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ABSTRACT

Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play key roles in the produc-
tion of mature blood cells and in the biology and clinical outcomes of hematopoietic transplants. The
numbers of these cells, however, are extremely low, particularly in umbilical cord blood (UCB); thus, ex
vivo expansion of human UCB-derived HSCs and HPCs has become a priority in the biomedical field.
Expansion of progenitor cells can be achieved by culturing such cells in the presence of different combi-
nations of recombinant stimulatory cytokines; in contrast, expansion of actual HSCs has proved to be
more difficult because, in addition to needing recombinant cytokines, HSCs seem to deeply depend on
the presence of stromal cells and/or elements that promote the activation of particular self-renewal
signaling pathways. Hence, there is still controversy regarding the optimal culture conditions that should
be used to achieve this. To date, UCB transplants using ex vivo-expanded cells have already been per-
formed for the treatment of different hematological disorders, and although results are still far from
being optimal, the advances are encouraging. Recent studies suggest that HSCs may also give rise to
nonhematopoietic cells, such as neural, cardiac, mesenchymal, and muscle cells. Such plasticity and the
possibility of producing nonhematopoietic cells at the clinical scale could bring new alternatives for the
treatment of neural, metabolic, orthopedic, cardiac, and neoplastic disorders. Once standardized, ex vivo
expansion of human HSCs/HPCs will surely have a positive impact in regenerative medicine. STEM
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INTRODUCTION

During the last two decades, umbilical cord blood
(UCB) has become an important source of hemato-
poietic cells for both research and transplantation
[1-3]. Indeed, 25 years after the first UCB trans-
plant (UCBT), more than 20,000 UCBTs have been
performed worldwide, and more than half a million
UCB units are being stored in several public UCB
banks throughout the world [1]. For certain pediat-
ric hematologic disorders—including hematologic
malignancies, bone marrow failure, and hemoglo-
binopathies—UCBTs have been shown to be as
good as bone marrow (BM) or mobilized peripheral
blood (MPB) transplants. In adult patients, how-
ever, UCBT usually results in delayed engraftment,
which is a major cause of early morbidity and mor-
tality. This latter observation seems to be due to
the fact that the absolute number of hematopoietic
cells contained in a UCB unit is significantly lower
than the numbers found in a BM or a MPB unit.
Thus, trying to increase these numbers is now a
priority and a real challenge for those working in
the UCB biology and transplantation arenas [1].

Ex vivo expansion of hematopoietic cells is one
of the ways in which the number of UCB cells can be
increased for transplantation. To date, many differ-
ent experimental approaches have been followed,
and although there have been encouraging results,
several laboratories around the world are still
working on the culture conditions that should be
used for optimal expansion. The purpose of the
present article is to give an overview of the differ-
ent approaches that have been used to expand he-
matopoietic cells from UCB and to review the im-
pact that such procedures have had in the clinic.
Some of the implications that expanding and ma-
nipulating hematopoietic stem cells (HSCs) and he-
matopoietic progenitor cells (HPCs) from UCB may
have in regenerative medicine are also discussed.

UCB Is A RICH SOURCE OF PRIMITIVE
HEMATOPOIETIC CELLS

The presence of HSCs and HPCs in UCB was first
reported by Knudtzon in 1974, who described
the presence of relatively mature myeloid pro-
genitors [4]. About a decade later, Leary and
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Ogawa documented the presence of more primitive hematopoi-
etic cells [5], and in the late 1980s, Broxmeyer et al. showed that
UCB contains vast amounts of both primitive and mature hema-
topoietic cells that could be used for hematopoietic cell trans-
plants [6].

As compared with cells from adult subjects, UCB-derived he-
matopoietic cells possess higher proliferation and expansion po-
tentials, and their capacity to self-renew is also superior to that
of adult cells. Differences in telomere dynamics and cell cycle
progression seem to explain, at least in part, the functional dif-
ferences observed between neonatal and adult cells. UCB cells
possess longer telomeres and express higher levels of certain cell
cycle regulators compared with hematopoietic cells from adult
sources. Other mechanisms that have been implicated include
differences at the level of certain transcription factor pathways,
differential gene expression profiles, and the autocrine produc-
tion of particular cytokines [7].

One milliliter of UCB contains approximately 25,000 hema-
topoietic progenitors [8, 9]. Interestingly, whereas the levels of
relatively mature progenitors are similar in UCB and in adult
sources, the frequency of primitive progenitors, including multi-
potent, erythroid, and bipotent granulo-monocytic cells, is sig-
nificantly higher in UCB than in adult marrow [8—13]. The levels
of more primitive hematopoietic cells, including long-term cul-
ture initiating cells (LTC-ICs) and SCID-repopulating cells (SRCs),
have also been found to be significantly higher in UCB compared
with adult sources [14, 15]. Such numbers, however, remain in-
sufficient when UCB units are used to transplant subjects whose
weightis >60kg. Indeed, it is known that the absolute number of
hematopoietic cellsin a cord blood unit is significantly lower than
the absolute number of hematopoietic cells obtained from a BM
or MPB unit; furthermore, it has been well documented that the
number of total nucleated cells (TNCs) or the HSC/HPC dose
transplanted per kilogram of body weight of the recipient corre-
lates with outcome [16, 17]. Accordingly, after UCBT in an adult
patient, there is usually a significant delay in engraftment of all
cell lines, as compared with BM or MPB transplants; thus, UCBTs
remain more successful in children [16].

In trying to overcome the barriers to successful UCBT, differ-
ent approaches have been assessed. Some of them have focused
on improving engraftment, whereas others have focused on in-
creasing the number of cells being transplanted. The former ap-
proach has been explored via either modulating homing of HSCs
and HPCs to BM (e.g., inhibition of CD26 by pretreatment of
hematopoietic stem and progenitor cells with diprotin A en-
hances homing and engraftment of limiting numbers of HSCs)
[18, 19], or by injecting UCB cells directly into the medullary
cavity (i.e., intrabone injection of UCB cells results in faster he-
matopoietic recovery, especially for platelets, and lower inci-
dence of acute graft-versus-host disease) [20].

The reduced cell dose that characterizes UCBTs can be in-
creased by at least two ways: on the one hand, by performing a
double cord blood transplant, and on the other hand, by infusing
ex vivo-expanded UCB cells. Hematopoietic cell transplants using
two unrelated UCB units—infused sequentially one after the oth-
er—have been a major step in optimizing UCBTs [21, 22].
Through this procedure it is possible to increase the cell dose
infused, thus making UCBTs available to a larger number of adult
patients. Interestingly, 1 month after transplant, only one of the
two units infused remains and is responsible for sustaining he-
matopoiesis, and the other unit disappears. The reason for this is
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still not fully understood; however, two recent reports have
given important insights into this issue. On the one hand, it has
been demonstrated that immunological factors are involved,
since a CD8™ T-cell subset producing and secreting interferon-vy
is generated by the engrafting unit, affecting the survival of the
second unit [23]. On the other hand, evidence has been pre-
sented indicating that total cell dose and content of colony-form-
ing cells (CFCs) and CD34 ™ cells in the engrafting unit also play a
role [24]. Regardless of the actual mechanisms behind the dom-
inance of only one unit, double-unit UCBT has shown advantages
over single-unit transplants. Current evidence, involving a large
series of patients, shows that the incidence of graft-versus-host
disease and overall survival are comparable to those reported for
single-unit UCBT; however, the vast majority (approximately
90%) of patients achieve neutrophil recovery at a median time of
only 12-15 days. Interestingly, in patients with acute leukemia,
recipients of two UCB units have a significantly lower relapse rate
than those receiving one unit.

A second approach to increasing cell dose has been the infu-
sion of ex vivo-expanded hematopoietic cells [25, 26]. The pri-
mary goal of this procedure is to generate sufficient numbers of
HSCs to optimize the graft available for transplants; however, an
equally important goal is to generate higher numbers of lineage-
committed HPCs that, although transient, will allow rapid recov-
ery from pancytopenia, thus decreasing early morbidity and
mortality [25]. For this purpose, a variety of experimental strat-
egies have been documented [25, 26]. A common factor in most
of them has been the use of particular combinations of recom-
binant stimulatory cytokines; interestingly, in some studies,
other elements (such as mesenchymal stromal cells [MSCs], a
copper chelator, or Notch ligands) have also been included. The
results obtained so far are encouraging, although we are still far
from reaching the optimal scenario in terms of expanding UCB
HSCs and HPCs ex vivo and using them in clinical settings.

HSC/HPC Ex Vivo EXPANSION: BASIC PRINCIPLES

When expanding primitive hematopoietic cells, a first issue to
consider is the selection of the input cell population. HSCs ex-
press CD34, CD49f, CD90, CD117, and CD133 antigens and are
devoid of lineage-specific markers, thus, they are regarded as
lineage-negative (Lin~) cells [27-29]. Primitive, multipotent
HPCs, on the other hand, show an immunophenotype similar to
that of HSCs, except that they do not express CD49f or CD90
[27-29]. Committed progenitors express CD38 and, depending
on their particular lineage, acquire the expression of specific an-
tigens. The immunophenotype of the input cells is of particular
importance not only for initiating the cultures but in order to
follow cell development throughout the culture period.

Functionally, HSCs are defined by their ability to long-term
reconstitute the hematopoietic system of immunodeficient ani-
mals (SRCs) or their ability to initiate and sustain long-term he-
matopoiesis in culture (LTC-ICs) [27, 30, 31], which are consid-
ered demonstrations of their multipotentiality and their capacity
to self-renew. HPCs, on the other hand, generate hematopoietic
colonies when cultured in semisolid media in the presence of
recombinant stimulatory cytokines; accordingly, they are also
known as CFCs [32].

Under normal conditions, blood cell production (hematopoi-
esis) takes place within the bone marrow, in a microenvironment
consisting of stromal cells and their products [33]. Such elements
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constitute hematopoietic niches [34-37], that is, cell-molecule
networks controlling survival, self-renewal, proliferation, and
differentiation of primitive hematopoietic cells. At least three
distinct types of marrow niches (i.e., endosteal, reticular, and
vascular) have been identified, each consisting of particular cell
types (osteoblasts, endothelial cells, macrophages, reticular
cells, adipocytes, etc.) that favor specific physiological activities
of HSCs and HPCs. Such control is achieved via direct cell-cell
contact, cell-extracellular matrix interactions, and/or the secre-
tion of regulatory molecules (cytokines) that induce stimulatory
or inhibitory signals [33]. It is clear that the hematopoietic mi-
croenvironment and the marrow niches are fundamental for
HSC/HPC development.

In keeping with the above, ex vivo growth of hematopoietic
cells requires that some of the niche elements and conditions be
reproduced in culture, so that HSCs and HPCs are able to perform
under scenarios similar to those found in vivo. Accordingly, he-
matopoietic cell proliferation, expansion, and differentiation can
take place in culture when the right conditions are present. Cell
proliferation can be defined as the production of new cells from
a particular cell population, regardless of the lineage and matu-
ration stage of the cells being produced. Thus, the ex vivo prolif-
eration of a cell population can be determined simply by quanti-
fying the total number of cells generated in culture. The
expansion potential of a particular cell population can be defined
as its capacity to generate new cells that possess immunopheno-
typic and/or functional characteristics present in the input pop-
ulation; for instance, expansion of progenitor cells can be deter-
mined by assessing the generation of new CD34™ cells or CFCs;
expansion of more primitive cells can be determined by assess-
ing the generation of LTC-ICs or SRCs. Finally, the differentiation
potential of a primitive cell population can be defined as its ca-
pacity to generate fully mature cells.

HSC and HPC growth, both in vivo and ex vivo, will depend on
both intrinsic and extrinsic elements. The former include a vari-
ety of regulatory molecules present in a cell according to its dif-
ferentiation stage and the lineage to which it belongs; the latter,
on the other hand, include all the different cell types and cell
products that form part of the microenvironment in which the
cell develops. In other words, stem/progenitor cell function de-
pends on intrinsic cell regulators that are modulated by external
signals.

HSC/HPC Ex VIvo EXPANSION: EXPERIMENTAL APPROACHES

During the last two decades, different culture conditions have
been used in protocols aimed at expanding HSCs/HPCs ex vivo.
Two important points to consider in such protocols are the input
cell population and the particular culture conditions that should
be used [38]. Regarding the first point, both unselected mono-
nuclear cells (MNCs) and particular cell fractions—enriched for
primitive cells and selected by different means—have been used
by several groups [3, 25, 26, 39—-41]. Although some expansion
has been observed when culturing MNCs, current consensus sug-
gests that best results are obtained when the input cell popula-
tion shows some degree of enrichment for primitive (CD34™ or
CD133™) hematopoietic cells [42, 43].

The selection of the input cell population is a key aspect in ex
vivo expansion protocols, since it has been demonstrated that
the developmental stage of a hematopoietic cell dictates its bio-
logical behavior. Primitive subpopulations of CD34™" cells (e.g.,

©AlphaMed Press 2013

CD34* Rh'°™ [44], CD34" CD38~ [45, 46], CD34" CD45RA™
CD717 [47], and CD34" CD45RA™ CD71~ CD90 ™ cells [48]) pos-
sess greater expansion potentials than their more mature coun-
terparts. This has been shown both in bulk cultures of purified
cells and in cultures containing one cell per well. Indeed, at the
single-cell level, it has been shown that 1 primitive multipotent
progenitor from UCB can give rise up to 70 X 10° nucleated cells
and more than 90,000 CD34™ cells, whereas a committed ery-
throid progenitor produces up to 9 X 10° nucleated cells and no
more than 5,000 CD34 ™ cells [49].

In terms of culture supplements and conditions, the common
denominator in all of the protocols reported so far has been the
presence of molecules that favor hematopoietic cell growth, par-
ticularly early- and late-acting cytokines; although, as shown be-
low, other molecules have also been assessed. The presence of
different types of stromal cells, including primary MSCs, has also
been shown to result in significant expansion, especially of more
primitive cells. Table 1 summarizes the results obtained in some
representative studies in which UCB-derived hematopoietic
stem and progenitor cells were expanded under different culture
conditions.

Hematopoietic Cytokines

The first attempts to expand primitive hematopoietic cells from
UCB, reported in the 1990s, were based on the use of different
combinations of recombinant hematopoietic cytokines and were
focused on the expansion of HPCs, assessing increments in CFC
and CD34™ cell numbers [3]. Those studies demonstrated that
the presence of cytokines is required for optimal growth of HPCs
in culture; thus, current protocols aimed at expanding primitive
hematopoietic cells from UCB include recombinant stimulatory
cytokines as part of the culture conditions, regardless of the
presence of other molecules and/or adjuvant cells. Among the
different cytokines that participate in hematopoiesis, those act-
ing at the early stages of the hematopoietic hierarchy (inducing
HSC self-renewal) (i.e., stem cell factor [SCF], FLT3 ligand [FL],
and thrombopoietin [TPO]) have been found to be essential in
favoring the expansion of primitive hematopoietic cells in vitro
[50-52]. For instance, Piacibello et al. reported that culture of
UCB CD34™ cells in the presence of FL and TPO resulted in a
146,000-fold increase in CD34 ™" cell number and a 2 X 10°-fold
increase in the number of CFCs [50]. Addition of intermediate-
acting cytokines, such as interleukin-3 (IL-3) and granulocyte-
macrophage colony-stimulating factor (GM-CSF), seems to have
a positive effect in the generation of committed HPCs, whereas
late-acting factors, such as erythropoietin (EPO) and macro-
phage colony-stimulating factor (M-CSF), usually contribute to
the production of large numbers of mature cells; however, such
late-acting cytokines do not seem to play a key role in HSC or HPC
expansion [53, 54].

Interestingly, particular combinations of intermediate- and
late-acting cytokines have been found to selectively induce the
generation of committed HPCs from specific lineages. For in-
stance, IL-3 and EPO favor the production of erythroid HPCs,
whereas GM-CSF, granulocyte colony-stimulating factor (G-CSF),
and/or M-CSF favor production of myeloid progenitors [53-55].
It is noteworthy that some controversy still exists regarding the
way in which cytokines selectively favor a particular cell lineage
over the others; both permissive and instructive models have
been proposed, and evidence supporting each one of them has
been presented [56].
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Table 1. Ex vivo expansion of UCB-derived HSCs and HPCs as reported in some representative studies
Input cell population Culture conditions CcD34* CFCs LTC-ICs/SRCs Reference

CD34" Rh™ SCF, E ND 94 ND [44]
CD34" Rh™ SCF, E ND 2.5 ND [44]
CD34" CD45RA™ CD71~ CD90~ SCF, IL6, PX, G, M, E 900 241 ND [48]
CD34" CD45RA~ CD71~ CD90* SCF, IL6, PX, G, M, E 32,000 4,719 ND (48]
CD347 FL, TPO 146,000 2,000,000 ND [50]
MNC SCF, FL, TPO, FGF, MSCs <1 1.7 ND [42]
CcD34* SCF, FL, TPO, FGF, MSCs 31 20 ND [42]
MNCs SCF, TPO, G, MSCs 37 18 2 [39]
CD34" CD38™ Lin~ MSCs 1 3 <1LTC-ICs [68]
CD34* CD38™ Lin~ SCF, FL, TPO, IL6 4 20 <1LTC-IC [68]
CD34" CD38™ Lin~ SCF, FL, TPO, IL6, MSCs 35 90 4 LTC-ICs [68]
MNC SCF, FL, TPO, IL6, IL3, GM, G <1 4 <1LTC-IC [43]
CD34" CD38™ Lin~ SCF, FL, TPO, IL6, IL3, GM, G 780 220 9 LTC-ICs [43]
CD34" CD38™ Lin~ SCF, FL, TPO, IL6, IL3, GM, G 1,280 612 12 LTC-ICs [43]
CD133" SCF, FL, TPO, IL6, TEPA 89 172 SCID engraftment?® [77]
cD34™ SCF, FL, TPO, IL3, IL6, Deltal 222 ND 16 SRCs [75]
Lin™ SCF, FL, TPO; bioprocess system 80 64 29 LTC-ICs/11 SRCs [80]

The results presented correspond to mean fold increase as compared with day 0. Culture periods varied from 7 days in some studies to >40 days in

others.

?Engraftment observed in SCID mice was significantly higher than that of unexpanded cells.

Abbreviations: CFC, colony-forming cell; E, erythropoietin; FGF, fibroblast growth factor; FL, FLT3 ligand; G, granulocyte colony-stimulating factor;
GM, granulocyte-macrophage colony-stimulating factor; HPC, hematopoietic progenitor cell; HSC, hematopoietic stem cell; IL, interleukin; LTC-IC,
long-term culture initiating cell; M, macrophage colony-stimulating factor; MNC, mononuclear cell; MSC, mesenchymal stromal cell; ND, not
determined; PX, PIXY321 (granulocyte-macrophage colony-stimulating factor/interleukin-3 chimeric molecule); SRC, SCID-repopulating cell; TEPA,

tetraethylenepentamine; TPO, thrombopoietin; UCB, umbilical cord blood.

On the basis of the above, it is clear that recombinant hema-
topoietic cytokines are key players in the ex vivo expansion of
multipotent and committed HPCs, as well as the massive produc-
tion of precursor and mature cells. To date, however, it has been
clearly demonstrated that, besides early-acting cytokines, the
presence of niche elements—that is to say, stromal cells and/or
molecules involved in cell-cell interactions—is required for sig-
nificant generation of HSCs ex vivo [38, 57-59].

Cocultures With Stromal Cells

In keeping with the fact that the in vivo development of HSCs and
HPCs takes place in close association with microenvironment
cells [33-37], ex vivo systems have been established in which
stromal cells are used as feeder layers, to allow the expansion of
primitive hematopoietic cells. For this purpose, different types of
stromal cells have been assessed, including primary whole bone
marrow stroma, endothelial cells, stroma cell lines, and MSCs,
the latter from different tissues [39—41, 60—63]. These studies
have demonstrated that stromal cells, particularly MSCs, are ca-
pable of promoting the ex vivo expansion of primitive cells in a
process that may involve both cell-to-cell contact and cytokine
secretion.

When UCB CD34™ cells are cultured in the presence of MSCs
alone, the increments observed in CFC and CD34 ™ cell numbers
are significant but usually modest [39, 64—-68]. It has been
shown that MSCs produce and secrete a variety of hematopoi-
etic cytokines, including some colony-stimulating factors, sev-
eral interleukins, and a few chemokines [66, 69]; thus, it seems
that the stimulatory effect of MSCs on hematopoietic cells oc-
curs, at least in part, via production and secretion of cytokines. It
is noteworthy, however, that under these conditions, better re-
sults are obtained when direct contact between MSCs and
CD34™ cells is allowed, suggesting that participation of cell-asso-
ciated molecules and membrane-bound cytokines is also impor-
tant. Indeed, Wagner et al. [66] and Flores-Guzman et al. [68]
found significantly higher increments in total cell numbers and
HPC expansion in cultures of UCB CD34 " cells with human MSCs
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in which contact conditions were favored, as compared with
noncontact conditions. Such a contact-dependent growth has
been shown to be more pronounced in cultures of more primi-
tive (e.g., CD34" CD38~ Lin~) cells, as compared with more ma-
ture (e.g., CD34" CD38™ Lin~) cells, which is in keeping with the
fact that the in vivo development of stem cells and primitive
progenitors occurs in close association with bone marrow stro-
mal cells, and the idea that HSCs are more dependent on the
niche than committed HPCs [34-36].

When MSC-based cultures are supplemented with recombi-
nant cytokines the increments observed in CFCs and CD34 ™ cells
are even higher, particularly when early-acting cytokines are
present in culture [58, 59, 68]. Interestingly, evidence indicates
that when cultures are supplemented with early-, intermediate-,
and late-acting cytokines the presence of MSCs is not necessary
for the production of committed HPCs or mature cells [68]. How-
ever, MSCs are still required for the ex vivo generation of HSCs.
Besides MSCs, other types of stromal cells, including endothelial
cells, as well as the OP9 and AFT024 cell lines, have been used in
experimental protocols aimed at the ex vivo expansion of prim-
itive hematopoietic cells [58, 70, 71]. These studies have con-
firmed the importance of stromal cells for generation of HSCs in
culture.

Notch Signaling Pathway

Self-renewal and multilineage differentiation are fundamental
processes that define stem cells in functional terms [27]. Both
functions depend on the expression and activity of complex sig-
naling pathways, including those involving key molecules such as
Whnt, B-catenin, and Notch. Among them, the Notch pathway has
been shown to be of particular importance, since it plays impor-
tant roles in mediating cell fate decisions [72]. The family of
Notch receptors has been identified and characterized through-
out the animal scale, from flies and worms to mice and humans
[72]. In mammals, four Notch receptors (Notch 1-4) and five
ligands (Delta 1, 3, and 4 and Jagged 1 and 2) have been de-
scribed. Within the hematopoietic system, Notch signaling has
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been shown to regulate the development of multiple cell types,
including T and B cells, monocytes and macrophages, dendritic
cells, natural killer cells, and osteoclasts [73]. There is also evi-
dence for activation of the Notch pathway in HSCs located in the
bone marrow niche [74], suggesting a definitive role for Notch
signaling in HSC maintenance and differentiation.

On the basis of the above observations, two different exper-
imental approaches have recently been taken, demonstrating
that the Notch pathway can play a role in the expansion of UCB-
derived HSCs/HPCs. On the one hand, Delaney et al. cultured
UCB CD34™ cells in the presence of IL-3, IL-6, TPO, FL, SCF, and
the Notch ligand Deltal and observed a 222-fold increase in
CD34™ cell numbers and a 16-fold increase in SRC frequency;
in contrast, in control cultures there was a 68-fold increase in
CD34™ cell numbers, and no expansion was observed for SRC
[75]. Fernandez-Sanchez et al., on the other hand, cultured UCB
CD347" CD38™ Lin~ cells in the presence of SCF, FL, TPO, IL-3,
IL-6, GM-CSF, and G-CSF in the presence of the OP9 cell line
transduced with the Deltal gene [71]. Under such conditions,
the authors found a 21-fold increase in CD34" CD38 Lin~ cell
numbers, whereas in cultures established in the presence of cy-
tokines and MSCs, or in the presence of cytokines only, the num-
bers of such cells were increased 2.4- and 0.9-fold, respectively
[71].

A Copper Chelator

Cellular copper has been found to participate in the regulation of
HSC/HPC proliferation and differentiation [76]; therefore, some
investigators have suggested that chelating such a metal could
help improve HSC/HPC growth in culture. On the basis of this
notion, Peled et al. purified CD133" hematopoietic cells from
human UCB and cultured them for 3 weeks, under large-scale
conditions, in liquid cultures supplemented with SCF, FL, TPO,
and IL-6 in the presence of the copper chelator tetraethylene-
pentamine (TEPA) [77]. The authors observed significant incre-
ments in the numbers of CD34™" cells (89-fold), CD34* CD38~
cells (30-fold), and CFCs (172-fold) [77]. Interestingly, the en-
graftment potential of the expanded cells in NOD-SCID mice was
significantly higher (60% CD45™ cells; 11% CD45" CD34™ cells)
than the one of unexpanded cells (21% CD45™ cells; 4% CD45™
CD347™ cells), thus demonstrating a clear benefit with the use of
TEPA and suggesting that such a molecule could be included in
clinical protocols.

Bioprocess Approach

An important limitation when culturing primitive hematopoietic
cells is the fact that differentiating (Lin ™) cells are rapidly gener-
ated, which, in turn, produce and secrete a wide array of mole-
cules, many of which exert inhibitory signals that affect the
growth of HSCs and HPCs [78]. In trying to overcome this limita-
tion, Zandstra and his group have developed an automated
closed-system process in which a controlled fed-batch medium
dilution approach is used [79, 80]. A key aspect of this experi-
mental approach is the continuous removal from the culture of
Lin* cells, so that accumulation of negative regulators is pre-
vented. Primitive, Lin~ cells, on the other hand, are reselected
and cultured throughout several days. Importantly, HSC density
in culture is maintained. This particular strategy, in fact, has also
been used by other groups [81, 82].

By using such a system, Zandstra and colleagues reported
significant increments, as compared with day 0, in the numbers
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of total nucleated cells (179-fold), CFCs (64-fold), CD34™" cells
(80-fold), and LTC-ICs (29-fold). Importantly, SRC were also sig-
nificantly expanded (11-fold) [80], and they are capable of mul-
tilineage engraftment when transplanted into secondary ani-
mals [79]. These results clearly suggest that such a bioprocess
approach may have clinical relevance in the near future.

UCBT WITH EXPANDED CELLS

The results obtained in the laboratory prompted the translation
of some of the experimental in vitro conditions into clinical pro-
tocols aimed at increasing the numbers of primitive UCB cells for
transplantation. Two initial studies were conducted to assess the
feasibility of using UCB expanded cells in patients with hemato-
logical diseases, breast cancer, and some other metabolic disor-
ders. In such studies, UCB cells were cultured for 10—12 days in
liquid media in the presence of recombinant cytokines, including
FL, SCF, TPO, and EPO. Expansion of CFCs and CD34™ cells was
observed in all cases, although the numbers were quite variable.
Infusion of expanded cells into patients did not significantly alter
myeloid, erythroid, or platelet engraftment; however, both stud-
ies concluded that this procedure was feasible and safe [83, 84].

In a further study, de Lima et al. used recombinant cytokines
and TEPA to expand a fraction of UCB units and infused such cells
together with the remaining of the unmanipulated fractions into
patients [85]. Once again, expanded cells did engraft (median
time to neutrophil and platelet engraftment was 30 and 48 days,
respectively); however, no changes were observed in the time to
neutrophil or platelet engraftment, as compared with transplan-
tation of unexpanded cells. Interestingly, no grade 3—4 acute
graft-versus-host disease was observed, and 100-day survival
was 90% [85]. In a preliminary report, the same group of inves-
tigators transplanted UCB cells expanded ex vivo using a MSC-
based system. As a result of the expansion protocol, increments
in the numbers of TNCs and CD34 ™ cells were modest (12-fold),
and after transplant, median times to neutrophil and platelet
engraftment were 15 and 30 days, respectively [86].

Delaney et al. described the use of the Notch ligand Deltal as
a means of inducing the expansion of HSCs and HPCs in a clinical
protocol [75]. They enrolled 10 subjects with acute leukemiain a
phase | clinical trial consisting of infusing two UCB units in each
patient, one unmanipulated and one ex vivo-expanded. Sixteen
days before the transplant, the UCB unit chosen for ex vivo ex-
pansion was thawed, CD34 " cells were enriched, and Deltal cul-
tures were established. On the day of transplant, cultures were
collected and cells were infused into patients 4 hours after infu-
sion of the unmanipulated unit. At collection time, there was a
164 + 48-fold expansion in CD34 " cells and an average fold
increase of total cell numbers of 562 = 134. The infused CD34*
cell dose derived from expanded cord blood grafts averaged 6 X
10° CD34 ™ cells per kilogram of body weight of the patient; this
compared very favorably to the number observed in unmanipu-
lated cord blood grafts (0.24 X 10° CD34™ cells per kilogram).
Two major findings were observed. First, there was a significant
reduction in the time to myeloid engraftment in those patients
who received one unmanipulated and one expanded unit (16
days; range, 7-34 days), as compared with a cohort of 20 pa-
tients undergoing double cord blood transplantation with two
unmanipulated units (26 days; range, 16—48 days). Second, en-
graftment of the expanded unit seemed to be only transient,
since in the majority of the evaluable cases, the expanded unit
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was undetectable after 20—40 days post-transplant. The above
study was the first one showing, in a most evident way, the actual
benefits of taking ex vivo-expanded cells into the clinical arena
[87].

More recently, de Lima et al. reported a study in which 31
patients with hematologic malignanices received two UCB units,
one unmanipulated and one ex vivo-expanded in cocultures with
allogeneic MSCs (14 days in the presence of SCF, FL, TPO, and
G-CSF) [88]. Coculture with MSCs resulted in a 12-fold increase in
TNCs and a 31-fold expansion in CD34™ cells. In patients who
received one unexpanded and one expanded unit, median times
to neutrophil and platelet engraftment were 15 and 42 days,
respectively; in contrast, in patients who received two unma-
nipulated units, median times to neutrophil and platelet engraft-
ment were 24 and 49 days, respectively. On day 26, the cumula-
tive incidence of neutrophil engraftment was 88% in patients
who received expanded cells versus 53% in patients who did not
receive expanded cells; on day 60, the cumulative incidences of
platelet engraftment were 71% and 31%, respectively [88]. This
study gave further support to the notion of using ex vivo expan-
sion as an efficient way to improve UCBT.

It is noteworthy that in all of the studies mentioned above,
expanded cells were always infused into patients together with
unmanipulated cells. The reasons for this are twofold: on the one
hand, it has been shown that accessory cells are required to help
HSCs/HPCs to engraft; on the other hand, preclinical results have
shown that ex vivo expansion protocols clearly favor expansion
of HPCs; however, actual expansion of HSCs is not a consistent
finding. In fact, some investigators fear that expansion protocols
may induce increments in HPC numbers at the expense of HSC
levels (i.e., HSC levels decrease in culture). Thus, the unmanipu-
lated cells are infused to help cell engraftment and to make sure
that sufficient HSCs are included in the transplanted fraction. To
date, no study has been reported in which UCBT were performed
using solely expanded cells.

HSC PLASTICITY AND REGENERATIVE MEDICINE

A general conceptin somatic stem cell biology was that such cells
were restricted in their differentiation potential to an individual
organ or system. Accordingly, HSCs would produce blood cells
only. However, during the last 15 years, a great deal of evidence
has been generated from a vast number of studies, both in mice
and humans, indicating that this concept may not be true. Al-
though it is still a controversial issue [89—-91], it seems that HSC
differentiation plasticity may be actually wider than previously
envisioned.

By using in vivo animal models, several groups presented
evidence indicating that hematopoietic cells from bone marrow
were able to generate nonhematopoietic cells, such as muscle
cells (including cardiomyocytes), hepatic cells, and neural cells
[92-96]. Interestingly, such HSC plasticity has been demon-
strated at the single-cell level, since intravenous injection of a
single HSC resulted in progeny that differentiated into epithelial
cellsin liver, lung, skin, kidney, and intestine [97]. More recently,
the differentiation of individual HSCs into mesenchymal cells has
been reported [98]. Taken together, the evidence presented so
far strongly supports the notion of the existence of HSCs with
nonhematopoietic potential. Whether all HSCs possess such a
potential or only a small subpopulation within the HSC pool does
is an issue that remains to be clarified. Also, the potential mech-
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anisms responsible for such plasticity—direct or indirect trans-
differentiation—need to be elucidated.

In keeping with these studies, the generation of nonhemato-
poietic cells from human UCB cells has recently been reported.
Functional neural cells have been derived in vitro from both
CD34™ cells and CD133™ cells from cord blood [99, 100]. Such
plasticity can be induced either by manipulation of the culture
conditions or by enforcing the ectopic expression of particular
transcription factors, such as Sox2. Importantly, UCB hematopoi-
etic cells have also been used to generate induced pluripotent
stem cells [101].

Thus, it is clear that similar to their adult marrow counter-
parts, UCB hematopoietic cells possess the capacity to give rise
to nonhematopoietic cells. It is noteworthy, however, that evi-
dence has been presented indicating that nonhematopoietic,
multipotent cells present in UCB copurify with CD45" Lin~ he-
matopoietic cells [102, 103]; thus, it is important to rule out the
presence of such nonhematopoietic stem cells when performing
plasticity studies. Evidently, the production of nonhematopoietic
cells from UCB-derived HSCs/HPCs may have important implica-
tions in regenerative medicine, since such cells—once properly
manipulated and expanded ex vivo—could be used in clinical
protocols aimed at treating a variety of neural, metabolic, neo-
plastic, orthopedic, and cardiac disorders.

CONCLUSION

Considering their intrinsic expansion, proliferation, and differen-
tiation potentials [7], UCB cells are, without any doubt, excellent
candidates for cellular and gene therapy protocols [104]. Accord-
ingly, ex vivo expansion and manipulation of HSCs and HPCs from
UCB have become a priority in the biomedical field because of
their potential impact in regenerative medicine. Early attempts
to expand primitive hematopoietic cells—based solely on the use
of recombinant stimulatory cytokines—were focused on the ex
vivo generation of HPCs (as determined by assessing CD34™ cells
and/or CFCs). Such studies were important since they estab-
lished the conceptual and experimental basis for the expansion
of progenitor cells; however, they showed little or no evidence
for the expansion of actual HSCs. Thus, these procedures were
considered of limited relevance. It was not until the use of exper-
imental strategies that included the presence of stromal cells,
the presence of elements that promote the activation of partic-
ular self-renewal signaling pathways (including the Notch path-
way), or the use of a bioprocess system that expansion of actual
HSCs was achieved (as demonstrated by assessing SRCs in limit-
ing-dilution assays and secondary engraftment in mice).

Proliferation of HSCs without differentiation (i.e., HSC expan-
sion) is considered by many as the ultimate goal of ex vivo expan-
sion protocols. Today, however, ex vivo generation of increased
numbers of progenitor cellsis also an important goal. Indeed, it is
clear that expansion of both HPCs and HSCs has clinical rele-
vance, since both types of cells play important, yet different and
complementary, roles during hematopoietic reconstitution after
transplant.

At least two of the clinical trials conducted to date (one at the
Fred Hutchinson Cancer Center [Seattle, WA] and the other at
the M.D. Anderson Cancer Center [Houston, TX]) have given en-
couraging results, demonstrating feasibility, safety, and im-
proved engraftment when using ex vivo-expanded cells for
UCBT. It is noteworthy, however, that in spite of all the efforts
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that have been made and the experience generated throughout
the years, important issues remain to be solved in terms of de-
veloping optimal laboratory conditions for producing such cells
at clinical scale. Peter Zandstra and his group (Toronto, ON, Can-
ada) have developed laboratory conditions in which many of the
current limitations for UCB cell expansion can be overcome
[105]. Such an engineered system is more complex than the stan-
dard culture conditions used by most groups working on cell
expansion; thus, it may not be easily established. However, at
least some of the principles involved in such a bioprocess system
(e.g., continuous dilution of inhibitory signaling factors while
maintaining HSC density) may be adapted and applied to the
particular ex vivo systems used in most laboratories.

In vivo, the HSC niche has been shown to be extremely com-
plex, including not only soluble and cell-associated cytokines, but
a wide variety of cells and their products. Accordingly, novel
strategies, such as culturing stromal cells with other niche ele-
ments (such as extracellular matrix proteins [106, 107] and mor-
phogens [108]) or the enforced expression of specific genes play-
ing key roles in self-renewal, such as HOXB4 or SALL4, in HSCs/
HPCs [109, 110], may help to improve culture conditions and
make ex vivo expansion a more efficient method to increase
hematopoietic cell numbers for clinical application.

Recent evidence indicates that HSCs not only may be the
source of all the different types of mature blood cells but also
may be able to give rise to a variety of nonhematopoietic cells
[111]. This s, of course, still a controversial issue that needs to be
clarified through significant laboratory studies, both in vivo and

in vitro. The evidence of a pluripotent HSC, however, is robust.
Thus, besides the production in the laboratory of increased num-
bers of HSCs and HPCs, the fact that it may be possible to gener-
ate neural, muscle, cardiac, and mesenchymal cells from UCB
hematopoietic cells may have important implications in the fu-
ture for the treatment of a wide variety of diseases. Finally, as
long as we are able to develop reliable, safe, and large-scale
conditions to expand and manipulate HSCs/HPCs in culture, clin-
ical application of such UCB-derived cells will be a readily and
standard practice in the not too distant future.
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