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ABSTRACT

It is commonly assumed that mammalian cochlear cells do not regenerate. Therefore, if hair

cells are lost following an injury, no recovery could occur. However, during the first postnatal

week, mice harbor some progenitor cells that retain the ability to give rise to new hair cells.

These progenitor cells are in fact supporting cells. Upon hair cells loss, those cells are able to

generate new hair cells both by direct transdifferentiation or following cell cycle re-entry and

differentiation. However, this property of supporting cells is progressively lost after birth. Here,

we review the molecular mechanisms that are involved in mammalian hair cell development

and regeneration. Manipulating pathways used during development constitute good candidates

for inducing hair cell regeneration after injury. Despite these promising studies, there is still

no evidence for a recovery following hair cells loss in adult mammals. STEM CELLS

2017;35:551–556

SIGNIFICANCE STATEMENT

Up to now there is no treatment to halt or replace hair cell in mammals. Recently progenitor
cells have been identified and retained the capacity—at least at perinatal stages—to proliferate
and/or differentiate. In this Review, we discuss recent progress in the identification of cochlear
progenitor cells that could proliferate and/or differentiate into hair cells. We also review various
signaling pathways that participate to cochlear development and discuss their potential use in
hair cell regeneration both in vitro and in vivo.

INTRODUCTION

Neurosensory hearing loss affects a broad range
of people worldwide and results mainly from an
irreversible loss of cochlear hair cells. Environ-
mental factors, ototoxic medications, and genet-
ic predispositions are all important contributors
to hair cell loss. The inner ear is an organ of
exquisite organization, harboring the cochlea
responsible for hearing and the vestibule
responsible for balance. Both structures are
organized in a sensory epithelium containing
hair cells surrounded by supporting cells and
neurons contacting the hair cells. In the cochlea,
the hair cells and the supporting cells form the
organ of Corti. In the vestibule, they are orga-
nized in different structures: saccule, utricule,
and cristae. Hair cells detect mechanical stimuli,
by deflection of stereocilia present at their api-
cal surface, and then transmit the information
to the neurons through their dendrites. The
information is then carried by the axon to the
proper region of the brain. The neurons
are grouped in ganglia, either the spiral ganglion

for the cochlea or the vestibular ganglion for the
vestibule.

In the mammalian cochlea, it has been long
admitted that hair cells do not regenerate, ham-
pering a possible recovery. Recent studies have
uncovered mechanisms in which new hair cells
can be formed from the surrounding supporting
cells. These cells act as hair cell progenitors
either by re-entering the cell cycle and dividing
to give rise to new hair cells, or by direct differ-
entiation into hair cells, to so-called transdiffer-
entiation. In this Review, we will focus on the
mechanisms and signaling pathways involved in
such recovery of hair cell loss.

DEVELOPMENTAL HAIR CELL PRODUCTION

The formation of the inner ear needs several
signaling pathways orchestrated in space and
time during embryogenesis. The development
of the mouse inner ear is initiated as early as
embryonic day 7.5 (E7.5) by specification of a
particular region of the anterior ectoderm, the
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preplacodal region, which requires different signals [1]. From
the mesoderm and the neural plate, fibroblast growth factor
(FGF) signaling is important to induce otic fate [2]. FGF3 and
FGF10 have been shown to be important for the formation of
otic territory [3, 4]. Besides, FGF8 is also required for otic
induction, as it acts to promote or maintain FGF10 expression.
Moreover, otic induction requires the inhibition of Wnt and bone
morphogenetic protein (BMP) signaling, which are both responsi-
ble for ectodermal formation [5, 6]. The preplacodal region is
then characterized by the expression of several transcription fac-
tors such as Six1, Six4, Eya1, and Eya2 (reviewed in [7]).

Once the preplacodal region has been specified, it thick-
ens to give rise to the otic placode at around E9. The induc-
tion of the otic placode is under the control of signaling
cascades such as FGFs and Wnts [8–10]. FGF signaling induces
the expression of transcription factors from the paired box
(Pax) family, such as Pax2 and Pax8. Pax2-positive cells then
can give rise to either otic cells or epidermis [11]. For the
induction of an otic fate, activation of Wnt signaling is
necessary in these Pax2-positive cells. Indeed, Wnt1, 3a, 6,
and 8 are secreted by the hindbrain and rhombomeres act
instructively to direct Pax2-positive cells to an otic fate [8, 12,
13]. Afterward, the placode will start to invaginate to form
the otic cup [14]. Then, the otic cup closes to form the otic
vesicle, which will generate nearly all cell types of the inner ear.
Starting around E12, the ventral part of the developing otocyst
is specified in a so-called prosensory area, expressing Sox2, that
will later give rise to the organ of Corti. This territory is spatially
defined by a gradient of BMPs across the cochlear duct (increas-
ing concentrations from the K€olliker’s organ or inner sulcus, the
prosensory domain to the outer sulcus) allowing the specifica-
tion of sensory versus non-sensory domain [15]. Notch signaling
through its ligand Jagged1 is also acting for prosensory induc-
tion and the formation of sensory patches [16].

Soon after the emergence of the prosensory domain (around
E13.5), a non-proliferative zone appears with the expression of
the cell cycle inhibitor p27kip1/CDKN1B [17]. The upregulation of
CDNK1B could be downstream of Sox2, and in turn CDKN1B could
repress Sox2 [18, 19]. Indeed, the expression of Sox2 is transient
as at later stages during development Sox2 is down-regulated in
mature hair cells and neurons [20, 21] and only remains in sup-
porting cells. The reduced expression of Sox2 is essential for the
induction of hair cells by activation of the transcription factor
Atoh1 [22]. Between E14.5 and E15.5 a wave of differentiation is
initiated from the base toward the apex of the cochlea, allowing
the generation of hair cells and supporting cells upon Notch cas-
cade by lateral inhibition [23]. This process ends between E17.5
and E18.5. At the same time, another gradient of differentiation
occurs medially enabling the formation of the inner hair cells row
at first, and then the three rows of outer hair cells [17, 24, 25].
During the cochlear formation, the specification of hair and sup-
porting cells is subjected to a subtle combination of distinct sig-
naling pathways, transcription factors expression and epigenetic
regulations. Moreover, cells are rarely exposed to one stimulus at
a time, and cross-talk (direct or indirect) between signaling path-
ways is evident and recently identified in the developing inner
ear (reviewed in [26, 27]).

Atoh1

While thinking about hair cells differentiation, one consensus is the
major role of Atoh1, also named Math1, a basic helix-loop-helix

transcription factor related to Drosophila melanogaster proneural
gene, atonal [28]. Atoh1 starts to be expressed around E12.5 in the
vestibular portion of the inner ear when hair cells start to differen-
tiate [29]. In the cochlear portion, the expression of Atoh1 is visible
from E14.5, next to the emergence of the CDKN1B non-
proliferative zone [30]. Paradoxically, while cells become post-
mitotic in an apical-to-basal gradient, Atoh1 expression and hair
cell differentiation begin in the basal turn and progress in the
opposite direction [30]. Deletion of Atoh1 gene leads to the
absence of hair cells formation while its overexpression induces
ectopic hair cells [31, 32]. Besides its role in early hair cells
specification, Atoh1 is also important later during development by
promoting their survival and maturation [33, 34].

Notch

Notch signaling is important for the specification of hair cells
and supporting cells by lateral inhibition [35, 36]. Nascent hair
cells start to express Notch ligands Jagged2 and Delta1, while
surrounding cells express the Notch receptor and differentiate
into supporting cells through the induction of Hes genes that
inhibit Atoh1, an essential protein for hair cells. The acquired
supporting cell fate is not solely due to absence of Atoh1, but is
also dependent on activation of transcriptional signature upon
Notch activation [37].

microRNAs

Regulation of transcript expression through microRNAs (miR-
NAs) is also involved in the specification of hair cells versus sup-
porting cells. miR-183 family members, that include miR-183,
miR-182, and miR-96, are expressed in hair cells but not in sup-
porting cells [38]. Down-regulation of these miRNAs results in
the production of fewer hair cells [39]. Moreover, mutations
within the miR-96 gene have been associated with human
hereditary hearing loss [40, 41]. More recently, miR-124 has
also been involved in cochlear development. Indeed, by target-
ing secreted frizzled-related protein 4 (Sfrp4) and Sfrp5, two
inhibitors of the Wnt pathway, miR-124 controls the Wnt path-
ways that contribute to hair cells differentiation and polarization
in the organ of Corti [42].

Wnt Pathway

Canonical Wnt pathway activation is responsible for cell prolifer-
ation in the prosensory domain [43]. Indeed, continuous Wnt/
b-catenin activation using TCF/Lef/H2B-GFP reporter mouse
cochleae upregulates Sox2 prosensory cell numbers and confers
a more progenitor-like character. This increased proliferation is
observed both within the early E12 proliferative and the late
E13.5–E14.5 post-mitotic prosensory domain. Subsequently,
Wnt/b-catenin pathway is also required for hair cells differentia-
tion. Inhibition of Wnt signaling through use of pharmacological
agents or loss of b-catenin results in a failure of hair cells to dif-
ferentiate [43, 44]. At that developmental stage, the canonical
Wnt/b-catenin pathway controls the expression of Atoh1 [45].
Once specified, Atoh1-positive hair cells are not any more
dependent on Wnt/b-catenin pathway [44].

FGFs

FGFs signaling has essential functions at several stages of inner
ear development. Early during development, that is, at E9–E10
in mouse, FGF signaling is important for the specification of otic
territory [4]. FGFs are also required for cell fate decision in the
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organ of Corti (after E15 in mouse). Indeed, loss of FGF receptor
type 3 leads to an increased number of hair cells [46], while
deletion of FGF8 induces a loss of Pillar cells, a particular type of
supporting cells [47].

GENERATION OF NEW HAIR CELLS AFTER LOSS: REGENERATION

In non-mammalian vertebrates, such as birds, replacement of
hair cell loss occurs spontaneously for a long period after
birth (for review see [48]). The formation of new hair cells
can occur via two modes: mitotic regeneration, in which sur-
rounding supporting cells re-enter the cell cycle and divide to
give rise to new hair cells, and direct transdifferentiation in
which supporting cells change their fate to become hair cells,
even in the presence of antimitotic drugs [49–52] (Fig. 1).

Although the cochlea is assumed to be unable to regener-
ate in mammals, some evidences showed that during the first
2 weeks after birth, cochlear and vestibular cells retain the
capacity of sphere formation, a stem cell-like behavior [53,
54]. If sphere formation can be achieved in the mammalian
inner ear, it might reflect that some cells have the ability to
proliferate or differentiate.

As in birds, these cells have been identified as the sup-
porting cells. Indeed, CDKN1B-GFP supporting cells from neo-
natal mice isolated and placed in culture have been shown to
divide and differentiate into hair cell-like cells [55]. In the
same line, using different cell surface markers and fluores-
cence-activated cell sorting (FACS), dissociated cell from the
perinatal (postnatal day 3, P3) cochlea can be separated into
four different populations of non-sensory cells. Among these,
numerous are able to re-enter the cell cycle and proliferate.
However, only supporting cells are able to give rise to new
hair cells [56]. More recently, studies have shown that Lgr5-
positive supporting cells are the progenitors that can regener-
ate hair cells [57, 58]. Besides their ability to differentiate in
vitro, supporting cells can also generate new hair cells in vivo
after ablation of hair cells [59, 60]. This mitotic hair cell
regeneration occurs only at neonatal stages. Indeed, when
hair cell ablation occurs at 1 week of age, no regeneration is
observed. Such a limited ability of regeneration with a short
time-window is currently being unraveled. It is already clear
that both cell intrinsic (such as senescence, cell cycle

alterations) as well as extrinsic factors (such as alterations in
the regenerative environment) play significant roles [61].

The neonatal mouse cochlea is pre-hearing and not
mature in respect to its anatomy and physiology. For example,
the tunnel of Corti is not formed, and all the cells of the
greater epithelial ridge (the future inner sulcus) are still pre-
sent. With maturation, the organ of Corti is no longer able to
regenerate, the opening of the tunnel of Corti could be
responsible of the loss of this ability by separating the pool
of progenitors from the hair cells. In addition, cell-cell junc-
tions can also act to inhibit regenerative processes during
postnatal development. Indeed, there is a changing expression
of connexins corresponding to a maturation of gap junctions
between supporting cells contributing to antagonizing prolifer-
ation (reviewed in [62]). In parallel to this cochlear anatomy
modification, many changes in cell signaling occur within
the postnatal organ of Corti and contribute to a decreased
regenerative capacity.

Molecular Pathways Involved in Hair Cell Regeneration

During cochlea formation, as mentioned above, Notch signaling
is very important for the specification of supporting cells versus
hair cells. Similarly, Notch inhibition, either in conditional knock-
out mice or by treatment with g-secretase inhibitors, enhances
supporting cells proliferation and formation of new hair cells in
the perinatal cochlea [63]. Moreover, treatment with g-
secretase inhibitors in vivo induces new hair cells and can cause
partial recovery of hearing following noise trauma [64, 65].
However, a recent study showed that the response of support-
ing cells to Notch inhibition drops dramatically during the first
postnatal week in mice, concomitant with a down-regulation of
many components of the Notch signaling pathway [66]. This sug-
gests that manipulating Notch pathway alone is unlikely to pro-
mote significant hair cell regeneration in the postnatal/adult
organ of Corti, and that supplementary interventions should be
considered. Indeed, recent studies are much more focused on
manipulation of at least two crucial signaling pathways involved
in cochlear development.

Activation of Wnt canonical pathway is also an interesting
strategy for hair cell regeneration. Indeed, upon genetic or
chemical (using GSK3b inhibitor) b-catenin stabilization, Lgr5-
positive progenitor cells are able to re-enter in proliferation and

Figure 1. Examples of signaling pathways that induce hair cell formation from supporting cells. The Lgr5-positive cells represent the most
potent pool of progenitor cells. Different stimuli such as hair call loss, inhibition of Notch pathway, forced expression of Atoh1, activation of
Wnt canonical pathway, or inhibition of EphrinB2 signaling can trigger supporting cells proliferation and/or their transdifferentiation.
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generate new hair cells [67, 68]. Wnt activation followed by
Notch inhibition strongly promotes the mitotic regeneration of
new hair cells in both normal and neomycin-damaged cochleae
[69]. However, the newly generated hair cells still underwent
incomplete maturation. A combined activation of Wnt pathway,
through b-catenin overexpression, with Notch knock-down and
forced expression of Atoh1 in Lgr5-positive cells enhances great-
ly the formation of hair cells and the expression of genes impli-
cated in hair cells maturation [70]. The proliferative state of
Lgr51 cells could be due to the activation of Wnt canonical
pathway and the inhibition of Notch pathway, while the differ-
entiation into hair cells is triggered by ectopic expression of
Atoh1. Indeed, ectopic activation of Atoh1 induces new hair
cells in young postnatal mice [71, 72]. Moreover, in the young
adult deafened guinea pig, forced expression of Atoh1 is able to
induce hair cell regeneration and hearing threshold [73]. How-
ever, only a subset of these cells and at early postnatal stages is
able to give rise to new hair cells, unraveling a more complex
genetic regulation, and the cells produced do not always reach
terminal differentiation, as Atoh1 should be lowered at the end
of the differentiation process [74]. Nevertheless, the reactiva-
tion of proliferation and differentiation cues is able to form hair
cells from surrounding supporting cells, but it appears that there
is a tight interplay between different signaling molecules.

Ephrins and their receptors Eph also contribute to support-
ing cell differentiation into hair cells. Indeed, EphA4 receptor is
present in hair cells while Ephrin-B2 is present in supporting
cells [75]. This complementary pattern of expression is neces-
sary for the establishment of compartment boundary between
hair cells and supporting cells. When this Ephrin signaling is dis-
rupted, using either Ephrin-B2 conditional knockout mice,
shRNA-mediated gene silencing or soluble inhibitors, the organ
of Corti harbors supernumerary hair cells that are generated
from direct supporting cells transdifferentiation. Further studies
using lineage tracing experiments are needed to rigorously vali-
date this hypothesis. Importantly, those new hair cells directly
integrate the hair cell layer and, therefore, could be more rapid-
ly able to fit into functional circuitry. Whether Ephrin signaling
acts in isolation or as part of a complex network of regulatory
pathways remains to be determined. Interestingly, Ephrin-B2
and Notch are expressed in similar supporting cell types
throughout the development [35]. Ephrin-B2 is a direct Notch

target whose expression is induced by Notch signaling [76].
Therefore, following Notch lateral inhibition, Ephrin-B2 could be
required to segregate the supporting cells from adjacent hair
cells.

CONCLUSION

In mammals, it has been described that hair cells do not
regenerate, impairing the ability to restore hearing. However,
growing body of evidence has demonstrated that in particular
cases, some regenerative properties can be encountered in
the inner ear. Although during adulthood, few example of res-
toration have been found. Different signaling pathways have
been characterized to have the capacity of inducing support-
ing cells proliferation and differentiation into hair cells. The
newly formed cells express markers for hair cells and are also
reached by spiral ganglion fibers, but are not yet mature and
synapses are not perfectly formed. Knowing in details how
the formation of hair cells is achieved is the starting point to
discover new mechanisms that could help to identify the mol-
ecules that could be induced in supporting cells to allow
them to transdifferentiate; and how the maturation of the
organ of Corti is correlated to an inability to spontaneously
regenerate. These lines of investigation could enable the dis-
covery of regeneration in more mature cochlea.
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