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Abstract

Synovial fibrosis is often found in OA, contributing heavily to joint pain and joint stiffness, the main

symptoms of OA. At this moment the underlying mechanism of OA-related synovial fibrosis is not

known and there is no cure available. In this review we discuss factors that have been reported to be

involved in synovial fibrosis. The aim of the study was to gain insight into how these factors contribute to

the fibrotic process and to determine the best targets for therapy in synovial fibrosis. In this regard, the

following factors are discussed: TGF-b, connective tissue growth factor, procollagen-lysine, 2-oxoglutarate

5-dioxygenase 2, tissue inhibitor of metalloproteinase 1, A disintegrin and metalloproteinase domain 12,

urotensin-II, prostaglandin F2a and hyaluronan.

Key words: synovium, fibrosis, osteoarthritis, TGF-b, connective tissue growth factor, lysyl hydroxylase 2b,
tissue inhibitor of metalloproteinase 1, A disintegrin and metalloproteinase domain 12, Hyaluronan, PGF2a.

Rheumatology key messages

. Synovial fibrosis, which cannot be cured yet, contributes to joint pain and stiffness in OA.

. TGF-b signalling is on top of the fibrotic cascade in OA-related synovial fibrosis.

. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 is an interesting target to block to interfere with synovial
fibrosis in OA.

Introduction

Fibrosis is a non-physiological wound-healing process

characterized by excessive extracellular matrix (ECM) de-

position, which is typically the result of inflammation or

tissue damage. The accumulation of excess fibrous con-

nective tissue leads to loss of tissue homeostasis and

organ failure. When synovial tissue is affected by fibrosis,

which is often the case in OA, it becomes thicker and

more rigid [1]. Synovial fibrosis contributes to joint pain

and stiffness, which are the main symptoms of OA [2�4].

The underlying mechanisms that cause OA are still not

totally unravelled, and (apart from joint replacement) no

cure is available. This is an unmet need, because OA is

the most common joint disease and one of the most

important causes of disability in the elderly [5]. In the

past, OA was considered a disease of the cartilage

only. Nowadays, OA is recognized as a whole-joint

disease, involving not only the cartilage, but also the sub-

chondral bone, ligaments, meniscus and the synovium.

Understanding how synovial fibrosis contributes to OA

pathology and symptoms might provide avenues for

future OA therapies. In this review we focus on pro-

cesses/factors shown to play a role in OA-related synovial

fibrosis. This will aid in choosing the best targets to inter-

fere with OA-related fibrosis in future studies.

Synovial fibrosis in OA

The synovium can be distinguished into two different

layers: the intima (synovial lining) and subintima (sublining)

[6]. The intima forms an interface between the cavity

containing SF and the subintimal layer. The subintima is

composed of loose connective tissue and merges with the

dense collagen-rich fibrous outer layer of the joint

capsule.

The synovium produces SF, which is crucial for chon-

drocyte nutrition, and protects the cartilage from wear and

tear by lubrication [6]. Multiple studies have shown that
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the synovia of patients suffering from early or advanced

OA have some form of pathology [7�10]. Synovial path-

ology may impair joint functionality and contribute to dis-

ease progression by, for example, increased joint friction

[7]. Oehler et al. [9] divided osteoarthritic synoviopathy

into four different subtypes based on the nature of the

synovium: hyperplastic, inflammatory, fibrotic or detritus-

rich. Fibrosis was abundantly present in both the fibrotic

and detritus-rich synoviopathy and only to a minor extent

in the inflammatory subgroup. Instead of fibrotic and

detritus-rich synoviopathy, we will use the more general

term synovial fibrosis for both synoviopathies in the

remainder of this article. Although dividing synoviopathy

into different subtypes may help in grouping OA patients

and/or disease progression, we have to keep in mind that

the observation of synovial fibrosis at different time points

is patient and site dependent. Moreover, in most cases

inflammation and fibrosis can co-exist and are

interdependent.

Kerna et al. [11] reported an enhanced level of inflam-

mation, lining layer thickness, number of CD4+ T cells and

macrophage infiltration in patients with very early OA

compared with late-stage OA. This confirms the observa-

tion by Oehler et al. [9] that in early OA more inflammation

was present, whereas in late-stage OA more fibrosis was

observed. These outcomes also support the study of

Haraoui et al. [8], who reported that the amount of fibrosis

is inversely proportional to the extent of cellular infiltrate in

the OA synovium, and that fibrosis is mainly but not

exclusively found in late-stage OA. These results indicate

a shift from the inflammatory to the fibrotic subgroup,

which may suggest that the factors inducing fibrosis are

upregulated in the inflammatory phase.

Factors involved in synovial fibrosis

A vast number of factors can contribute to fibrosis, many

of which are cell type or disease specific. Therefore, we

performed a search for synovial fibrosis OA via PubMed

(limited to 2008�2015). This yielded 45 results. Factors

only found to be induced at the mRNA level were omitted

from the list, and the following factors were reported to be

elevated in humans with OA-related fibrosis: TGF-b, pro-

collagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2)

[also known as lysyl hydroxylase 2b (LH2b)], tissue inhibi-

tor of metalloproteinase 1 (TIMP-1), A disintegrin and

metalloproteinase domain 12 (ADAM12), prostaglandin

F2a (PGF2a), urotensin-II and mammalian target of rapa-

mycin (mTOR) [11�16]. From this list, PLOD2, TIMP-1 and

mTOR have also been shown to be elevated in experi-

mental OA models [12, 16]. Furthermore, lysophosphatidic

acid has also been found to be elevated in experimental

OA [17]. Because we focused on the synovium, mTOR

and lysophosphatidic acid were not described in greater

detail, as these factors were only found to be elevated in

chondrocytes/cartilage and not in synovial fibroblasts or

the synovium. Connective tissue growth factor (CTGF)

was added to the list, because this is a well-known fibrotic

factor that has also been shown to induce synovial

fibrosis.

In addition, we also selected from our search results

factors that were shown to be beneficial against fibrosis

in an OA-like setting. Hyaluronan, polysulphated

glycosaminoglycan, parathyroid hormone and Stanozolol

were reported to be protective against OA-related fibrosis

(Table 1) [18�22]. We choose to describe hyaluronan in

more detail because this factor has been found to be

effective against OA-related fibrosis by multiple groups

in a range of species, whereas the other factors have

only been described by one group and for one species.

For all the selected factors, additional and background

information was acquired via PubMed.

TGF-b signalling: central in the fibrotic cascade

TGF-b is the most well known and best described fibrotic

factor and a key player in many profibrotic processes,

including epithelial mesenchymal transition, enhancing

expression of TIMPs and elevating ECM deposition [23,

24]. To our knowledge, TGF-b has been found involved/

elevated in all fibrotic tissues researched so far, for

example (but not exclusively): in fibrotic lesions of liver,

lung, kidney, skin and heart tissue [25, 26]. Furthermore,

it has been shown in various fibrotic settings that inhibition

of TGF-b signalling attenuates fibrosis, whereas overex-

pression of TGF-b causes fibrosis [25, 27, 28].

Ideally, to prevent fibrosis, one would like to block TGF-

b, the top of the fibrotic cascade. However, TGF-b is a

regulator of many crucial cellular processes. Blocking

TGF-b would result in serious side effects and thus

cannot be considered the ultimate cure for fibrosis.

Therefore, it is important to identify targets downstream

of TGF-b that drive fibrosis in order to minimize unwanted

side effects. To identify these downstream targets of TGF-

b for fibrosis therapy, one should first understand how

TGF-b signals in fibrosis. It is now common knowledge

that TGF-b, by binding the TGF-b type II receptor, can

signal via two distinct type one receptors, namely ALK5

and ALK1, which in turn phosphorylate receptor Smads,

Smad2/3 and Smad1/5/8, respectively [29]. The receptor

Smads can form complexes with the common Smad

(Smad4) and translocate to the nucleus to induce gene

transcription.

The role of ALK1 in fibrosis is not completely clear, and

the literature on this seems to be inconsistent. For

instance, in irradiation-induced kidney fibrosis, ALK1+/�

mice developed less inflammation and fibrosis at 20

weeks after irradiation compared with wild-type litter-

mates [30]. For scleroderma fibroblasts, it was demon-

strated that ALK5-dependent upregulation of collagen

and CTGF does not involve Smad2/3 activation, but is

mediated by ALK1/Smad1 and the TGF-b-induced non-

Smad-dependent extracellular signal-regulated kinase

(ERK)1/2 pathways [31, 32]. These observations indicate

a profibrotic role for ALK1. However, ALK1+/� mice with

ureteral unilateral obstruction�induced kidney fibrosis

showed (after 15 days) significantly higher expression of

type I collagen compared with wild-type mice [33].

Furthermore, cultured renal fibroblasts from ALK1+/�

mice expressed more collagen type I and fibronectin
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than fibroblasts derived from wild-type mice. These

results indicate a more anti-fibrotic role for ALK1, which

is in contrast to the studies mentioned above. Apparently,

within one organ, like kidney, the use of a different model

system can result in a different outcome. This suggests

that the role of ALK1 is not only cell type and tissue

dependent, but may also be influenced by the ailment of

the tissue [34].

ALK5-mediated signalling is known to induce most of

TGF-b’s profibrotic effects, and inhibition of ALK5 has

been shown to repress fibrosis in several fibrotic diseases

[35�37]. Because ALK5 signals via both Smad2 and

Smad3, which can potentially have different effects, their

individual roles in fibrosis have been investigated, most

frequently in epithelial cells. In these cells, Smad3 is profi-

brotic, whereas Smad2 protects against Smad3-mediated

fibrosis [38�40]. Because the specific roles of either

Smad2 or Smad3 can be tissue dependent, the individual

functions of Smad2 and Smad3 in the synovium have yet

to be determined.

Besides the TGF-b�Smad pathways, which are well

described in general and specifically regarding fibrosis,

there are also Smad-independent TGF-b signalling path-

ways. The Smad-independent TAK-1 pathway has been

shown to have profibrotic effects in regulating the expres-

sion of ECM proteins, including collagens and fibronectin

[41]. Furthermore, in a TGF-b-driven murine model of

dermal fibrosis, inhibition of TGF-b-dependent ERK phos-

phorylation showed strong and dose-dependent antifi-

brotic effects on skin thickening [42]. This indicates that

not only the TGF-b�Smad pathways, but also the Smad-

independent TGF-b signalling pathways have profibrotic

properties. Unfortunately, not much is known about these

Smad-independent TGF-b signalling pathways concern-

ing synovial fibrosis and their functions in the synovium,

which puts limitations on selecting the optimal target to

interfere with synovial fibrosis. These non-Smad signalling

factors are central mediators in multiple pathways, which

makes their mechanism of action very elaborate, and

therefore they are potentially less suitable as targets to

interfere with synovial fibrosis.

CTGF—TGF-b’s right hand in the fibrotic cascade

CTGF is also known as CCN family protein 2 (CCN2). A

primary function of CTGF is to modulate and coordinate

signalling responses involving cell surface proteoglycans

(key components of the ECM and growth factors) [43].

During adulthood, CTGF is expressed in endothelia and

neurons in the cerebral cortex, where it promotes angio-

genesis and tissue integrity, and in the female reproduct-

ive tract, where it regulates both follicle development and

ovulation [44�46]. In addition, CTGF is expressed in

wound healing, vascular diseases and fibrosis [47�49].

CTGF, like TGF-b, is found to be elevated in many

fibrotic diseases. There is no unique receptor known for

CTGF to which it binds with high affinity, and therefore

CTGF is considered a matricellular protein that modulates

the interaction of cells with the matrix, which modifies the

cellular phenotype [50]. It is suggested by Leask and

Abraham [51] that CTGF mediates its effects through

integrin- and heparin sulphate proteoglycan�dependent

mechanisms, and that the ability of CTGF to bind cell

surface heparin sulphate proteoglycans (which are pre-

sent at high levels in the joint) is essential for CTGF activ-

ity. Because, no data are available about the interaction

between TGF-b and CTGF in the synovium, we will

discuss what is in our opinion the best alternative data:

that for cellular signalling responses in fibroblasts in other

tissues.

As CTGF is a potent enhancer of fibroblast proliferation,

chemotaxis and ECM deposition, CTGF is thought to

mediate some of the fibrogenic effects of TGF-b after

being upregulated by TGF-b [43, 52]. Furthermore,

CTGF decreases Smad7, an inhibitory Smad that can

inhibit TGF-b signalling on multiple levels and, via this

mechanism, promote TGF-b signalling [53]. The mechan-

ism by which CTGF regulates Smad7 is not yet fully un-

ravelled. However, one proposed mechanism is by

induction of TIEG-1, which is upregulated via the TrkA

signalling receptors for CTGF [54, 55]. Depletion of

CTGF in foreskin fibroblasts via adenoviral CTGF siRNA

almost completely abrogated TGF-b-induced upregula-

tion of collagen synthesis, indicating that CTGF not only

enhances some of the profibrotic effects of TGF-b, but is

also obligatory for certain profibrotic effects [56].

Where others have demonstrated that only the combin-

ation of TGF-b and CTGF leads to persistent fibrosis, we

have previously published that overexpression of TGF-b
alone causes persistent synovial fibrosis, whereas CTGF

alone in the murine knee joint causes only transient syn-

ovial fibrosis [27, 28, 57, 58]. Because TGF-b is a potent

inducer of CTGF, we cannot rule out the possibility that it

is essential for the induction of persistent synovial fibrosis.

It has been suggested by Wang et al. [28] that the thresh-

old level of CTGF necessary to induce persistent fibrosis

may not be always reached by injecting TGF-b alone.

Therefore, a possible explanation for this discrepancy

TABLE 1 Factors found to be protective against OA-related fibrosis

Factors found to be protective
against OA-related fibrosis Species

Proposed/possible mechanism
to reduce fibrosis

Hyaluronan Ovine, horse, mice See section on hyaluronan
Polysulphated glycosaminoglycan Horse Decrease in inflammatory mediators

Parathyroid hormone Rabbits Inhibition of collagen, type 1, alpha 1

Stanozolol Ovine Reduced inflammatory phase
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might be that overexpressing Ad-TGF-b results in higher

levels of TGF-b and subsequently higher CTGF levels

compared with that achieved by protein injection of

TGF-b, and therefore might reach the CTGF threshold

required to induce persistent synovial fibrosis. In addition,

both the synovial fibroblasts and the chondrocytes in the

cartilage strongly induce CTGF expression upon TGF-b
stimulation [14, 59]. Our finding that CTGF can cause tran-

sient fibrosis is in line with the observation that CTGF by

itself can promote collagen synthesis. However, one or

more additional factors, elevated by TGF-b, seem to be

required to induce persistent fibrosis [52, 60].

To validate CTGF as a potential antifibrotic target, it is

important to determine whether CTGF is necessary for the

persistence of TGF-b-induced synovial fibrosis, especially

since a CTGF blocking antibody (FG-3019) is available.

This antibody attenuated the fibrotic response in three

independent models of fibrosis: a model of multiorgan

fibrosis induced by repeated i.p. injections of CTGF and

TGF-b, a unilateral ureteral obstruction renal fibrosis

model and an intratracheal bleomycin instillation model

of pulmonary fibrosis [28].

PLOD2

PLOD2 is a collagen cross-linking enzyme, which activity

induces the formation of pyrodinoline cross-links [61].

Increased expression of Plod2 mRNA is found in a range

of fibrotic fibroblasts [62]. Also the pyrodinoline cross-

links, which make collagen fibrils less susceptible to

enzymic degradation and more rigid, are found to be ele-

vated in various fibrotic tissues [62]. Diminished collagen

degradation resulting from increased pyridinoline cross-

links per collagen triple helix, results in collagen accumu-

lation, which is one of the hallmarks of fibrosis. One of the

most potent inducers of PLOD2 is TGF-b [14, 63].

However, for skin fibroblasts it was shown that IL-4,

BMP-2, activin A and TNF-a can also enhance PLOD2

expression [63]. For synovial fibroblasts, it was shown

that besides TGF-b, PGF2a also induces PLOD2 expres-

sion [13].

We observed in OA-induced fibrosis that both PLOD2

expression and the number of pyridinoline cross-links per

collagen triple helix in the synovium were elevated [27].

Most importantly, we also found elevated levels of PLOD2

in human end-stage OA synovium [12]. Because the pres-

ence of fibrosis in these OA patients was unknown, the

average PLOD2 level might be even higher in the subpo-

pulation of OA patients with fibrosis. This elevation sug-

gests that PLOD2 may be crucial in OA-related synovial

fibrosis. To our knowledge no blocking or overexpression

studies of PLOD2 currently exist that determine its direct

function in the fibrotic process. However, based on the

function of PLOD2 and the fact that it is highly induced

in OA synovium, PLOD2 is an appealing target for study

regarding its potential interference with synovial fibrosis.

TIMP-1

TIMP-1 is an inhibitor of the MMPs—peptidases involved

in ECM degradation—and is found to be elevated in a

number of fibrotic diseases, for example, pulmonary,

liver and kidney fibrosis [64�66]. We found that TIMP-1

is elevated in the synovium of both human end-stage

OA patients and mice with experimental OA [12]. TIMP-1

is induced by TGF-b and is typically proposed as an

enhancer of fibrosis development, but does not induce

fibrosis itself [65, 66]. Inhibition of TIMP-1 is expected to

result in higher MMP activity and therefore more ECM

breakdown, which might be beneficial in diminishing fibro-

sis. However, in unilateral urethral obstruction�induced

fibrosis, there was no difference in the degree of interstitial

fibrosis detected between wild-type and TIMP-1�deficient

mice [67]. Most likely the role of TIMP-1 may vary between

the various types of fibrosis, and its role in synovial fibrosis

has yet to be discovered.

Urotensin II

Urotensin II is a potent vasoconstrictor that is involved in

cardiac remodelling, and it may influence cardiovascular

homeostasis and pathology [68, 69]. Furthermore, it may

also influence the CNS and endocrine function in man

[69]. In various fibrotic diseases, for example, hepatic, pul-

monary and cardiac fibrosis, urotensin II levels are ele-

vated [70�73]. Moreover, the authors of these articles

suggest that urotensin II is involved in the development

of fibrosis. Most fascinatingly, urotensin II levels were also

reported to be significantly higher in the SF of OA patients

compared with controls, and thus may be associated

with synovial fibrosis in OA [15]. It is reported that uroten-

sin II may stimulate collagen synthesis via the ERK1/2 and

TGF-b/Smad2/3 signalling pathway and may in this way

contribute to fibrosis [68, 74]. The exact signalling

mechanism of urotensin II is, however, largely unknown.

Therefore, more knowledge is needed about the inter-

play between urotensin II and TGF-b signalling in

synovial fibroblasts and about its potential role in synovial

fibrosis.

ADAM12

ADAM12 is primarily involved in cell adhesion and fusion,

ECM restructuring and cell signalling. There are two dif-

ferent splice variants: a shorter secreted form (ADAM12-

S) and a longer membrane-bound form (ADAM12-L) [75].

Elevated serum levels of ADAM12-S are associated with

elevated serum inflammatory markers, severity of skin

fibrosis and increased activity of interstitial lung disease

in dcSSc, suggesting a profibrotic role for ADAM12 [76].

Furthermore ADAM12-L was found to be elevated in the

cartilage of OA patients [77]. Most interestingly, both

ADAM12-S and ADAM12-L were upregulated in the syn-

ovial tissue of patients with OA and positively correlated

with the grade of synovial fibrosis, suggesting a role for

ADAM12 in OA-related synovial fibrosis [11, 77].

ADAM12 is potently induced by TGF-b at both mRNA

and protein level in various cell types, including fibro-

blasts, enhancing epithelial to mesenchymal transition,

a-smooth muscle actin (a-SMA) expression and ECM pro-

duction [78�80]. The proposed mechanism by which

ADAM12 induces its profibrotic effects is by positively
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regulating TGF-b signalling, due to stabilization of the

TbRII protein [81]. This stabilization might be accom-

plished by suppressing the association of TbRII with

Smad7, thus preventing degradation of the receptor com-

plex by Smad7 [81, 82]. In line with these data, it was

shown in hepatic stellate cells that adding ADAM12 stimu-

lates TGF-b-induced phosphorylation of Smad2/3,

whereas treatment of cells with antisense to ADAM12

diminishes the TGF-b-dependent induction of TGF-b-

induced Smad2P (Smad3P was not measured in this

study) as well as COL1A2 mRNA expression [82, 83].

ADAM12 could therefore be an important modulator of

TGF-b-induced fibrosis.

PGF2a

PGF2a normally regulates a number of important physio-

logical functions, like uterine contraction and bronchocon-

striction. However, elevated plasma concentrations of

PGF2a metabolites found in idiopathic pulmonary fibrosis

are significantly associated with both disease severity and

prognosis [84]. Oga et al. [85] have shown that both PGF2a

and TGF-b increased the promoter activity of COL1A2,

and simultaneous addition of both factors synergistically

increased the COL1A2 promoter activity. Furthermore,

PGF2a deficiency and inhibition of TGF-b signalling addi-

tively decrease fibrosis in mice with idiopathic pulmonary

fibrosis, suggesting that TGF-b and PGF2a recruit different

signalling molecules to induce collagen production [85].

These results indicate that PGF2a has profibrotic effects

that work independently of TGF-b.

The PGF2a isoforms 8-iso-PGF2a and 15-

keto-dihydro-PGF2a were found to be significantly

increased in the SF of patients with OA [86]. Also, rela-

tively high levels of PGF2a were measured in infrapatellar

fat pad (from OA patients)�conditioned medium (FCM)

[13]. Collagen production by fibroblast-like synoviocytes

was positively associated with PGF2a levels in this FCM. In

addition, gene expression of the collagen cross-linking

gene, Plod2 was increased in fibroblast-like synoviocytes

in the presence of this FCM. Inhibition of PGF2a levels

reduced the extent of FCM-induced collagen production

and Plod2 expression, whereas inhibition of the

TGF-b�ALK5 pathway with SB505124 did not alter the

FCM-induced effects on fibroblast-like synoviocytes.

These results indicate that elevated levels of PGF2a and

its isoforms are present in an OA joint, and that PGF2a

has profibrotic effects on the synovium that might differ

from those induced by TGF-b.

Hyaluronan

Hyaluronan is a glycosaminoglycan that binds to the

CD44 receptor. Injection of hyaluronan 24 h after TGF-b
injection in the TGF-b prior to treadmill running model of

OA inhibited the cascade of OA-like joint changes, includ-

ing gait changes and synovial fibrosis. Furthermore,

hyaluronan injection post-surgery in the meniscectomy-

induced OA model in sheep reduced synovial fibrosis

[22]. These results show that hyaluronan protects against

OA-related fibrosis in both IA injection of TGF-b prior

to the treadmill running model of OA and the meniscec-

tomy-induced OA model in sheep [21, 22]. This is in

agreement with the observation that exogenously pro-

vided hyaluronan antagonized TGF-b1-dependent myofi-

broblast differentiation [87]. However, the exact

mechanism by which hyaluronan interferes with synovial

fibrosis is unknown. One mechanism suggested by Plaas

et al. [88] is that hyaluronan may act as an antifibrotic by

blocking ADAMTS5-mediated activation of profibrotic

pathways in peri-articular cells. This, because hyaluronan

can form a complex with Adamts5, and ablation of

Adamts5 has been shown to prevent both cartilage

erosion and fibrotic remodelling in challenged joints [89].

Another possible explanation is that interaction of hyalur-

onan with its receptor results in an increase in the

association of the TGF-b receptor with Smad7, leading

to TGF-b receptor degradation [81]. This degradation

leads to a decrease in TGF-b signalling and therefore in

less fibrosis. That hyaluronan may be beneficial in the

reduction of fibrosis by attenuating TGF-b signalling

again suggests a major role for TGF-b signalling in

fibrosis.

Targets to block synovial fibrosis in OA

The main cause of synovial fibrosis seems to be TGF-

b�ALK5 signalling. Unfortunately, blocking ALK5 may not

be without any consequences for the cartilage, because

blocking ALK5 has been shown to promote MMP13

expression and diminish type II collagen expression in

chondrocytes [90, 91]. In contrast, there are papers that

propose that the alternative pathway for TGF-b1

signalling, through ALK5/Smad2/3, causes the transition of

chondrocytes and chondroprogenitors to a fibrogenic

phenotype, resulting in many of the destructive processes

of OA [92]. All of these results together indicate

that inhibition of ALK5 comes with a certain risk

for the cartilage. Therefore it is better not inhibited in an

OA joint unless it is specifically blocked in the

synovium to prevent fibrosis, which is unfortunately not

yet possible.

Whether inhibition of ALK1 in an OA joint has pro- or

antifibrotic effects remains to be elucidated. This may be

worth investigating, because besides the potential antifi-

brotic effects, inhibition of ALK1 is expected to reduce

MMP13 expression in chondrocytes and therefore MMP-

mediated cartilage damage—a potential win�win situation

[90, 91]. However, to minimize potential side effects, inhib-

ition of a gene with a single function (or limited functions)

is preferrred over blocking genes with multiple functions

or those that are at the top of an extensive signalling path-

way, such as TGF-b or PGF2a. In this regard, the two most

attractive options of the factors we have discussed are

TIMP-1 and PLOD2 (Table 2). A major drawback of target-

ing TIMP-1 in an OA joint is that the elevated MMP activity

will contribute to cartilage damage [100]. Therefore, inhib-

ition of TIMP-1 in an OA joint is not the preferred option for

interfering with OA-related synovial fibrosis. PLOD2, on

the other hand, is a potential target for blockade in syn-

ovial fibrosis. Notably, cartilage containing high levels of
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pyridinoline collagen cross-links, which are increased due

to PLOD2 activity, seems to fail mechanically under long-

term loading, whereas areas containing low pyridinoline

levels are less prone to degeneration [96]. This suggests

that inhibition of PLOD2, besides the potential antifibrotic

effects, may also favour cartilage repair in an OA joint. We

look forward to an experiment where PLOD2 is blocked in

an OA model accompanied by fibrosis in order to deter-

mine whether this approach indeed prevents synovial

fibrosis.

Discussion

Because it is estimated that over half of all OA patients

suffer from synovial fibrosis, it is important that this patho-

logical process receives more attention, especially as

fibrosis is one of the main causes of joint stiffness [2�4,

101]. At present, there are no options for interfering with

synovial fibrosis; however, preventing or reversing fibrosis

in OA might result in major symptom relief. The goal of this

review was to provide an overview of the known factors

that play a role in initiating and sustaining synovial fibrosis

so as to facilitate the selection of targets for antifibrotic

therapies.

Several factors can contribute to excessive deposition

of the ECM and the resultant synovial fibrosis, either by

increasing ECM synthesis or by decreasing its degrad-

ation. The majority of these profibrotic factors are either

downstream of TGF-b or modulate TGF-b signalling.

There are other pathways that may contribute to synovial

fibrosis independently of TGF-b, for instance PGF2a. It

is hard to predict the relative contribution of these factors

to the fibrotic process. Blockade studies are required

in order to elucidate whether inhibition of one of

these factors will break the fibrotic cascade in synovial

fibrosis.
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