Abstract

Study Objectives

Sleep loss can cause cognitive impairments that increase the risk of mistakes and accidents. However, existing guidelines to counteract the effects of sleep loss are generic and are not designed to address individual-specific conditions, leading to suboptimal alertness levels. Here, we developed an optimization algorithm that automatically identifies sleep schedules and caffeine-dosing strategies to minimize alertness impairment due to sleep loss for desired times of the day.

Methods

We combined our previous algorithms that separately optimize sleep or caffeine to simultaneously identify the best sleep schedules and caffeine doses that minimize alertness impairment at desired times. The optimization algorithm uses the predictions of the well-validated Unified Model of Performance to estimate the effectiveness and physiological feasibility of a large number of possible solutions and identify the best one. To assess the optimization algorithm, we used it to identify the best sleep schedules and caffeine-dosing strategies for four studies that exemplify common sleep-loss conditions and compared the predicted alertness-impairment reduction achieved by using the algorithm’s recommendations against that achieved by following the U.S. Army caffeine guidelines.

Results

Compared to the alertness-impairment levels in the original studies, the algorithm’s recommendations reduced alertness impairment on average by 63%, an improvement of 24 percentage points over the U.S. Army caffeine guidelines.

Conclusions

We provide an optimization algorithm that simultaneously identifies effective and safe sleep schedules and caffeine-dosing strategies to minimize alertness impairment at user-specified times.

This work is written by (a) US Government employee(s) and is in the public domain in the US.
You do not currently have access to this article.

Comments

0 Comments
Submit a comment
You have entered an invalid code
Thank you for submitting a comment on this article. Your comment will be reviewed and published at the journal's discretion. Please check for further notifications by email.