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Abstract

The Wnt signalling pathway is gaining increasing attention in the field of joint pathologies, attributable to its

role in the development and homeostasis of the tissues found in the joint, including bone and cartilage.

Imbalance in this pathway has been implicated in the development and progression of OA, and interfer-

ence with the pathway might therefore depict an effective treatment strategy. Though offering multiple

opportunities, it is yet to be decided which starting point will bring forth the most promising results. The

complexity of the pathway and its interaction with other pathways (such as the TGF-b signalling pathway,

which also has a central role in the maintenance of joint homeostasis) means that acting directly on

proteins in this signalling cascade entails a high risk of undesired side effects. Therefore, interference

with Wnt-induced proteins, such as WISP1, might be an overall more effective and safer therapeutic

approach to inhibit the pathological events that take place during OA.

Key words: osteoarthritis, Wnt signalling, TGF-b, signalling, crosstalk, WISP1/CCN4, joint pathology

Rheumatology key messages

. Canonical Wnt signalling plays an active role in the development of OA pathology.

. Although providing opportunities, Wnt/TGFb crosstalk still is too incomprehensible to serve as therapeutic target
in OA.

. Wnt-induced protein WISP1 seems important in osteoarthritic processes, providing an attractive therapeutic
target.

Osteoarthritis

Today, >10% of the world’s population above 60 years is

suffering from the impact of OA [1]. OA is a chronic degen-

erative joint disease, characterized by functional impairment

and inflammation, leading to pain, stiffness and loss of mo-

bility [2]. Several genetic and environmental factors have

been implicated in the degeneration of the joint [3�6].

While the prevalence of OA increases with age, risk factors

like abnormal joint loading and obesity additionally contrib-

ute to OA aetiopathology [7, 8]. In the past, OA was con-

sidered a disease solely leading to degeneration of articular

cartilage. However, this paradigm has shifted towards the

idea that changes in the bone (including sclerosis of the

subchondral bone and osteophyte formation) and inflam-

mation and fibrosis in the synovium are likely involved in

the disruption of normal joint homeostasis [9].

Increasing expectancy of life and obesity will increase

the incidence of OA, making it even more important to find

effective treatment strategies for OA. With this in mind,

various signalling pathways have gained increasing atten-

tion over time, including the Wnt and TGF-b signalling

pathways. Wnt signalling is involved in both formation

and turnover of cartilage and bone and is characterized

as being pro-fibrotic. The active role that Wnt signalling

seems to play in the aetiopathology of OA has recently

been adequately reviewed by Lories et al. [10]. In particu-

lar, increased activation of the b-catenin�dependent ca-

nonical Wnt pathway has been implicated in OA. Studies

in our lab have pointed to Wnt1-induced secreted protein-

1 (WISP1), a matricellular protein that belongs to the CCN

(connective tissue growth factor, Cyr61, NOV) family, as a

possible central Wnt-induced protein that mediates the

detrimental effects of overactive canonical Wnt signalling

in the joint [11�13]. Interestingly, Wnt signalling shows
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profound crosstalk with other pathways that are involved

in the development and homeostasis of joint tissues,

including the TGF-b signalling pathway. TGF-b has been

attributed a crucial role in maintaining joint and cartilage

homeostasis, and deregulation of this signalling pathway

is linked to various aspects of OA pathology [14].

This review will briefly summarize current knowledge

about Wnt signalling and its possible implications in OA.

Next, we will point out two aspects of Wnt signalling that

can serve as possible therapeutic targets. First, we will

discuss the crosstalk between Wnt and TGF-b signalling

as a target for therapy. In addition, we will highlight the

canonical Wnt signalling�induced molecule WISP1 as a

possible target for modulating OA.

Wnt signalling

First identified in 1982 [15], Wnt proteins are today known

to have crucial functions in most species [16]. Wnt

signalling is involved in multiple biological processes,

including embryonic development, organogenesis and

tissue homeostasis. Not surprisingly, dysfunction of this

signalling pathway is associated with a number of dis-

eases [17]. The family of Wnt ligands consists of at least

19 members, characterized as glycoproteins that need to

undergo post-translational modification in order to carry

out their signalling activity [18�21].

Wnt proteins can signal via the b-catenin/canonical and

various non-canonical pathways. The canonical pathway

is characterized by the translocation of b-catenin into the

nucleus, whereas b-catenin�independent cascades are

collectively classified as non-canonical. Since several

Wnt proteins have the capacity to signal via both path-

ways [22, 23], signalling is increasingly being considered

dependent on the cellular context in addition to the fea-

tures of individual Wnt proteins.

The main cell surface receptors for all Wnt signalling

pathways are the Frizzled (Fz) receptors [24, 25]. In

order to activate the canonical signalling pathway, binding

of a Wnt ligand to both its Fz receptor and the co-receptor

low-density lipoprotein receptor-related protein (LRP)5/6

is required. This triggers the release of b-catenin from

its inhibitory complex [consisting of glycogen synthase

kinase-3 (GSK3-b), caseine kinase 1-a (CK1a), adenoma-

tous polyposis coli (APC) and Axin2], which in the off-state

phosphorylates and ubiquitinates b-catenin, leading to

proteosomal breakdown [26]. In the on-state, Axin is relo-

cated to the cytoplasmic tail of LRP5/6, where it forms a

complex with Dishevelled (Dvl) and GSK3-b. That results

in the release of b-catenin, which accumulates and trans-

locates into the nucleus where it binds the TCF/LEF tran-

scription factors, converting them from repressors to

transcriptional activators causing the transcription of

target genes, including WISP1 [27]. Non-canonical Wnt

signalling includes the Ca2+ and planar cell polarity path-

ways [28�31], which engage in the regulation of cell mo-

bility, differentiation and communication [32�34]. While at

present the majority of studies focus on the role of canon-

ical Wnt signalling in OA, non-canonical signalling might

add to the complexity of the processes involved because

it can affect multiple cell types present in the joint and

is known to counter-regulate canonical Wnt signalling

[35, 36].

All Wnt signalling pathways are tightly regulated by a set

of inhibitors, including the family of secreted Frizzled-

related proteins (sFRP) 1�4 and Wnt inhibitory factor

(WIF), which act as soluble scavengers of Wnt ligands.

In addition, members of the Dickkopf (DKK) family and

sclerostin can bind to LRP5/6, interfering with its ability

to interact with Wnt-Fz, thereby specifically inhibiting the

canonical Wnt signalling pathway.

The implications of Wnt proteins in OA

Balanced canonical Wnt signalling is critical for the correct

development and function of the tissues that are present

in the joint [37, 38] and dysfunctional Wnt signalling might

disturb developmental processes and increase suscepti-

bility to OA.

Canonical Wnt signalling has been shown to affect

chondrogenic differentiation of cells at various develop-

mental stages and to play a crucial role in skeletal devel-

opment [39]. Furthermore, active b-catenin signalling is

important for the formation of the secondary ossification

centre and epiphysal cartilage development [40].

While canonical Wnt signalling was found to inhibit chon-

drogenesis during early developmental stages [41�43], it

promotes hypertrophic differentiation of mature chondro-

cytes [44�46]. In contrast, activation of non-canonical

signalling stimulates early chondrogenesis, while inhibiting

terminal differentiation [47]. Finally, it has been suggested

that canonical Wnt signalling stimulates osteoblast matur-

ation [41, 46].

Various groups have stressed the requirement of Wnts

for correct joint homeostasis and that imbalanced Wnt

signalling is linked to the development of OA. Despite

some discrepancies [48], several studies have provided

strong genetic evidence for the association between

single nucleotide polymorphisms (SNPs) in the gene

encoding the Wnt inhibitor sFRP-3/FRZB and OA. It has

been suggested that disease-associated variants show

decreased binding affinity for Wnt ligands, thereby

exhibiting a reduced capacity to antagonize b-catenin

signalling [49]. Another genetic study confirmed the role

of Wnt signalling in OA because a polymorphism in the

Frizzled co-receptor LRP5 was associated with an

increased risk of spinal OA [50]. Mutations in LRP5 pre-

vent the Wnt signalling antagonists sclerostin and DKK1

from binding [51�53], thus inducing Wnt-related path-

ology. Accordingly, several studies have shown that

LRP5 variants influence human bone density [54�56],

and a homozygous mutation in LRP5 was associated

with osteoporosis�pseudoglioma syndrome [55].

While polymorphism studies established a significant

link between mutations in proteins of the Wnt signalling

cascade and OA, these assumptions were furthermore

reinforced by gene expression analyses. The association

found between a mutation in the Frizzled co-receptor

LRP5 and OA [50] could be supported by a study linking

deficiency of LRP5 to joint pathology [57]. Absence of
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FRZB resulted in increased expression of matrix metallo-

proteinases (MMPs) and augmented cartilage damage in

vivo in experimental OA [58]. Cartilage loss was asso-

ciated with increased b-catenin levels, suggesting that

FRZB plays a regulatory role in b-catenin accumulation

[59]. A link between increased b-catenin activity and OA

pathology could furthermore be established, because

b-catenin accumulation was found in the superficial car-

tilage layers in several OA models [11] and in areas of

degeneration [60�63]. The pathological effect of this dif-

ferential gene expression was explained as due to activa-

tion of b-catenin because it stimulated OA hallmarks, such

as hypertrophy, matrix mineralization, expression of

MMPs and vascular endothelial growth factor in mature

cartilage cells. In a study by Zhu et al., inducible over-

expression of b-catenin in mature chondrocytes resulted

in increased expression of the maturation markers colla-

gen type X and osteocalcin, increased levels of MMPs and

strongly increased cartilage degeneration [62]. A similar

experimental setup showed that b-catenin induced articu-

lar cartilage thickening, and increased cell density and

proliferation [64]. Meanwhile, while their presence in car-

tilage is confirmed, no (or only subtle) differential expres-

sion could be detected for Wnt proteins in cartilage of OA

models [11, 65]. Dell’Accio et al. [65] found an upregula-

tion of Wnt16 in human OA cartilage; however, no differ-

ential expression could be confirmed for other Wnt

proteins. Interestingly, whereas we could not find differ-

entially regulated Wnt ligands in the cartilage [11], we

observed strongly increased expression of several Wnt

ligands, including Wnt2b and Wnt16, in the synovium in

experimental OA. These findings are of particular rele-

vance in light of OA as a disease of the entire joint.

Notably, the Wnt-induced protein WISP1 was increased

in both the synovium and the cartilage, suggesting migra-

tory capacities of Wnts produced in the synovium are

enabling canonical Wnt signalling in the cartilage [11].

Synovial overexpression of Wnts resulting in canonical

Wnt signalling as well as WISP1, induced OA-like cartilage

lesions as early as 7 days after overexpression [13]. In

addition, the Wnt signalling cascade has been linked to

the induction of cytokine expression. Overexpression of

Wnts in fibroblasts results in increased expression of IL-6,

IL-15 and TNF-a, but also of MMPs [66�68]. Another study

showed that Wnt3a enhanced the effect of IL-1b, stimu-

lating the loss of proteoglycans from the matrix [69]. The

production of pro-inflammatory cytokines and matrix-

degrading enzymes in the synovium has been attributed

an important role in the process of OA, as elegantly

reviewed by both Berenbaum [70] and Scanzello and

Goldring [71].

Less well studied is the role of Wnt signalling in other

features of OA pathology, including ectopic bone forma-

tion and fibrosis. Nevertheless, canonical Wnt signalling

has been described as a central pathway in bone forma-

tion [72�76]. In this context, DKK1-mediated inhibition

of the canonical Wnt pathway was associated with

decreased bone mass [77]. Moreover, Wnt activity or-

chestrates osteoblast maturation [41, 46], whereas Wnt

signalling decreases osteoclast activity [74]. Hence, the

balance is shifted towards anabolism, suggesting an

active role of canonical Wnt signalling in osteophyte for-

mation and subchondral plate sclerosis during OA [62, 72,

78]. Furthermore, many OA patients suffer from severe

fibrosis in the synovium, which is a major contributor to

joint stiffness [79]. In the past, Wnt signalling has been

linked to many types of fibrosis, including pulmonary

[80�83], liver [84�86] and renal fibrosis [87�89]. However,

detailed discussion is beyond the scope of this paper.

Altogether, these data suggest that increased canonical

Wnt signalling is not merely present in OA, but in fact plays

an active role in the development of OA pathology.

Despite the destructive role of excessive canonical Wnt

signalling in cartilage, extreme care should be taken in

inhibiting this process. Balanced Wnt signalling has

been shown to inhibit chondrocyte apoptosis and has

therefore been recognized as having a protective

role [90�92]. In support of this, conditional knock-down

of b�catenin induced chondrocyte apoptosis and cartilage

destruction in mice [93]. Chondrocyte apoptosis could be

detected upon inflammation-induced elevation of DKK1

expression; the associated OA phenotype underlines the

necessity of Wnt signalling for cell survival [94].

Furthermore, inhibition of the Wnt signalling antagonist

DKK1 showed its protective potential for cartilage and

bone in a rat OA model [95]. In contrast, various other

studies using overexpression of the Wnt signalling inhibi-

tor DKK1 clearly demonstrate the protective role of DKK1

in OA [72, 78].

In summary, increased b-catenin activity has been

shown to induce cartilage destruction by affecting the

chondrocyte phenotype and stimulating the expression

of pro-inflammatory cytokines and proteases. However,

blocking of excessive signalling might trigger equally det-

rimental effects, as has been suggested in chondrocyte

viability studies. Thus, a correct balance of active Wnt

signalling is ultimately required to ensure healthy joint

tissue, making targeting of upstream Wnt signalling com-

plicated. Possible leads for therapeutic intervention might

be found in the profound crosstalk that Wnt signalling has

with other pathways, such as the TGF-b signalling

pathway.

Crosstalk between the Wnt and TGF-b
signalling pathway

Whereas the importance of balanced Wnt signalling for

maintenance of the tissues in the joint has been described

in the previous section, similar importance in maintaining

joint homeostasis has been attributed to the TGF-b
signalling pathway. Interestingly, while canonical Wnt

signalling enhances the rate of chondrocyte maturation,

TGF-b signalling via ALK5, resulting in Smad2/3 phos-

phorylation, potently blocks chondrocyte hypertrophy.

Additionally, TGF-b has been shown to bind to the ALK1

receptor, which results in Smad1/5/8 phosphorylation, a

pathway that is known to mediate BMP signalling and
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which is associated with chondrocyte hypertrophy and

hallmarks of cartilage destruction [96�99].

Several studies have highlighted a profound interplay

between Wnt signalling and TGF-b signalling and have

shown that this interaction orchestrates the processes in

which both signalling pathways are involved [100, 101].

However, the molecular mechanisms and impact of the

communication between the Wnt and TGF-b pathways

are largely unknown. In this section we present up-to-

date knowledge about the complex interplay between

the pathways at the extracellular, cytoplasmic and nuclear

level, and this is schematically summarized in Fig. 1.

Extracellular Wnt/TGF-b crosstalk

TGF-b and Wnt ligands have already been shown to regu-

late each other’s expression during early development.

Wnt8c induces the expression of the TGF-b family

member Nodal [102], whereas a study in Xenopus found

Wnt8 expression to be regulated by TGF-b family mem-

bers [103] (Fig. 1, extracellular compartment, where

modulators of extracellular signalling are shown in

yellow). On the other hand, BMP-2 enhanced chondro-

genesis by downregulating Wnt7 and b-catenin expres-

sion [104]. An additional study revealed the requirement

of b-catenin for BMP-4 expression in human cancer cells

[105]. Several extracellular proteins, including sclerostin,

CTGF and sFRPs, modulate and are modulated by recep-

tors or ligands of both the Wnt and TGF-b pathways

[106�110]. Among others, sclerostin was shown to antag-

onize canonical Wnt signalling by binding to the receptor

LRP5/6. Notably, inhibition via sclerostin was, in turn,

shown to be modulated by BMPs [106, 107]. Like scler-

ostin, CTGF modulates Wnt signalling [109] and exhibits

binding capacity for both BMP-4 and TGF-b. Interestingly,

whereas binding of CTGF to BMP receptors reduces the

activity of BMP-4, TGF-b activity is enhanced upon bind-

ing to CTGF [108]. In contrast, CTGF expression has been

shown to be tightly regulated by Wnt3A and BMP-9,

which have been suggested to be crucial in normal osteo-

blast differentiation [111].

Communication in the cytoplasm

In addition to the active crosstalk between the extracellu-

lar compartments of Wnt and TGF-b signalling, complexity

of interaction between both pathways is further enhanced

on the intracellular level. (An overview of the interactions

described in this section can be found in Fig. 1, cytoplas-

mic compartment.) In the cytoplasm of adult human

mesenchymal stem cells (MSC), TGF-b induces nuclear

translocation of b-catenin in a Smad3-dependent

manner, thereby increasing activation of canonical Wnt

signalling. b-catenin thus stimulates the proliferation of

MSCs and inhibits their osteogenic differentiation via

TGF-b [112]. Synergistic signalling was found to stimulate

chondrocyte differentiation and to inhibit adipocyte gene

expression [113]. The effect of the Wnt pathway on chon-

drogenesis was further investigated by Im and Quan [114],

who demonstrated enhancement of early chondrogenesis

upon application of Wnt inhibitors. The effect of the Wnt

inhibitor sFRP-1 on chondrogenic expression levels was,

however, obscured by TGF-b during long-term culture,

suggesting that TGF-b overrides the effect of b-catenin

during later chondrogenesis. In murine MSCs, BMP-7 was

introduced to regulate chondrogenic and osteogenic dif-

ferentiation. Simultaneously, BMP-7 inhibits Wnt11 and

BMP-4 expression, whereas Wnt5b expression was

found to be upregulated during chondrogenic differenti-

ation [115]. Therefore, even during the early developmen-

tal stages, a tight regulation of the crosstalk between Wnt

and TGF seems essential for accomplishing the normal

course of bone and joint development. In contrast,

BMP-2 was found to inhibit Wnt signalling and osteoblast

differentiation in mouse MSCs. In this context, an inter-

action between Smad1 and Dvl, occurring in the presence

of BMP-2, prevented nuclear translocation of b-catenin

[116]. It has been suggested that signalling between the

pathways is further modulated via the Axins and GSK3-b.

Active canonical Wnt signalling increases the expression

of Axin. In contrast, TGF-b�induced Smad signalling de-

creases its expression [117], and in doing so it releases a

brake on canonical Wnt signalling. Both proteins were

found to be essential for Smad3 phosphorylation [118].

Another study showed that binding of non-phosphory-

lated Smad3 to Axin and GSK3-b results in its basal deg-

radation [119]. In line with the b-catenin�dependent

inhibition of Smad2/3 phosphorylation via the Axins, we

recently found that canonical Wnt3a decreased levels of

phosphorylated Smad2/3 [12]. In addition, Wnt3a and

WISP1 increased Smad1/5/8 phosphorylation, thus pos-

sibly inducing chondrocyte hypertrophy. In line with this,

other studies showed that WISP1 was able to inhibit

Smad2 phosphorylation in human bone marrow stromal

cells [120], while inducing Smad1/5/8 signalling [121],

which can affect the chondrocyte phenotype. (These

interactions are shown at the right side of the cytoplasmic

compartment in Fig. 1.)

Interactions in the nucleus

In addition to their cytoplasmic interaction, the Wnt and

TGF signalling pathways communicate within the nucleus

(Fig. 1, nuclear compartment), wherein they synergistically

regulate target genes. Co-regulation by these pathways

has been established for several genes involved in devel-

opmental processes [122�125] as well as during tumour

development and progression [126, 127]. A study in

mouse gastric cancer cells shows that the mouse gastrin

promoter is synergistically regulated by the Wnt and TGF

pathway. Smad3/Smad4 and Lef/Tcf can, thereby, mutu-

ally act as co-factors while their interaction is stabilized by

the p300 co-activator protein. Notably, either the Smad or

Lef/Tcf binding side is sufficient to recruit the transcrip-

tional activation complex [128]. Synergistic activation of

LEF1/TCF by the TGF-b and Wnt signalling pathways

was confirmed by Letamendia et al. [129]. Furthermore,

Smads and Wnts regulate their expression interdepen-

dently, because b-catenin was found to inhibit TGF-b
signalling in chondrocytes [117]. In turn, Li et al. [130]

demonstrated that Smad3 signalling could induce
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b-catenin signalling in murine neonatal sternal primary

chondrocytes.

Clear crosstalk between canonical Wnt signalling and

TGF-b signalling that affects the disease outcome has

been demonstrated in fibrotic disorders, and this might

similarly apply to OA pathology. While TGF-b is a well-

known pro-fibrotic factor, several studies have shown

Wnt activation in TGF-b�induced fibrogenesis [131, 132].

Akhmetshina et al. [132] demonstrated that TGF-b stimu-

lates canonical Wnt signalling in cultured fibroblasts.

TGF-b�mediated activity of b-catenin has previously

been shown to be induced via Smad3 [131].

Furthermore, inhibition of the canonical Wnt signalling

pathway effectively blocked TGF-b receptor 1�driven fi-

brosis [133], while Wnt signalling was activated down-

stream of TGF-b in fibroblasts during wound repair

[134]. Furthermore, TGF-b induced WISP1 expression in

pulmonary fibrosis and liver fibrosis [135, 136]; TGF-b
itself was found to be regulated by the microRNA miR-

92a [136]. Furthermore, WISP1 showed upregulated gene

FIG. 1 Profound crosstalk between TGF-b and canonical Wnt signalling is present on various levels in the cell

A schematic overview of the many interactions that TGF-b and canonical Wnt signalling have, both outside and inside the

cell. Proteins involved in the Wnt signalling pathway are depicted in grey, with b-catenin as a central protein in canonical

Wnt signalling depicted in green. Furthermore, proteins involved in TGF-b signalling are indicated in blue. Additionally,

extracellular modulators of cell signalling are shown in yellow. Finally, WISP1 is a Wnt/b-catenin�induced protein that

plays a central role and is depicted in orange.
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expression in TGF-b�induced myofibroblast differentiation

[137], strengthening the purported role of crosstalk be-

tween TGF and Wnt in fibrotic processes.

Altogether, these findings indicate that communication

between TGF and Wnt signalling proteins plays an import-

ant role in processes that act in the regulation of joint

tissue homeostasis and are therefore likely to be import-

ant in the development of OA pathology. Crosstalk was

found not only in cartilage, influencing chondrogenesis

and chondrocyte hypertrophy, but was furthermore

found in fibrogenesis and osteogenesis. Affecting all tis-

sues involved in the whole-joint disease OA, crosstalk

between TGF and Wnt signalling may have the exciting

potential for therapeutic purposes. However, due to the

complex nature of both the separate pathways and the

profound crosstalk that takes place on many levels, it is

difficult to determine the net outcome of therapeutic inter-

ventions. Therefore, targeting this crosstalk is not feasible

until enough is known about the consequences of inter-

ference. In addition, since Wnt signalling is extremely

complex and tightly regulated and can affect many biolo-

gical processes, upstream targeting of Wnt signalling is

likely to produce undesired side effects. Thus, a down-

stream target might be a more appropriate therapeutic

target, less likely to produce side effects. In this context,

WISP1 has drawn increasing attention as a feasible target

for OA therapy.

WISP1 as central mediator of Wnt
signalling in OA pathology?

WISP1 (CCN4) is one of six members of the cysteine-rich

CCN family, which are characterized by four distinct func-

tional domains: next to an insulin-like growth factor-bind-

ing protein-like module, all members except CCN5 consist

of a von-Willebrand factor type C repeat, a cysteine-rich

C-terminal module and a thrombospondin type 1 repeat

(TSP1). The CCN protein family has been assigned to the

group of matricellular proteins, characterized by their

function in extracellular signal modulation and coordin-

ation [138]. Various biologic processes have been indi-

cated to be modulated by CCN proteins: among others,

tumourigenesis, chondrogenesis, osteogenesis, angio-

genesis, apoptosis and haematopoiesis [139]. Given the

many processes that CCN proteins are implicated in, it is

evident that they are furthermore involved in numerous

pathologies, including various cancers and fibrotic dis-

orders [140�143].

The importance of WISP1 in the context of skeletogen-

esis has been demonstrated, since a particularly high ex-

pression of WISP1 was found at sites of new bone

formation and in healing fracture calluses. Additionally,

WISP1 was shown to promote BMP-2-mediated osteo-

blast differentiation in vitro, while repressing chondrocytic

differentiation [144].

Recently, WISP1 has gained attention as a promising

target for OA therapy research because a SNP in WISP1

has been associated with spinal OA, and in particular with

the severity of endplate sclerosis [145]. Additionally, an

earlier study of ours [11] demonstrated that WISP1 was

significantly upregulated in experimental human OA car-

tilage and synovium. Since no upregulation of Wnt pro-

teins could be detected in OA cartilage [11, 65], it was

suggested that WISP1 was produced as a response to

Wnts that have diffused into the cartilage after expression

in other tissues such as synovium.

Linking WISP1 expression to cartilage destruction,

WISP1 was shown to trigger the release of matrix-

modulating enzymes such as MMPs and aggrecanases

from macrophages and chondrocytes, independent of

IL-1 [11]. In line with this, we [12] showed that WISP1

can skew TGF-b�induced Smad signalling towards dom-

inant signalling via Smad1/5/8, which can result in

increased hypertrophic differentiation of chondrocytes.

Previously, WISP1 has been shown to regulate the TGF-

b pathway to control osteoblast function in human bone

marrow stromal cells [120]. Additionally, a study by Ono et

al. [121] shows that WISP1 can potentiate BMP-2 effects

on osteogenesis by increasing Smad1/5/8 phosphoryl-

ation. The same study demonstrated that WISP1 poten-

tiated osteogenesis in transgenic mice.

Additional studies suggest a critical role of WISP1 in

synovial tissue. WISP1 was found to stimulate a pro-

inflammatory response in macrophages of human adi-

pose tissue and to increase the expression of IL-6 in

human synovial fibroblasts, via activation of PI3K, Akt

and NFkB [146]. Furthermore, WISP1 induced the ex-

pression of vascular cell adhesion molecule-1 in

human OA synovial fibroblasts [147], promoting mono-

cyte adhesion. This could promote synovitis, because

mononuclear cell migration has previously been identi-

fied as an important modulator in synovial inflammation

[148, 149]. Furthermore, WISP1 plays a role in fibrotic

processes, in which it is shown to stimulate fibroblast

proliferation along with matrix protein expression in car-

diac fibroblasts [150]. An additional study revealed

WISP1 as a potential therapeutic target in pulmonary

fibrosis, modulating the expression of genes known to

be involved in fibrosis towards an attenuation of lung

fibrosis [140].

These results show that WISP1 might be an appealing

downstream target of canonical Wnt signalling to study in

the field of OA. The studies described in this section make

it likely that WISP1 is involved in the induction of OA-

associated processes like cartilage damage and osteo-

phyte formation, changes in the subchondral bone, and

fibrogenesis and inflammation of the synovium. These im-

plications about how WISP1 might be involved in the in-

duction of OA pathology are shown in Fig. 2. However, the

exact pathway by which WISP1 modulates the tissues in

the joint is still largely unknown. Progress in understand-

ing the underlying mechanism of WISP1-induced joint de-

struction might reveal an attractive alternative therapeutic

approach.

Conclusion

Imbalance of Wnt signalling results in the development of

OA pathology. Canonical Wnt signalling, therefore, has
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been proposed as a possible tool for the re-establishment

of joint homeostasis. However, due to the complexity of

the pathway, extreme care should be taken when interfer-

ing with proteins in the upstream Wnt signalling cascade,

which could be prone to affecting other biological pro-

cesses or triggering undesired side effects. Thus, though

that may be a possible future therapeutic approach, inter-

vention in the profound crosstalk between Wnt and TGF

signalling pathways is not feasible until knowledge has

reached such a level that negative effects can unerringly

be excluded. Here, we would like to put forward WISP1 (a

Wnt/b-catenin�induced protein) as a promising thera-

peutic target, because WISP1 is thought to be involved

in the processes that are present during the course of OA.

In addition, because WISP1 is a more downstream target

in Wnt signalling, targeting this protein is expected to give

fewer undesired side effects. Because the pathway that

WISP1 uses to affect the joint tissues has not yet been

elucidated, targeting WISP1 with blocking antibodies cur-

rently seems to be the most feasible option.
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