
SLEEP, Vol. 33, No. 12, 2010 1641 Prediction of Mild Obstructive SDB—Caffo et al

IN THE ROUTINE CLINICAL EVALUATION OF PATIENTS 
FOR POSSIBLE SLEEP DISORDERED BREATHING, PHY-
SICIANS MAKE JUDGMENTS AS TO THE LIKELIHOOD 
that a particular person is affected and decide whether poly-
somnography is warranted based on this likelihood. Their judg-
ments draw on elements of the patient’s history, such as reports 
of snoring or excessive daytime somnolence, demographic fac-
tors, and weight or body mass index (BMI). If the estimated 
likelihood is sufficiently high, then the physician may consider 
ordering a polysomnogram (PSG). Similarly, media outlets and 
medical societies put forward recommendations to the public 
for self-referral to a primary care or sleep physician for the 
evaluation of possible sleep disordered breathing. For example, 
in response to the recent publication of the authors’ manuscript 
on sleep and mortality,1 CBS news recommended that patients 
discuss with their physicians the need for polysomnography in 
the presence of severe snoring, restless sleep, frequent waking 
up at night, and excessive daytime exhaustion.2 Faced with con-
tinued patient concern about having sleep disordered breathing, 
clinicians need tools to identify those individuals most likely to 
have sleep disordered breathing so as to avoid unneeded refer-
ral for a PSG.

At the core of this discussion are two questions related to the 
prediction of the eventual result of a PSG in the general popula-
tion: first, how predictable is the result of a PSG, and second, 
what easily collected variables are most influential for predict-
ing the result of a PSG?

A number of previous studies have considered whether the 
respiratory disturbance index (RDI) or the apnea-hypopnea in-
dex (AHI) can be predicted with sufficient certainty using such 
clinical information; these findings reviewed below generally 
indicate limited predictive power.

In this manuscript, we consider the prediction of RDI in par-
ticipants in the Sleep Heart Health Study (SHHS)3 using mod-
ern ensemble learning algorithms to make predictions based on 
classifications of predictor variables.4 Ensemble learning algo-
rithms base their predictions on a collection (ensemble) of sim-
pler prediction equations. We focus on the prediction of mildly 
elevated RDI values, because patients with severe disease are 
presumably easier to diagnose without the aid of screening pre-
diction algorithms. The goals of this manuscript are 3-fold: The 
first is to investigate the cross-sectional prediction of RDI in a 
population-based sample using these modern ensemble learn-
ing algorithms, which sort the data based on patterns of cluster-
ing of classifiers.4 A related second goal is to investigate the 
overall predictability of RDI in this population. A third goal is 
to demonstrate the utility of ensemble learning algorithms to 
sleep researchers, as these methods are potentially useful for re-
ducing large amounts of data, such as polysomnographic data, 
to their most informative elements.

This study differs from other previous analyses that focused 
on individual predictors of RDI or change in RDI.5-8 However, 
there has been related work on the prediction of sleep disor-
dered breathing and RDI. For example, a recent review of pre-
diction formulas for severe sleep disordered breathing (RDI ≥ 
20/h) reported sensitivities varying between 76% and 96% and 
specificities varying between 13% and 54%.9 Similarly, neural 
networks have been applied to polysomnographic data for pre-
diction of RDI in a retrospectively sampled series of patients.10 
In this obese population (average BMI of 31 kg/m2), the pre-
diction accuracy for obstructive sleep apnea (OSA, defined as 
RDI ≥ 10/h) was estimated to be 91%, with 99% sensitivity and 
80% specificity. Rowley et al. tested 4 prediction algorithms 
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and concluded that prediction algorithms may not be able to 
accurately discriminate OSA, yet may be useful for identify-
ing people with severe disease (RDI ≥ 20/h) for split-night pro-

tocols.11 Zerah-Lancer et al. evaluated the predictive value of 
pulmonary function parameters for moderate sleep apnea (de-
fined as an RDI ≥ 15/h) using a logistic regression analysis of a 
population of obese snorers,12 finding a sensitivity of 98% and 
specificity of 86%. Further work in clinical obese populations 
focusing on the prediction of sleep apnea from body habitus 
measurements has been published.13,14 Prediction of OSA has 
also been considered in children.15 A logistic regression analy-
sis of data from a retrospective sample was performed by San-
taolalla et al.16; the authors found a sensitivity of 75% and a 
specificity of 66%. Logistic regression models also were used 
to evaluate the accuracy of the Berlin Questionnaire for predict-
ing mild sleep apnea (RDI ≥ 5/h).15 A sensitivity of 86% and a 
specificity of 77% were found. Finally, in related work, snoring 
has been shown to predict daytime sleepiness independently of 
sleep disordered breathing.18

Our investigation differed from these previous analyses in 
several important aspects. First, by using ensemble statistical 
learning algorithms, we were able to explore potentially high-
dimensional interactions among multiple predictors, which 
may convey useful aggregate information. Moreover, instead 
of considering the statistical significance of individual predic-
tors in a typical model-based approach, we considered the over-
all predictability of RDI based on the algorithm classifications. 
Secondly, our data sample was different from the typical obese, 
clinically referred populations used in much of the previous re-
search on RDI prediction. Many of these studies focused on 
moderate or severe sleep apnea. Instead, we considered com-
munity-based screening for mild sleep apnea.

METHODS

Data
The data are from the SHHS, a multicenter set of cohort stud-

ies with participants recruited from the Atherosclerosis Risk in 
Communities Study (ARIC), the Cardiovascular Health Study 
(CHS), the Framingham Heart Study, the Strong Heart Study, 
and the Tucson Health and Environment cohorts. The full de-
tails of the study design have been reported.3 Participants in 
the SHHS initially completed a questionnaire about their sleep 
habits and an in-home overnight PSG as described previously.19 
Approval for the study protocol was obtained from the insti-
tutional review boards of the participating institution and in-
formed consent was obtained for all subjects.

Extensive covariate data are available from the parent cohorts 
and from the additional data collection that was part of the SHHS. 
For this analysis, we focused on those predictors that would 
routinely be collected during a clinical evaluation or by simple 
questioning along with body habitus data. The predictors consid-
ered included body mass index (BMI), age, gender, race (white, 
black, or other), blood pressure (systolic BP and diastolic BP), 
waist-to-hip ratio (“waist”), neck circumference, and whether the 
participant was on anti-hypertensive medications. Each of these 
variables has been found to be a key correlate of RDI.7,8,19-25 In 
addition, several questions from the Sleep Habits Questionnaire 
were used to reflect questions typically asked by clinicians. These 
included inquiries on snoring habits25,26 and the component ques-
tions of the Epworth Sleepiness Scale. Table 1 provides a com-
plete list of the variables considered in the algorithms.

Table 1—Predictor variables considered in the ensemble learning 
algorithms for the prediction of RDI

Body mass index
Gender
Age (years)
Race (white/black/other)
Systolic blood pressure (mm Hg)
Diastolic blood pressure (mm Hg)
Waist diameter (cm)
Hip diameter (cm)
Neck circumference (cm)
Taking anti-hypertensive medications
Angina (yes/no)
Heart attack (yes/no)
CABG (yes/no)
Coronary angioplasty (yes/no)
Other cardiac (yes/no)
Fall asleep at the dinner table (4)
Awakened by coughing (events/month)
Awakened by chest pain (events/month)
Doze off while driving (4)
Feel unrested (events/month)
Awakened by heartburn (events/month)
Hours of sleep on weekday (number)
Doze off in car (4)
Awakened by leg cramps (events/month)
Doze off while lying down (4)
House members near when (4)
Minutes to fall asleep (number)
Have you ever snored (Y/N/Don’t Know)
How often do you snore (4)
How loud is your snoring (4)
Snoring increasing or decreasing (4)
Nap 5 minutes or more (events/week)
Awakened for bathroom (events/month)
Not get enough sleep (events/month)
Awakened by noise (events/month)
Awakened by joint pain (events/month)
Doze off as a passenger (4)
Doze off while sitting (4)
Doze off while sitting in public (4)
Doze off while reading (4)
Doze off while sitting and talking (4)
Feel sleepy during the day (events/month)
Awakened by shortness of breath (events/month)
Awakened by sweats (events/month)
Trouble falling asleep (events/month)
Time falling asleep, weekday (AM/PM)
Time falling asleep, weekend (AM/PM)
Take sleeping medication (events/month)
Time wake up, weekday (AM/PM)
Time wake up, weekend (AM/PM)
Doze off watching TV (4)
Unable to resume sleep morning (events/month)
Unable to resume sleep night (events/month)

(events/month) represents the number of events per month
(4) represents a four point scale: no chance, slight chance, moderate 
chance, high chance.
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We emphasize that the variables included in the predic-
tion model can be easily obtained in the course of a standard 
clinical visit. In addition, because the focus was on prediction, 
causal directions are not relevant. For example, blood pressure 
measurements and anti-hypertensive medication use (probable 
causal outcomes of sleep disordered breathing24,27,28) were in-
cluded as a predictors.

Analysis
Ensemble learning algorithms, algorithms based on aggre-

gating information from “a committee” of prediction equations, 
were used to predict probabilities of RDI for various thresholds. 
Specifically, these algorithms iteratively implement a predictor 
or classifier and the resulting prediction equation is a weight-
ed combination (ensemble) of classifiers. We investigated the 
random forests29 and boosting30 algorithms, though focus on 
boosting for simplicity, as it consistently (though only slightly) 
outperformed random forests on our data in terms of prediction 
error and areas under estimated ROC curves. Boosting algo-
rithms are well known to be easily implementable and, in the 
terms of size of estimated prediction error, performed the best 
among the other prediction algorithms used.31 Here we give an 
overview of boosting and its inputs.

In boosting, a collection of weak classifiers, i.e., ones whose 
error rate is slightly better than guessing,4 are used to produce 
a single strong one. In general, boosting proceeds iteratively, 
adding classifiers to the prediction algorithm in such a way that 
the next classifier focuses on the residuals of the previous clas-
sifiers. The implementation of boosting used herein performed 
the following: it took the current prediction algorithm and used 
regression to find a decision tree that minimized the errors in 
the most current fit; a so-called shrinkage parameter weakened 
the impact of the individual classifiers, preventing over-fitting 
for the individual classifiers while yielding influence to the 
resulting ensemble of classifiers. The important inputs were: 
the number of trees, the size of each tree (referred to as the 
interaction-depth), the shrinkage parameter, and how large of a 
subset of the data is used to create each tree (referred to as the 
bag fraction).

A key benefit of boosting is its insensitivity to over-fitting 
when including multiple extraneous or collinear predictors. 
Hence our strategy was to use a complete battery of predic-
tors that could easily be collected in a routine clinical exam. 
To obtain a simpler prediction model, we then explored subset 
models including only the most influential variables that ap-
proximated this full model.

The maximum percentage of missing data for the variables 
considered was 4% of the original 6,441 subjects. However, 
discordant missingness across the variables considered reduced 
the number of subjects to 5,530. The observations with com-
plete data on all of the predictors were split randomly into train-
ing (4,147 participants) and validation sets (1,383 participants). 
The outcome of interest was a binary variable representing 
whether RDI was larger or smaller than a specified cut-off; we 
considered 5, 7, and 9 events per hour.

With regard to sleep measurement, unattended nocturnal 
polysomnography was conducted in each participant’s home 
containing: C3-A2 and C4-A1 electroencephalograms, right 
and left electroculograms, a single bipolar electrocardiogram, 

and a chin electromyogram, pulse oximetry (oxyhemoglobin 
saturation), and inductance plethysmography (for measuring 
chest and abdominal excursions). Details on equipment, pro-
tocol, failure rates, scoring, and quality assurance and control 
have been previously published.32 An apnea was identified if 
airflow was absent or nearly absent for ≥ 10 sec. A hypopnea 
was identified if discernible, discrete reductions in airflow or 
thoracoabdominal movement (≥ 30% below baseline values) 
occurred for ≥ 10 sec. The respiratory disturbance index (RDI) 
was defined as the number of apneas or hypopneas with a 4% 
decrease in oxygen saturation per hour slept.

We note that the RDI is a count, i.e., events per hour, and 
hence an alternate statistical approach might not categorize 
RDI, but instead treat the apnea and hypopnea events compris-
ing RDI as Poisson or overdispersed Poisson counts, weighted 
by the total time asleep. This approach was explored; however, 
it was abandoned for the more easily interpreted prediction of 
exceeding a clinical cut-point or threshold for elevated RDI. In 
addition, we note that, the primary goal is to assist a physician 
in predicting individuals at risk for sleep disordered breathing, 
for which a PSG may be needed and treatment recommended. 
In contrast, approaches for modeling RDI as a Poisson random 
variable would focus on modeling the majority of the subjects 
having low counts.

The algorithms were developed and “trained” using 10-fold 
cross-validation.4. In this approach, groups of 10 participants 
were repeatedly eliminated from the training set, such that the 
algorithm was built on the remaining (4,147 – 10) subjects. The 
prediction error was estimated by comparing the actual out-
comes on the subjects not used in building the prediction equa-
tion with the predicted outcomes. The boosting algorithm was 
run with 10,000 trees, a training fraction of 90%. Otherwise, 
the default values were employed, including setting the interac-
tion depth to one, implying that simple regression stumps were 
used to create the ensemble, the shrinkage rate to 0.0001, which 
protects against over-fitting, and the out of bag fraction to 0.5, 
which forced 50% of the data to be used in the creation of the 
weak classifiers included in the prediction algorithm. Each of 
the remaining tuning parameters were varied and cross-valida-
tion prediction errors checked (results not shown) to evaluate 
the robustness of results to these assumptions.

The separate validation set was not involved in the training 
of the algorithms. The results presented in the following section 
are based on implementing the trained prediction algorithms on 
the validation set. In the running of the prediction algorithm, 
the questionnaire data with 4 ordered outcomes (see Table 1) 
were treated as factors, while the events-per-unit-time data 
were treated as continuous.

Analyses were performed using the R statistical software 
package (version 2.5.0)33 and specifically using the gbm library 
listed at the Comprehensive R Archive Network (www.cran.r-
project.org).

RESULTS
Table 2 shows the basic characteristics of the sample. The 

average age for both men and women was approximately 65 
years; weight-related measurements demonstrate that the sam-
ple was, on average, moderately overweight. Table 3 highlights 
that the majority of participants had very low RDI values, al-
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to one, depicted in the upper left hand corner of the plot, and 
random guessing corresponding to the identity line. The esti-
mated ROC curve for the boosting algorithm was similar to, but 
slightly above that of the random forest algorithm. The area un-
der the curve (AUC) for each ROC curve was calculated, with 
more desirable AUCs being closer to 1. A crude comparison 
suggests that they are similar for the 2 algorithms, estimated 
as 0.73 and 0.74 for random forests and boosting, respectively. 
A 95% nonparametric percentile bootstrap confidence interval 
estimate of the ratio of the boosting AUC versus the random 
forests AUC yielded [0.996, 1.028], suggesting no statistically 
significant difference in prediction between the 2 methods.

Because the performance of the boosting and random for-
ests algorithms was consistent across all analyses, we focus on 
the results of the boosting algorithm. Figure 2 displays the esti-
mated densities for the predicted probability of disease for the 
diseased and non-diseased groups under the boosting algorithm 
for predicting an RDI ≥ 7 events/h. There was considerable 
separation in the 2 curves, indicating satisfactory performance 
of the algorithms with an RDI cut-point large enough to be 
clinically relevant. For comparison, Figure 3 displays the same 
density plot employing a cut-point of 9 events/h. While the 
prediction improves in the right tail of the distribution, there 
is greater overlap of the 2 densities overall. The performance 

though over 1,400 (26%) had evidence of mild disease, with an 
RDI > 11 events per hour.

Figure 1 depicts the estimated receiver operating characteris-
tic (ROC)34,35 for the boosting prediction algorithm. This curve 
displays the trade-off between the true positive and false posi-
tive rates for predicting an RDI ≥ 7 events/h, with an ideal algo-
rithm corresponding to sensitivity and specificity each equaling 

Table 2—Baseline characteristics of the total sample stratified by RDI 
status (< 7 vs. ≥ 7 events per hour) and gender

Males Females
RDI < 7

Mean (SD)
RDI ≥ 7

Mean (SD) 
RDI < 7

Mean (SD)
RDI ≥ 7

Mean (SD)
Age (years) 63.50 

(10.61)
65.88 
(9.98)

63.37 
(10.58)

67.15 
(10.29)

BMI (kg/m2) 27.10 
(3.87)

29.55 
(4.66)

27.09 
(4.97)

31.26 
(6.57)

Neck (cm) 40.15 
(2.96)

41.76 
(3.38)

34.92 
(2.93)

37.01 
(3.31)

Weight (kg) 82.50 
(13.17)

89.62 
(15.86)

69.98 
(13.93)

79.97 
(17.77)

SBP (mm) 130.32 
(18.61)

132.75 
(18.29)

129.29 
(18.91)

133.78 
(19.31)

DBP (mm) 75.54 
(11.03)

75.75 
(11.45)

72.73 
(11.03)

72.66 
(10.71)

ESS 11.61 
(3.19)

12.27 
(3.38)

11.12 
(2.98)

11.50 
(3.18)

N 1,336 1,278 2,103 813

ESS,  Epworth Sleepiness Scale

Figure 1—Estimated ROC curve for the boosting algorithm from the 
validation data for predicting an RDI ≥ 7 events per h.
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Table 3—Distribution of RDI by gender in the total sample

RDI (events/hour)
Males

No. (%)
Females
No. (%)

Total
No. (%)

(0.0, 5.0) 1,090 (0.42) 1,828 (0.63) 2,918 (0.53)
(5.0, 7.0) 246 (0.09) 275 (0.09) 521 (0.09)
(7.0, 9.0) 191 (0.07) 178 (0.06) 369 (0.07)
(9.0, 11.0) 165 (0.06) 121 (0.04) 286 (0.05)
 > 11.0 922 (0.35) 514 (0.18) 1,436 (0.26)

Figure 2—Plots displaying the distributions of the predicted probability 
of disease from the boosting algorithm for subjects with an actual RDI 
> 7 events/h (dashed) and < 7 events/h (solid). The distributions were 
estimated from the validation set.
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By appropriately permuting inputs to the iterations of the al-
gorithm, ad hoc measures of relative variable importance can 
be quantified. With regard to relative variable importance, a 
participant’s neck circumference, BMI, age, snoring frequency, 
and waist circumference had the most influence on prediction 
(listed from greatest to least influence in Figure 4). These listed 
variables were followed by how loudly the participant snored, 
gender, sleep latency, and whether or not he or she fell asleep 
while sitting and reading.

Finally, we applied the algorithm using only those variables 
that were deemed most influential from the boosting algorithm 
as predictors. In addition to those listed above, these also in-
cluded presence or absence of a previous heart attack. Table 5 
lists the AUC values under the ROC curves for various predic-
tion methods using either all predictors or the subset of most in-
fluential predictors. The AUC results for the boosting algorithm 
are the same for both predictor sets. For the predictor subset, 
we also show predictions obtained using neural networks and 
logistic regression, treating continuous variables as linear and 
incorporating no interactions. These represent the most fre-
quently used techniques for RDI prediction. The logistic regres-
sion model had a higher AUC than random forests and neural 
networks on this predictor space. The boosting algorithm had 

of the prediction algorithm did not change substantially for the 
lower RDI cut-off of 5 events/h. For this reason, the remaining 
results are provided for the RDI cutoff ≥ 7 events.

For a cut-off of 7 events/h, the area under the ROC curve 
was 0.74. Table 4 shows the estimated sensitivity, specificity, 
positive and negative diagnostic likelihood ratios (DLR+ and 
DLR−), and positive and negative predictive values (PPV and 
NPV) for 5 thresholds for the predicted probability of an RDI 
≥ 7 events/h from the validation data set. The results suggested 
a difficulty in obtaining appropriate specificity, similar to the 
generally low specificity observed in related literature. For 
example, consider the rule of surmising that a subject has an 
actual RDI > 7 if their estimated probability from the boost-
ing algorithm is larger than 30%. Using the validation set, the 
resulting sensitivity of this procedure is estimated to be 53%, 
while the specificity is 84%. Thus, at each of the considered 
thresholds, the algorithm appears to rule out disease much bet-
ter than it detects it.

Figure 4—Variable importance plot for boosting predictions for the top 
15 most influential predictors based on the validation data set. Variable 
names (compare with Table 1) are neck = neck circumference; BMI = 
body mass index; age = age in years; Snore frequency = response to 
the question “How often do your snore?”; Waist = waist circumference; 
Snore loud = response to “How loud is your snoring?”; Gender = gender 
of participant; Minutes = minutes to fall asleep; Sit & read = response to 
the question “What is the chance that you would doze off or fall asleep 
while sitting and reading?”; MI = MD said patient had a heart attack; 
HTN Meds = whether or not the participant is taking anti-hypertensive 
medications; SBP = systolic blood pressure; In car = response to the 
question “What is chance that you would doze off or fall asleep while in a 
car while stopped for a few minutes in traffic?”; CA = MD said patient had 
coronary angioplasty; TST = total sleep time.

Relative Influence
0 3.8 7.5 11.3 15 18.8 22.5 26.3 30 33.8

TST
CA

In car
SBP

HTN Meds
MI

Sit & read
Minutes
Gender

Snore loud
Waist.

Snore freq
Age
BMI

Neck

Variable importance plot for boosting

Figure 3—Plots displaying the distributions of the predicted probability 
of disease from the boosting algorithm for subjects with an actual RDI 
> 9 events/h (dashed) and < 9 events/h (solid). The distributions were 
estimated from the validation set.
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Table 4—Estimated sensitivity, specificity, diagnostic likelihood ratios, 
and positive and negative predictive values for various thresholds for the 
predicted probability of an RDI ≥ 7 events per hour using the validation 
data set

Threshold for
predicted 
probability Sens. Spec. DLR+ DLR- PPV NPV

0.1 1.00 0.07 1.07 0.56 0.39 0.97
0.2 0.93 0.32 1.37 0.21 0.45 0.89
0.3 0.82 0.56 1.86 0.33 0.53 0.84
0.4 0.66 0.70 2.20 0.48 0.57 0.77
0.5 0.46 0.81 2.50 0.66 0.60 0.72

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/33/12/1641/3741896 by guest on 24 April 2024



SLEEP, Vol. 33, No. 12, 2010 1646 Prediction of Mild Obstructive SDB—Caffo et al

sults are not directly comparable, as their clinical cut-off (10 
events/h) and definition of an obstructive hypopnea differed 
from ours. A similarly high sensitivity (92.2%) was seen in an-
other clinically referred population in Pillar et al.,36 though their 
specificity was quite low (18.2%, again, using a different gold 
standard definition with a cut-off of 10 events/h). When the au-
thors repeated the prediction on a non-referred population, their 
sensitivity dropped dramatically (32%), and the specificity in-
creased in turn (94%).

Prediction performance from referral populations is per-
haps more interesting for distinguishing between moderate and 
severe cases. In the study by Rowley et al.,11 a prediction al-
gorithm was developed to screen patients for split night proto-
cols. The authors reported success with classifying severe and 
moderate cases, but less success with screening for the disease 
itself. Again, the issue was one of specificity, with reported val-
ues between 13% and 54%.

Clinical subjects deemed at risk for sleep apnea were con-
sidered in Zerah-Lancner et al.12 They found a high sensitivity 
(98%) and a high specificity (86%) in prospective validation 
of a prediction algorithm obtained using stepwise logistic re-
gression. Their procedure was suggested as a screening tool to 
prevent polysomnograms for low-risk subjects refereed to sleep 
clinics. In contrast, our prediction methods would be more use-
ful in the referral process.

Similar to the prediction algorithms developed on referral 
subjects, notable work has appeared on obese populations. 
Sharma et al.13 considered obese subjects presenting to the 
hospital for non–sleep-related symptoms. Their subjects pre-
sented no overt obstructive sleep apnea symptoms. As would 
be expected, they saw a decrease in the sensitivity over stud-
ies employing referral subjects, and an increase in specificity 
(89.2 and 88.5, respectively). Similarly, Dixon and colleagues14 
reported similar results in obese subjects who were considered 
for laparoscopic adjustable gastric band surgery.

We do not discuss the related methodology of finding sig-
nificant predictors of obstructive sleep apnea,5-8 as our focus 
was on prediction of OSA, regardless of the significance or 
causal foundation of the inputs. However, measures of variable 
importance, a concept related to finding significant predictors, 
were explored. Across nearly all methods, neck circumference 
produced the greatest reduction in prediction error and had the 
largest measure of variable importance. Perhaps more novel is 
the decomposition of the various components of snoring and 
the suggestion that snoring frequency and vigor (loudness) 
have the largest impact among the snoring-related questions on 
the prediction of RDI.

Measurement error in RDI may degrade prediction perfor-
mance. Use of a more stable gold standard measure of sleep 
disturbance, such as those based on multiple night studies may 
allow for better prediction and more accurate validation of pre-
diction equations. However, night-to-night RDI measurements 
have shown good stability.37

Also, we note the important role of the available variation in 
the collection of predictors. For example, race, which played no 
role in the prediction algorithm, may have a large impact that 
was not detectable given the mostly white (75%) sample. We 
reiterate that the community-based sample from the Sleep Heart 
Health is a main strength of this study. As such, the prediction 

the highest AUC, 
though it must be 
emphasized that 
the boosting algo-
rithm was used to 
identify the influ-
ential predictors.

DISCUSSION
We employed 

novel methods 
for predicting 
mild obstructive 
sleep apnea in a 
community-based 
sample. The main 
strengths of the 
approach are the 
comprehensive-
ness of the data set 
and the prediction 
algorithms used. 
Using learning en-

semble methods, we found that, among the predictor variables 
considered (see Table 1), a participant’s neck circumference, 
BMI, age, frequency of snoring, and waist circumference are 
the most informative variables for predicting RDI. In practice, 
because the prediction algorithm is based on easily collected 
data, the boosting algorithm and training data from the SHHS 
could inform early clinical diagnoses of mild obstructive sleep 
apnea and might be used to identify who should have monitor-
ing of sleep habits or referral for PSG.

For the boosting prediction algorithm, a threshold of 0.4 for 
the predicted probability of having an RDI of 7 or more events 
per hour resulted in a diagnostic likelihood ratio plus (DLR+) 
of 2.20 and a DLR− of 0.48. That is, the estimated post-test 
odds of an RDI over 7 are 2.20 times that of the pre-test odds in 
the light of a positive classification by the algorithm, and 0.48 
times lower in the presence of a negative classification. This 
somewhat modest increase in odds of a high RDI may seem 
contradictory to the perceived amount of information contained 
in the variables used for prediction. However, we stress the im-
portant distinction that our prediction results apply to a com-
munity-based sample, and could be used as a component of a 
referral process or in public health campaigns.

Our results contrast with the better sensitivity for the predic-
tion of mild or moderate obstructive sleep apnea seen in popu-
lations with existing referrals to sleep clinics. In these studies, 
useful information in the referral process is embedded in the 
sample that is not present in the SHHS. Hence, the high number 
of PSG-confirmed cases generally results in algorithms with a 
high sensitivity on the population in question.

In the terms of the prediction algorithm employed, the most 
similar paper is the work by Kirby et al.,10 who used neural 
networks to predict obstructive sleep apnea in a retrospective 
study of chart-reviewed patients referred to sleep clinic. Their 
reported high sensitivity (98.9%) is to be expected, while the 
reported confidence interval for the specificity (70% to 90%) 
contains our estimate (71%, see Table 5). However, the re-

Table 5—Areas under the ROC curve for 
prediction of RDI ≥ 7 events per hour using 
the validation data set

Method AUC
Using all predictors

Boosting 0.747
Random Forests 0.734

Using subset* 
Boosting 0.747
Random Forests 0.708
Neural Networks 0.711
Logistic regression 0.716

*Neck circumference, BMI, age, snoring 
frequency, waist circumfer-ence, snoring 
loudness, gender, minutes to falling asleep, 
response to “What is the chance that you 
would doze off or fall asleep while sitting and 
reading?”, and presence or absence of a heart 
attack.
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21. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occur-
rence of sleep-disordered breathing among middle-aged adults. N Engl J 
Med 1993;328:1230-5.
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23. Kripke D, Ancoli-Israel S, Klauber M, Wingard D, Mason W, Mullaney 
D. Prevalence of sleep-disordered breathing in ages 40-64 years: a popu-
lation-based survey. Sleep 1997;20:65-76.
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performance found in this study represents a useful baseline for 
assessing the value of the RDI-related information contained in 
these measurements in the population.

However, further work remains warranted to validate pre-
diction algorithms for this area. Specifically, the data splitting 
methods used to evaluate prediction error only investigate so-
called internal validity; that is, evaluating the performance of 
the prediction algorithms using data from the same study used 
to create them. Evaluating external validity, using data from al-
ternative studies, would give much better evidence regarding 
the robustness of the algorithms in the terms of generalizing to 
other populations. In addition, application of the algorithms to 
sleep clinic samples would yield important information on the 
role and accuracy of the referral process.

It is important to stress that the sample used in development 
largely informs the potential utility of the prediction algorithm. 
Our predictions from the community-based SHHS are poten-
tially relevant for public health campaigns on awareness of 
sleep disordered breathing or other broad referral processes. In 
contrast, clinical samples from primary care physicians would 
be relevant for the development of checklisting rules for refer-
rals. Hence we emphasize the need a comprehensive study of 
multiple populations to fully understand the translational utility 
of algorithmic prediction of RDI.
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