusuf
S
Peto
R
Lewis
J
Collins
R
Sleight
P
Beta blockade during and after myocardial infarction: an overview of the randomized trials
Prog Cardiovass Dis
 , 
1985
, vol. 
27
 (pg. 
335
-
71
)
28
Bradburn
MJ
Deeks
JJ
Berlin
JA
Russell Localio
A
Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events
Stat Med
 , 
2007
, vol. 
26
 (pg. 
53
-
77
)
29
Higgins
JP
Thompson
SG
Quantifying heterogeneity in a meta-analysis
Stat Med
 , 
2002
, vol. 
21
 (pg. 
1539
-
58
)
30
Higgins
JP
Thompson
SG
Controlling the risk of spurious findings from meta-regression
Stat Med
 , 
2004
, vol. 
23
 (pg. 
1663
-
82
)
31
Lu
G
Ades
A
A combination of direct and indirect evidence in mixed treatment comparisons
Stat Med
 , 
2004
, vol. 
23
 (pg. 
3105
-
24
)
32
Gelman
A
Rubin
DB
Inferences from iterative simulation using multiple sequences
Stat Sci
 , 
1992
, vol. 
7
 (pg. 
457
-
72
)
33
Mills
E
Montori
VM
Wu
P
Gallicano
K
Clarke
M
Guyatt
G
Interaction of St John's wort with conventional drugs: systematic review of clinical trials
Br Med J
 , 
2004
, vol. 
329
 (pg. 
27
-
30
)
34
Montori
VM
Smieja
M
Guyatt
GH
Publication bias: a brief review for clinicians
Mayo Clin Proc
 , 
2000
, vol. 
75
 (pg. 
1284
-
8
)
35
Thorlund
K
Devereaux
PJ
Wetterslev
J
Guyatt
G
Ioannidis
JP
Thabane
L
, et al.  . 
Can trial sequential monitoring boundaries reduce spurious inferences from meta-analyses?
Int J Epidemiol
 , 
2009
, vol. 
38
 (pg. 
276
-
86
)
36
Waters
D
Higginson
L
Gladstone
P
Kimball
B
Le May
M
Boccuzzi
SJ
, et al.  . 
Effects of monotherapy with an HMG-CoA reductase inhibitor on the progression of coronary atherosclerosis as assessed by serial quantitative arteriography. The Canadian Coronary Atherosclerosis Intervention Trial
Circulation
 , 
1994
, vol. 
89
 (pg. 
959
-
68
)
37
Blankenhorn
DH
Azen
SP
Kramsch
DM
Mack
WJ
Cashin-Hemphill
L
Hodis
HN
, et al.  . 
Coronary angiographic changes with lovastatin therapy. The Monitored Atherosclerosis Regression Study (MARS)
Ann Intern Med
 , 
1993
, vol. 
119
 (pg. 
969
-
76
)
38
Sacks
FM
Pfeffer
MA
Moye
LA
Rouleau
JL
Rutherford
JD
Cole
TG
, et al.  . 
The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and recurrent events trial investigators
N Eng J Med
 , 
1996
, vol. 
335
 (pg. 
1001
-
9
)
39
Sacks
FM
Pasternak
RC
Gibson
CM
Rosner
B
Stone
PH
Effect on coronary atherosclerosis of decrease in plasma cholesterol concentrations in normocholesterolaemic patients. Harvard Atherosclerosis Reversibility Project (HARP) Group
Lancet
 , 
1994
, vol. 
344
 (pg. 
1182
-
6
)
40
The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group
Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels
N Eng J Med
 , 
1998
, vol. 
339
 (pg. 
1349
-
57
)
41
Nakagawa
T
Kobayashi
T
Awata
N
Sato
S
Reiber
JH
Nakajima
H
, et al.  . 
Randomized, controlled trial of secondary prevention of coronary sclerosis in normocholesterolemic patients using pravastatin: final 5-year angiographic follow-up of the Prevention of Coronary Sclerosis (PCS) study
Int J Cardiol
 , 
2004
, vol. 
97
 (pg. 
107
-
14
)
42
Furberg
CD
Pitt
B
Byington
RP
Park
JS
McGovern
ME
Reduction in coronary events during treatment with pravastatin. PLAC I and PLAC II Investigators. Pravastatin Limitation of Atherosclerosis in the Coronary Arteries
Am J Cardiol
 , 
1995
, vol. 
76
 (pg. 
60C
-
3C
)
43
Bertrand
ME
McFadden
EP
Fruchart
JC
Van Belle
E
Commeau
P
Grollier
G
, et al.  . 
Effect of pravastatin on angiographic restenosis after coronary balloon angioplasty. The PREDICT Trial Investigators. Prevention of Restenosis by Elisor after Transluminal Coronary Angioplasty
J Am Coll Cardiol
 , 
1997
, vol. 
30
 (pg. 
863
-
9
)
44
Jukema
JW
Bruschke
AV
van Boven
AJ
Reiber
JH
Bal
ET
Zwinderman
AH
, et al.  . 
Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS)
Circulation
 , 
1995
, vol. 
91
 (pg. 
2528
-
40
)
45
Yamada
T
Node
K
Mine
T
Morita
T
Kioka
H
Tsukamoto
Y
, et al.  . 
Long-term effect of atorvastatin on neurohumoral activation and cardiac function in patients with chronic heart failure: a prospective randomized controlled study
Am Heart J
 , 
2007
, vol. 
153
 (pg. 
1055.e1
-
e8
)
46
Sdringola
S
Gould
KL
Zamarka
LG
McLain
R
Garner
J
A 6 month randomized, double blind, placebo controlled, multi-center trial of high dose atorvastatin on myocardial perfusion abnormalities by positron emission tomography in coronary artery disease
Am Heart J
 , 
2008
, vol. 
155
 (pg. 
245
-
53
)
47
Serruys
PW
Foley
DP
Jackson
G
Bonnier
H
Macaya
C
Vrolix
M
, et al.  . 
A randomized placebo-controlled trial of fluvastatin for prevention of restenosis after successful coronary balloon angioplasty; final results of the fluvastatin angiographic restenosis (FLARE) trial
Eur Heart J
 , 
1999
, vol. 
20
 (pg. 
58
-
69
)
48
Liem
AH
van Boven
AJ
Veeger
NJ
Withagen
AJ
Robles de Medina
RM
Tijssen
JG
, et al.  . 
Effect of fluvastatin on ischaemia following acute myocardial infarction: a randomized trial
Eur Heart J
 , 
2002
, vol. 
23
 (pg. 
1931
-
7
)
49
Herd
JA
Ballantyne
CM
Farmer
JA
Ferguson
JJ
3rd
Jones
PH
West
MS
, et al.  . 
Effects of fluvastatin on coronary atherosclerosis in patients with mild to moderate cholesterol elevations (Lipoprotein and Coronary Atherosclerosis Study [LCAS])
Am J Cardiol
 , 
1997
, vol. 
80
 (pg. 
278
-
86
)
50
Serruys
PW
de Feyter
P
Macaya
C
Kokott
N
Puel
J
Vrolix
M
, et al.  . 
Fluvastatin for prevention of cardiac events following successful first percutaneous coronary intervention: a randomized controlled trial
JAMA
 , 
2002
, vol. 
287
 (pg. 
3215
-
22
)
51
Riegger
G
Abletshauser
C
Ludwig
M
Schwandt
P
Widimsky
J
Weidinger
G
, et al.  . 
The effect of fluvastatin on cardiac events in patients with symptomatic coronary artery disease during one year of treatment
Atherosclerosis
 , 
1999
, vol. 
144
 (pg. 
263
-
70
)
52
O'Rourke
B
Barbir
M
Mitchell
AG
Yacoub
MH
Banner
NR
Efficacy and safety of fluvastatin therapy for hypercholesterolemia after heart transplantation: results of a randomised double blind placebo controlled study
Int J Cardiol
 , 
2004
, vol. 
94
 (pg. 
235
-
40
)
53
Christenson
JT
Preoperative lipid control with simvastatin protects coronary artery bypass grafts from obstructive graft disease
Am J Cardiol
 , 
2001
, vol. 
88
 (pg. 
896
-
9, A8
)
54
Bestehorn
HP
Rensing
UF
Roskamm
H
Betz
P
Benesch
L
Schemeitat
K
, et al.  . 
The effect of simvastatin on progression of coronary artery disease. The Multicenter coronary Intervention Study (CIS)
Eur Heart J
 , 
1997
, vol. 
18
 (pg. 
226
-
34
)
55
Effect of simvastatin on coronary atheroma
the Multicentre Anti-Atheroma Study (MAAS)
Lancet
 , 
1994
, vol. 
344
 (pg. 
633
-
8
)
56
Teo
KK
Burton
JR
Buller
CE
Plante
S
Catellier
D
Tymchak
W
, et al.  . 
Long-term effects of cholesterol lowering and angiotensin-converting enzyme inhibition on coronary atherosclerosis: The Simvastatin/Enalapril Coronary Atherosclerosis Trial (SCAT)
Circulation
 , 
2000
, vol. 
102
 (pg. 
1748
-
54
)
57
Krum
H
Ashton
E
Reid
C
Kalff
V
Rogers
J
Amarena
J
, et al.  . 
Double-blind, randomized, placebo-controlled study of high-dose HMG CoA reductase inhibitor therapy on ventricular remodeling, pro-inflammatory cytokines and neurohormonal parameters in patients with chronic systolic heart failure
J Card Fail
 , 
2007
, vol. 
13
 (pg. 
1
-
7
)
58
Kjekshus
J
Apetrei
E
Barrios
V
Bohm
M
Cleland
JG
Cornel
JH
, et al.  . 
Rosuvastatin in older patients with systolic heart failure
N Eng J Med
 , 
2007
, vol. 
357
 (pg. 
2248
-
61
)
59
Shepherd
J
Blauw
GJ
Murphy
MB
Bollen
EL
Buckley
BM
Cobbe
SM
, et al.  . 
Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial
Lancet
 , 
2002
, vol. 
360
 (pg. 
1623
-
30
)
60
MRC/BHF
Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial
Lancet
 , 
2002
, vol. 
360
 (pg. 
7
-
22
)
61
Furberg
CD
Adams
HP
Jr
Applegate
WB
Byington
RP
Espeland
MA
Hartwell
T
, et al.  . 
Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group
Circulation
 , 
1994
, vol. 
90
 (pg. 
1679
-
87
)
62
Downs
JR
Clearfield
M
Weis
S
Whitney
E
Shapiro
DR
Beere
PA
, et al.  . 
Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study
JAMA
 , 
1998
, vol. 
279
 (pg. 
1615
-
22
)
63
Major outcomes in moderately hypercholesterolemic
hypertensive patients randomized to pravastatin vs usual care: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT)
JAMA
 , 
2002
, vol. 
288
 (pg. 
2998
-
3007
)
64
Sever
PS
Poulter
NR
Dahlof
B
Wedel
H
Collins
R
Beevers
G
, et al.  . 
Reduction in cardiovascular events with atorvastatin in 2,532 patients with type 2 diabetes: Anglo-Scandinavian Cardiac Outcomes Trial–lipid-lowering-arm (ASCOT-LLA)
Diabetes Care
 , 
2005
, vol. 
28
 (pg. 
1151
-
7
)
65
Knopp
RH
d'Emden
M
Smilde
JG
Pocock
SJ
Efficacy and safety of atorvastatin in the prevention of cardiovascular end points in subjects with type 2 diabetes: the Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in non-insulin-dependent diabetes mellitus (ASPEN)
Diabetes Care
 , 
2006
, vol. 
29
 (pg. 
1478
-
85
)
66
Mercuri
M
Bond
MG
Sirtori
CR
Veglia
F
Crepaldi
G
Feruglio
FS
, et al.  . 
Pravastatin reduces carotid intima-media thickness progression in an asymptomatic hypercholesterolemic mediterranean population: the Carotid Atherosclerosis Italian Ultrasound Study
Am J Med
 , 
1996
, vol. 
101
 (pg. 
627
-
34
)
67
Colhoun
HM
Betteridge
DJ
Durrington
PN
Hitman
GA
Neil
HA
Livingstone
SJ
, et al.  . 
Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial
Lancet
 , 
2004
, vol. 
364
 (pg. 
685
-
96
)
68
Anderssen
SA
Hjelstuen
AK
Hjermann
I
Bjerkan
K
Holme
I
Fluvastatin and lifestyle modification for reduction of carotid intima-media thickness and left ventricular mass progression in drug-treated hypertensives
Atherosclerosis
 , 
2005
, vol. 
178
 (pg. 
387
-
97
)
69
Salonen
R
Nyyssonen
K
Porkkala
E
Rummukainen
J
Belder
R
Park
JS
, et al.  . 
Kuopio Atherosclerosis Prevention Study (KAPS). A population-based primary preventive trial of the effect of LDL lowering on atherosclerotic progression in carotid and femoral arteries
Circulation
 , 
1995
, vol. 
92
 (pg. 
1758
-
64
)
70
Shepherd
J
Cobbe
SM
Ford
I
Isles
CG
Lorimer
AR
MacFarlane
PW
, et al.  . 
Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group
N Eng J Med
 , 
1995
, vol. 
333
 (pg. 
1301
-
7
)
71
Zanchetti
A
Crepaldi
G
Bond
MG
Gallus
G
Veglia
F
Mancia
G
, et al.  . 
Different effects of antihypertensive regimens based on fosinopril or hydrochlorothiazide with or without lipid lowering by pravastatin on progression of asymptomatic carotid atherosclerosis: principal results of PHYLLIS–a randomized double-blind trial
Stroke
 , 
2004
, vol. 
35
 (pg. 
2807
-
12
)
72
Mohler
ER
3rd
Hiatt
WR
Creager
MA
Cholesterol reduction with atorvastatin improves walking distance in patients with peripheral arterial disease
Circulation
 , 
2003
, vol. 
108
 (pg. 
1481
-
6
)
73
Holdaas
H
Fellstrom
B
Jardine
AG
Holme
I
Nyberg
G
Fauchald
P
, et al.  . 
Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial
Lancet
 , 
2003
, vol. 
361
 (pg. 
2024
-
31
)
74
The Pravastatin Multinational Study Group for Cardiac Risk Patients
Effects of pravastatin in patients with serum total cholesterol levels from 5.2 to 7.8 mmol/liter (200 to 300 mg/dl) plus two additional atherosclerotic risk factors
Am J Cardiol
 , 
1993
, vol. 
72
 (pg. 
1031
-
7
)
75
Wanner
C
Krane
V
Marz
W
Olschewski
M
Mann
JF
Ruf
G
, et al.  . 
Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis
N Engl J Med
 , 
2005
, vol. 
353
 (pg. 
238
-
48
)
76
Ridker
PM
Danielson
E
Fonseca
FA
Genest
J
Gotto
AM
Jr
Kastelein
JJ
, et al.  . 
Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein
N Eng J Med
 , 
2008
, vol. 
359
 (pg. 
2195
-
207
)
77
Amarenco
P
Bogousslavsky
J
Callahan
A
3rd
Goldstein
LB
Hennerici
M
Rudolph
AE
, et al.  . 
High-dose atorvastatin after stroke or transient ischemic attack
N Eng J Med
 , 
2006
, vol. 
355
 (pg. 
549
-
59
)
78
Sola
S
Mir
MQ
Lerakis
S
Tandon
N
Khan
BV
Atorvastatin improves left ventricular systolic function and serum markers of inflammation in nonischemic heart failure
J Am Coll Cardiol
 , 
2006
, vol. 
47
 (pg. 
332
-
7
)
79
Hedblad
B
Wikstrand
J
Janzon
L
Wedel
H
Berglund
G
Low-dose metoprolol CR/XL and fluvastatin slow progression of carotid intima-media thickness: main results from the Beta-Blocker Cholesterol-Lowering Asymptomatic Plaque Study (BCAPS)
Circulation
 , 
2001
, vol. 
103
 (pg. 
1721
-
6
)
80
Beishuizen
ED
van de Ree
MA
Jukema
JW
Tamsma
JT
van der Vijver
JC
Meinders
AE
, et al.  . 
Two-year statin therapy does not alter the progression of intima-media thickness in patients with type 2 diabetes without manifest cardiovascular disease
Diabetes Care
 , 
2004
, vol. 
27
 (pg. 
2887
-
92
)
81
Bradford
RH
Shear
CL
Chremos
AN
Dujovne
C
Downton
M
Franklin
FA
, et al.  . 
Expanded Clinical Evaluation of Lovastatin (EXCEL) study results. I. Efficacy in modifying plasma lipoproteins and adverse event profile in 8245 patients with moderate hypercholesterolemia
Arch Intern Med
 , 
1991
, vol. 
151
 (pg. 
43
-
9
)
82
Fellstrom
BC
Jardine
AG
Schmieder
RE
Holdaas
H
Bannister
K
Beutler
J
, et al.  . 
Rosuvastatin and cardiovascular events in patients undergoing hemodialysis
N Eng J Med
 , 
2009
, vol. 
360
 (pg. 
1395
-
407
)
83
Cowell
SJ
Newby
DE
Prescott
RJ
Bloomfield
P
Reid
J
Northridge
DB
, et al.  . 
A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis
N Eng J Med
 , 
2005
, vol. 
352
 (pg. 
2389
-
97
)
84
Lewis
JH
Mortensen
ME
Zweig
S
Fusco
MJ
Medoff
JR
Belder
R
Efficacy and safety of high-dose pravastatin in hypercholesterolemic patients with well-compensated chronic liver disease: results of a prospective, randomized, double-blind, placebo-controlled, multicenter trial
Hepatology
 , 
2007
, vol. 
46
 (pg. 
1453
-
63
)
85
Tavazzi
L
Maggioni
AP
Marchioli
R
Barlera
S
Franzosi
MG
Latini
R
, et al.  . 
Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial
Lancet
 , 
2008
, vol. 
372
 (pg. 
1231
-
9
)
86
Kleemann
A
Eckert
S
von Eckardstein
A
Lepper
W
Schernikau
U
Gleichmann
U
, et al.  . 
Effects of lovastatin on progression of non-dilated and dilated coronary segments and on restenosis in patients after PTCA. The cholesterol lowering atherosclerosis PTCA trial (CLAPT)
Eur Heart J
 , 
1999
, vol. 
20
 (pg. 
1393
-
406
)
87
Brown
G
Albers
JJ
Fisher
LD
Schaefer
SM
Lin
JT
Kaplan
C
, et al.  . 
Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B
N Eng J Med
 , 
1990
, vol. 
323
 (pg. 
1289
-
98
)
88
Yokoi
H
Nobuyoshi
M
Mitsudo
K
Kawaguchi
A
Yamamoto
A
Three-year follow-up results of angiographic intervention trial using an HMG-CoA reductase inhibitor to evaluate retardation of obstructive multiple atheroma (ATHEROMA) study
Circ J
 , 
2005
, vol. 
69
 (pg. 
875
-
83
)
89
GISSI Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico)
Results of the low-dose (20 mg) pravastatin GISSI Prevenzione trial in 4271 patients with recent myocardial infarction: do stopped trials contribute to overall knowledge?
Ital Heart J
 , 
2000
, vol. 
1
 (pg. 
810
-
20
)
90
Arntz
HR
Agrawal
R
Wunderlich
W
Schnitzer
L
Stern
R
Fischer
F
, et al.  . 
Beneficial effects of pravastatin (+/-colestyramine/niacin) initiated immediately after a coronary event (the randomized Lipid-Coronary Artery Disease [L-CAD] Study)
Am J Cardiol
 , 
2000
, vol. 
86
 (pg. 
1293
-
8
)
91
Makuuchi
H
Furuse
A
Endo
M
Nakamura
H
Daida
H
Watanabe
M
, et al.  . 
Effect of pravastatin on progression of coronary atherosclerosis in patients after coronary artery bypass surgery
Circ J
 , 
2005
, vol. 
69
 (pg. 
636
-
43
)
92
Kayikcioglu
M
Can
L
Kultursay
H
Payzin
S
Turkoglu
C
Early use of pravastatin in patients with acute myocardial infarction undergoing coronary angioplasty
Acta Cardiol
 , 
2002
, vol. 
57
 (pg. 
295
-
302
)
93
Koren
MJ
Hunninghake
DB
Clinical outcomes in managed-care patients with coronary heart disease treated aggressively in lipid-lowering disease management clinics: the alliance study
J Am Coll Cardiol
 , 
2004
, vol. 
44
 (pg. 
1772
-
9
)
94
Okazaki
S
Yokoyama
T
Miyauchi
K
Shimada
K
Kurata
T
Sato
H
, et al.  . 
Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH Study
Circulation
 , 
2004
, vol. 
110
 (pg. 
1061
-
8
)
95
Athyros
VG
Papageorgiou
AA
Mercouris
BR
Athyrou
VV
Symeonidis
AN
Basayannis
EO
, et al.  . 
Treatment with atorvastatin to the National Cholesterol Educational Program goal versus 'usual' care in secondary coronary heart disease prevention. The GREek Atorvastatin and Coronary-heart-disease Evaluation (GREACE) study
Curr Med Res Opin
 , 
2002
, vol. 
18
 (pg. 
220
-
8
)
96
Wojnicz
R
Wilczek
K
Nowalany-Kozielska
E
Szygula-Jurkiewicz
B
Nowak
J
Polonski
L
, et al.  . 
Usefulness of atorvastatin in patients with heart failure due to inflammatory dilated cardiomyopathy and elevated cholesterol levels
Am J Cardiol
 , 
2006
, vol. 
97
 (pg. 
899
-
904
)
97
Sakamoto
T
Kojima
S
Ogawa
H
Shimomura
H
Kimura
K
Ogata
Y
, et al.  . 
Effects of early statin treatment on symptomatic heart failure and ischemic events after acute myocardial infarction in Japanese
Am J Cardiol
 , 
2006
, vol. 
97
 (pg. 
1165
-
71
)
98
Sawayama
Y
Shimizu
C
Maeda
N
Tatsukawa
M
Kinukawa
N
Koyanagi
S
, et al.  . 
Effects of probucol and pravastatin on common carotid atherosclerosis in patients with asymptomatic hypercholesterolemia. Fukuoka Atherosclerosis Trial (FAST)
J Am Coll Cardiol
 , 
2002
, vol. 
39
 (pg. 
610
-
6
)
99
Nakamura
H
Arakawa
K
Itakura
H
Kitabatake
A
Goto
Y
Toyota
T
, et al.  . 
Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study): a prospective randomised controlled trial
Lancet
 , 
2006
, vol. 
368
 (pg. 
1155
-
63
)
100
Kobashigawa
JA
Katznelson
S
Laks
H
Johnson
JA
Yeatman
L
Wang
XM
, et al.  . 
Effect of pravastatin on outcomes after cardiac transplantation
N Eng J Med
 , 
1995
, vol. 
333
 (pg. 
621
-
7
)
101
Stegmayr
BG
Brannstrom
M
Bucht
S
Crougneau
V
Dimeny
E
Ekspong
A
, et al.  . 
Low-dose atorvastatin in severe chronic kidney disease patients: a randomized, controlled endpoint study
Scand J Urol Nephrol
 , 
2005
, vol. 
39
 (pg. 
489
-
97
)
102
Wenke
K
Meiser
B
Thiery
J
Nagel
D
von Scheidt
W
Steinbeck
G
, et al.  . 
Simvastatin reduces graft vessel disease and mortality after heart transplantation: a four-year randomized trial
Circulation
 , 
1997
, vol. 
96
 (pg. 
1398
-
402
)
103
Sato
H
Kinjo
K
Ito
H
Hirayama
A
Nanto
S
Fukunami
M
, et al.  . 
Effect of early use of low-dose pravastatin on major adverse cardiac events in patients with acute myocardial infarction: the OACIS-LIPID Study
Circ J
 , 
2008
, vol. 
72
 (pg. 
17
-
22
)
104
Tsai
CT
Lai
LP
Hwang
JJ
Wang
YC
Chiang
FT
Lin
JL
Atorvastatin prevents atrial fibrillation in patients with bradyarrhythmias and implantation of an atrial-based or dual-chamber pacemaker: a prospective randomized trial
Am Heart J
 , 
2008
, vol. 
156
 (pg. 
65
-
70
)
105
Vrtovec
B
Okrajsek
R
Golicnik
A
Ferjan
M
Starc
V
Schlegel
TT
, et al.  . 
Atorvastatin therapy may reduce the incidence of sudden cardiac death in patients with advanced chronic heart failure
J Card Fail
 , 
2008
, vol. 
14
 (pg. 
140
-
4
)
106
Petronio
AS
Amoroso
G
Limbruno
U
Papini
B
De Carlo
M
Micheli
A
, et al.  . 
Simvastatin does not inhibit intimal hyperplasia and restenosis but promotes plaque regression in normocholesterolemic patients undergoing coronary stenting: a randomized study with intravascular ultrasound
Am Heart J
 , 
2005
, vol. 
149
 (pg. 
520
-
6
)
107
Sahni
R
Maniet
AR
Voci
G
Banka
VS
Prevention of restenosis by lovastatin after successful coronary angioplasty
Am Heart J
 , 
1991
, vol. 
121
 (pg. 
1600
-
8
)
108
Schwartz
GG
Olsson
AG
Ezekowitz
MD
Ganz
P
Oliver
MF
Waters
D
, et al.  . 
Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial
JAMA
 , 
2001
, vol. 
285
 (pg. 
1711
-
8
)
109
Zeggini
E
Weedon
MN
Lindgren
CM
Frayling
TM
Elliott
KS
Lango
H
, et al.  . 
Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes
Science.
 , 
2007
, vol. 
316
 (pg. 
1336
-
41
)
110
Sattar
N
Preiss
D
Murray
HM
Welsh
P
Buckley
BM
de Craen
AJ
, et al.  . 
Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials
Lancet
 , 
2010
, vol. 
375
 (pg. 
735
-
42
)
111
Ferreira-Gonzalez
I
Busse
JW
Heels-Ansdell
D
Montori
VM
Akl
EA
Bryant
DM
, et al.  . 
Problems with use of composite end points in cardiovascular trials: systematic review of randomised controlled trials
Br Med J
 , 
2007
, vol. 
334
 pg. 
786
 
112
Cannon
CP
Steinberg
BA
Murphy
SA
Mega
JL
Braunwald
E
Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy
J Am Coll Cardiol
 , 
2006
, vol. 
48
 (pg. 
438
-
45
)
113
Afilalo
J
Majdan
AA
Eisenberg
MJ
Intensive statin therapy in acute coronary syndromes and stable coronary heart disease: a comparative meta-analysis of randomised controlled trials
Heart
 , 
2007
, vol. 
93
 (pg. 
914
-
21
)
114
Josan
K
Majumdar
SR
McAlister
FA
The efficacy and safety of intensive statin therapy: a meta-analysis of randomized trials
CMAJ
 , 
2008
, vol. 
178
 (pg. 
576
-
84
)
115
Silva
M
Matthews
ML
Jarvis
C
Nolan
NM
Belliveau
P
Malloy
M
, et al.  . 
Meta-analysis of drug-induced adverse events associated with intensive-dose statin therapy
Clin Ther
 , 
2007
, vol. 
29
 (pg. 
253
-
60
)
116
Montori
VM
Permanyer-Miralda
G
Ferreira-Gonzalez
I
Busse
JW
Pacheco-Huergo
V
Bryant
D
, et al.  . 
Validity of composite end points in clinical trials
Br Med J
 , 
2005
, vol. 
330
 (pg. 
594
-
6
)
117
Colivicchi
F
Bassi
A
Santini
M
Caltagirone
C
Discontinuation of statin therapy and clinical outcome after ischemic stroke
Stroke
 , 
2007
, vol. 
38
 (pg. 
2652
-
7
)