Abstract

Study Objectives

To evaluate whether a foundational transformer using 8-hour, multichannel polysomnogram (PSG) data can effectively encode signals and classify sleep stages with state-of-the-art performance.

Methods

The Sleep Heart Health Study, Wisconsin Sleep Cohort, and Osteoporotic Fractures in Men (MrOS) Study Visit 1 were used for training, and the Multi-Ethnic Study of Atherosclerosis (MESA), Apnea Positive Pressure Long-term Efficacy Study (APPLES), and MrOS visit 2 served as independent test sets. We developed PFTSleep, a self-supervised foundational transformer that encodes full night sleep studies with brain, movement, cardiac, oxygen, and respiratory channels. These representations were used to train another model to classify sleep stages. We compared our results to existing methods, examined differences in performance by varying channel input data and training dataset size, and investigated an AI explainability tool to analyze decision processes.

Results

PFTSleep was trained with 13,888 sleep studies and tested on 4,169 independent studies. Cohen’s Kappa scores were 0.81 for our held-out set, 0.59 for APPLES, 0.60 for MESA, and 0.75 for MrOS Visit 2. Performance increases to 0.76 on a held-out MESA set when MESA is included in the training of the classifier head but not the transformer. Compared to other state-of-the-art AI models, our model shows high performance across diverse datasets while only using task agnostic PSG representations from a foundational transformer as input for sleep stage classification.

Conclusions

Full night, multichannel PSG representations from a foundational transformer enable accurate sleep stage classification comparable to state-of-the-art AI methods across diverse datasets.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
You do not currently have access to this article.

Comments

0 Comments
Submit a comment
You have entered an invalid code
Thank you for submitting a comment on this article. Your comment will be reviewed and published at the journal's discretion. Please check for further notifications by email.