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Abstract.— We developed a recurrence relation that counts the number of tandem duplication trees (either rooted or unrooted)
that are consistent with a set of n tandemly repeated sequences generated under the standard unequal recombination (or
crossover) model of tandem duplications. The number of rooted duplication trees is exactly twice the number of unrooted
trees, which means that on average only two positions for a root on a duplication tree are possible. Using the recurrence, we
tabulated these numbers for small values of n. We also developed an asymptotic formula that for large n provides estimates
for these numbers. These numbers give a priori probabilities for phylogenies of the repeated sequences to be duplication
trees. This work extends earlier studies where exhaustive counts of the numbers for small n were obtained. One application
showed the significance of finding that most maximum-parsimony trees constructed from repeat sequences from human
immunoglobins and T-cell receptors were tandem duplication trees. Those findings provided strong support to the proposed
mechanisms of tandem gene duplication. The recurrence relation also suggests efficient algorithms to recognize duplication
trees and to generate random duplication trees for simulation. We present a linear-time recognition algorithm. [Asymptotic
enumeration; random generation; recognition; recursion; tandem duplication trees.]

Duplicated sequences in DNA are very common.
Baltimore (2001) stated that over half of the (human)
DNA consists of repeated sequences. Among these re-
peated sequences, we can distinguish so-called tandem
repeats, in which the copies are adjacent along the
genome. Tandem repeats can be made of mini- or micro-
satellites that are relatively short and are usually con-
sidered parasitic and potentially deleterious. But these
repeats can also be larger and can contain genes. The
duplication (in tandem or not) of genes is one of the
most important evolutionary mechanisms for producing
genes with novel functions.

The process of unequal recombination (or crossover)
is widely viewed as responsible for the production of
large tandemly repeated sequences, possibly containing
genes. At each step, a segment (containing one or sev-
eral copies) is duplicated into two adjacent and identical
segments that are then free to diverge through muta-
tions. As the process is repeated, a linearly ordered set
of paralogous segments results. The evolutionary his-
tory of these segments shares many common points with
that of orthologous sequences, as used in phylogenetic
studies. However, because of the linear order of the seg-
ments and the nature of the process, tandem duplication
histories are much more constrained than speciation his-
tories, as was first pointed out by Fitch (1977) and re-
cently and independently reiterated by Benson and Dong
(1999), Tang et al. (2001), and Elemento et al. (2001, 2002).
This latest study provided a duplication history for the
human TRGV locus that was constructed from a single
genome but allowed for the most striking polymorphism
(absence of two adjacent genes) in the human population
to be predicted. This fact lent strong support to the as-
sumptions concerning the duplication mechanism and
indicated that reliable tandem duplication histories can
be constructed, at least in some cases.

However, because of the lack of a molecular clock, nei-
ther the location of the root nor the temporal order of the

duplication events can always be determined. Thus, for
any given tandem duplication history, Fitch (1977) and
Elemento et al. (2002) defined a corresponding rooted
duplication tree (RDT) in which nonnested duplication
events are not temporally related and an (unrooted) du-
plication tree (DT) in which the root location is also lost.
Unrooted and eventually rooted duplication trees can be
inferred from the contemporary sequences, but not from
the full duplication history, just as is the case with speci-
ation histories, where the temporal information is partly
lost and we are only able to infer (eventually rooted)
phylogenies.

Several algorithms to infer duplication trees were
proposed by Fitch (1997), Benson and Dong (1999),
Tang et al. (2002), and Elemento et al. (2002). A sim-
ple algorithm involves inferring one or several possi-
ble phylogenies for the sequences being studied and
then checking whether these phylogenies are compat-
ible with the tandem duplication model. For example,
with the seven repeated segments of human apolipopro-
tein A-I, Fitch (1977) found four most-parsimonious phy-
logenies, only one of which was a duplication tree,
whereas for the nine genes of the human TRGV locus,
Elemento et al. (2002) found one most-parsimonious
phylogeny, which was a duplication tree. Two problems
thus arise. The first is related to the significance of such
results. When their prior probability is low, we can be
quite confident in the duplication model. For example,
Elemento et al. (2002) showed that the probability for a
phylogeny of nine sequences to be a duplication tree is
only about 0.0385, which provided evidential support for
the unequal recombination hypothesis. The second prob-
lem concerns computational efficiency. For large data
sets, this simple approach requires a fast algorithm to rec-
ognize among the possibly very numerous near-optimal
phylogenies those that are duplication trees. However, a
specialized algorithm that considered duplication trees
only could provide a more efficient search procedure.
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This article deals with the combinatorics of tandem
duplication trees. Fitch (1977) determined the numbers
of rooted and unrooted duplication trees for a number
of segments n ≤ 7, whereas Elemento et al. (2002) com-
puted these numbers exactly for n ≤ 10 and estimated
them by sampling for 10 < n ≤ 14. They also noted that
for n ≤ 10, the number of rooted duplication trees, de-
noted as RDT(n), is twice the number of (unrooted) du-
plication trees, denoted by DT(n). We developed a re-
currence relation for both RDT(n) and DT(n), proved
that RDT(n) = 2DT(n) for n ≥ 3, and determined their
asymptotic behaviors as n→∞. These results provided
the tool to address the problem of significance by mak-
ing it possible to estimate the a priori probability of a
phylogeny being a duplication tree. Moreover, our recur-
rence relations suggested efficient algorithms that could
be used to recognize the phylogenies that are duplica-
tion trees, to search the space of duplication trees, and to
uniformly randomly generate duplication trees for sim-
ulations. Here, we introduce the notation and define the
tandem duplication model, demonstrate the recurrence
relations and analyze their asymptotic behavior, and pro-
vide algorithms for recognition and random generation
of duplication trees.

DUPLICATION EVENTS

An initial gene segment, σ , is duplicated to produce
the string σσ of two concatenated segments. Over time,
mutations accumulate and the copies become distin-
guishable. We distinguish these segments so the string
is labeled σ1σ2. Subsequent duplications of one or more
adjacent segment copies can occur, to produce a string
σ1σ2 · · · σn of n concatenated (and mutated) copies of σ .

When a duplication involves copying r adjacent seg-
ments, with k segments remaining to the right of these
copies, then we refer to that as a (k, r ) duplication event.
When a string of n segments results, we have 1 ≤ r ≤ n/2
and 0 ≤ k ≤ n− 2r . Figure 1 provides an example of a
(k, r ) = (3, 2) duplication event resulting in a string of
n = 8 segments. A (k, r ) duplication event involves copy-
ing the substring of segments σa · · · σb from σ1 · · · σm,
where m = n− r , a = m− r − k + 1, and b = m− k, to

FIGURE 1. An example of a (k, r ) = (3, 2) duplication event on a
string of n = 6 duplicated segments that produces a string of n+ r = 8
segments. σ1 is relabeled as σ ′1, and the r = 2 segments σ2 and σ3 are
duplicated, becoming σ ′2, σ ′4 and σ ′3, σ ′5, respectively. The remaining k =
3 segments, σ4, σ5, σ6, are relabeled as σ ′6, σ ′7, σ ′8.

produce a new string σ ′1 · · · σ ′n of n = m+ r segments.
The pair σ ′a+ j , σ

′
a+r+ j , 0 ≤ j < r comprising two copies

of σa+ j , is referred to as twins. As the copies accumulate
mutations, the descendants of the twins diverge, and the
duplication history is reflected in the phylogeny of the
duplicated segments.

The sequence of duplication events (linearly ordered
by time) giving rise to a set of n segment copies is
called a duplication history (Fig. 2a). Let DH(n) be the
set of all duplication histories that produce strings of
n duplicate segments, and let DH(n) = #DH(n) be the
number of such histories. Given any H ∈ DH(m), any
(k, r ) duplication event transforms H to a duplication
history H′ ∈ DH(n), where n = m+ r . The number of

FIGURE 2. (a) An example of a duplication history H ∈
DH(9) resulting from the sequence of duplication events (k, r ) =
(0, 1), (1, 1), (0, 1), (0, 3), (6, 1), and (3, 1). The parameter k is the num-
ber of segments of remaining to the right of the duplication, and r is
the number of segments duplicated in the event. The arrow indicates
the location of the root of the canonical representative of H. (b) The
corresponding duplication tree T = T(H) ∈ DT (9). Only the last two
duplications, (6, 1) and (3, 1), of H are visible. There are four possible
locations for a root (identified by Ri , i = 1, 2, 3, 4) on the path connect-
ing σ1 and σ9. R1 is the closest to σ9 (it cannot be closer because the next
duplication (0, 3) is a multiple duplication), so rooting at R1 would
give the canonical tree. R2 is the location of the root for the history H
of tree a.
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duplication histories, DH(n), that can give rise to n
copies was shown (Elemento et al., 2002) to satisfy the
recurrence

DH(n) =
n/2∑
r=1

n−2r∑
k=0

DH(n− r )

=
n/2∑
r=1

(n− 2r + 1)DH(n− r ), n > 1, (1)

with DH(1) = 1.
For a duplication history H, we define the (k, r ) dupli-

cation event in H to be visible if none of the 2r copied
segments of that event have been duplicated subse-
quently. A phylogenetic tree of the n segments σ1, . . . , σn
of H ∈ DH(n) does not distinguish the temporal order of
the visible duplication events nor identify the position
of the root of H. We define the RDT R = R(H) to be the
rooted tree derived from H (ignoring the temporal order
of duplication events recorded), and the (unrooted) DT
T = T(H) is defined to be the unrooted tree derived from
R. A duplication tree can be derived from more than one
distinct duplication history, i.e., these maps are not one
to one.

Let RDT (n) be the set of rooted duplication trees ob-
tained from the histories in DH(n), and let DT (n) be the
set of (unrooted) duplication trees obtained from the his-
tories in DH(n).

RECURSIONS

For n ≥ 2 and 0 < k ≤ n− 2, let P(n, k) be the set of all
trees inRDT(n) whose leftmost visible duplication event
is (k, r ), for 1 ≤ r ≤ (n− k)/2. Thus for a tree in P(n, k)
and given 1 ≤ r ≤ (n− k)/2, the 2r duplicated segments
form the substring σn−k−2r+1 · · · σn−k , and there is no vis-
ible duplication among σ1 · · · σn−k−2r .We find a bijection
(a one to one and onto map) that shows that the number
of trees in P(n, k) is the same as the number of trees in
the union of the sets P(n− 1, 0), · · · , P(n− 1, k + 1).

Theorem 1

For n > 2, 0 ≤ k ≤ n− 2, there is a bijection between
P(n, k) and ∪k+1

j=0P(n− 1, j). For k ≥ n− 1, P(n, k) = ∅.
Proof.—Let T be a tree in P(n, k) for n > 2, hence the

first (leftmost) visible duplication in T is a (k, r ) duplica-
tion event for some r ≥ 1, k + 2r ≤ n. Thus P(n, k) = ∅ if
k > n− 2.

For k ≤ n− 2, we can map T to T ′ ∈ RDT (n− 1) by
deleting the segment σn−k−r (the left twin of σn−k , the
rightmost segment of the first visible duplication).

When r > 1, the first visible duplication event of T ′
will be a (k + 1, r − 1) event, so T ′ ∈ P(n− 1, k + 1).

When r = 1, the next visible duplication event ends at
or to the right of σ(n−1)−k , so T ′ ∈ P(n− 1, j) for some j ,
0 ≤ j ≤ k.

This map is invertible because with any T ′ ∈ P(n−
1, j) for 0 ≤ j ≤ k, we can duplicate σ(n−1)−k as adjacent

twins to obtain T ∈ P(n, k), with the leftmost duplication
event being (k, 1);

Given any T ′ ∈ P(n− 1, k + 1), with the first visi-
ble duplication being a (k + 1, s) event with s ≥ 1, we
can duplicate σ(n−1)−k and insert the left twin between
σ(n−1)−k−s−1 and σ(n−1)−k−s . This extends the event to
a (k, s + 1) duplication event and creates T ∈ P(n, k),
with the leftmost duplication event being (k, r ) with
r = s + 1 > 1.

Hence the sets are bijective.
QED

Let p(n, k) = #P(n, k) and RDT(n) = #RDT (n).

Theorem 2

The number of rooted duplication trees RDT(n) =∑n−2
k=0 p(n, k) for n > 2 segments, can be determined by

the two parameter recursion

p(n, 0) = p(n− 1, 0)+ p(n− 1, 1) (2)

and

p(n, k) = p(n− 1, k + 1)+ p(n, k − 1), for
(3)

k = 1, . . . , n− 2,

and

p(n, n− 4) = p(n, n− 3) = p(n, n− 2) = RDT(n− 1),
(4)

where p(n, k) = 0 for k < 0 and k ≥ n− 1; and with initial
value p(2, 0) = 1.

Proof.—Because the first duplication event creates at
least two segment copies, P(n, k) = ∅ for k > n− 2 and
P(2, 0) contains a single history.

For n > 2, the sets P(n− 1, j) are disjoint for dis-
tinct values of j = 0, · · · , n− 3, so from Theorem 1 the
cardinality of P(n, k) is the sum of the cardinalities of
P(n− 1, j) for j = 0, . . . , k + 1, hence

p(n, k) =
k+1∑
j=0

p(n− 1, j). (5)

Thus, for k = 0, Equation 2 follows. For k > 0, it follows
from Equation 5 that

p(n, k)− p(n, k − 1) = p(n− 1, k + 1),

so Equation 3 follows.
As p(n− 1, j) = 0 for j ≥ n− 2,

p(n, n− 4) = p(n, n− 3) = p(n, n− 2) =
n−3∑
j=0

p(n− 1, j)

= RDT(n− 1),

which implies Equation 4.
QED
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FIGURE 3. The recursion calculations. (a) The numbers p(n, k),
from which RDT(n) =∑n−2

k=0 p(n, k) = p(n+ 1, n− 1), is the number
of rooted duplication trees on n duplicated segments. (b) The num-
bers a (n, k), from which DT(n) =∑n−2

k=0 a (n, k) = a (n+ 1, n− 1), is the
number of duplication trees on n duplicated segments. Each entry
is the sum of the values of the two (or one) incoming arrows, ex-
cept for the initial values at the left. For k = 0, 1, 2, p(4, k) = 2a (4, k),
and hence, by the recursion, p(n, k) = 2a (n, k), ∀n ≥ 4, 0 ≤ k ≤ n− 2.
Hence, RDT(n) = 2DT(n), ∀n ≥ 3.

The calculation of the values of p(n, k), for n = 2, · · · , 7
and 0 ≤ k ≤ n− 2, are derived in Figure 3, using the re-
currences of Theorem 2.

COUNTING DUPLICATION TREES

Starting with a single segment σ , the first duplication
event of any history H ∈ DH(n) must duplicate σ , so it
is a (0, 1) event. This event separates σ1 and σn, so the
root of H must always lie on the path connecting σ1 to
σn. Thus, in any rooted duplication tree T ∈ RDT (n), the
root must lie on the path connecting the leaves labeled
by σ1 and σn.

There are three possibilities for the second duplication
event, either a single segment: the left (a (1, 1) event) or
the right (a (0, 1) event) is duplicated, or both segments
(a (0, 2) event) are duplicated. Both single segment dupli-
cation histories ((0, 1), ((1, 1)) and ((0, 1), (0, 1)) give rise
to the same unrooted duplication tree, the unique binary
tree on three leaves, where a root could be placed either
on the edge to σ1 or on the edge to σ3. The ambiguity of
root placement continues with each further single dupli-
cation of either the first or last segment, but the root can-
not occur beyond any multiple duplication. These events

mark the limits of the possible root locations on the path
connecting σ1 and σn in any unrooted duplication tree.
In the case of the initial history ((0, 1), (0, 2)), the root is
“trapped” by the double duplication and only one root
position is valid. Although the number of potential root
placements on an unrooted duplication tree can vary, on
average, as shown below, the number of possible root
locations on duplication trees of n > 2 segments is ex-
actly 2.

Let u : RDT (n)→ DT (n) be the map that removes the
root of any T ′ ∈ RDT (n). Then for T ∈ DT (n), u−1(T)
is the equivalence class of all trees T ′ ∈ RDT (n) that
map to T under u. We select as the canonical represen-
tative of this class the tree T ′ with root closest to σn. For
n > 2, T ′ ∈ RDT (n) is canonical if one of the following
holds: (1) the root of T ′ is the parent (direct ancestor)
of σn or (2) the root of T ′ is the parent of a segment
that is both an ancestor of σn and involved in a multi-
ple duplication. Thus, T ′ is not canonical if its root is the
parent of an ancestor of σn that is involved in a single
duplication.

We count the number DT(n) = #DT (n) of (unrooted)
duplication trees by counting the number of canoni-
cal rooted duplication trees. Let a (n, k) be the number
of rooted trees in P(n, k) that are canonical. The his-
tory ((0, 1), (0, 1)) does not give a canonical tree, but
((0, 1), (1, 1)) and ((0, 1), (0, 2)) do. Hence, a (2, 0) = 1,
a (3, 0) = 0, and a (3, 1) = 1, so DT(2) = DT(3) = 1.

We now prove the following lemma that indicates
the strong relationship between this canonical rep-
resentation of duplication trees and the mapping of
Theorem 1

Lemma 1

Let T ∈ P(n, k) for n > 2 and 0 ≤ k ≤ n− 2 and let
T ′ ∈ ∪k+1

j=0P(n− 1, j) be the corresponding tree (under
the bijection of Theorem 1). Then, T ′ is canonical iff T
is canonical.

Proof.—The bijection of Theorem 1 maps T ∈ P(n, k)
to a tree T ′ ∈ P(n− 1, j), for some j : 0 ≤ j ≤ k + 1, by
deleting σi (i = n− k − r ), the left twin of σn−k . Thus,
the segments σl , l > i in T are relabeled σl−1 in T ′, so
in particular σn becomes σn−1. Let the root R of T be
mapped to R′, the root of T ′. R is on the edge to σn in
T iff R′ is on the edge to σn−1 in T ′. If R is above the
first multiple duplication separating R from σn in T , then
unless this duplication is visible with k = 0 and r = 2,
the image of this duplication will remain, separating R′
from σn−1 in T ′. Thus, in both cases T is canonical iff T ′
is canonical. Finally, if the first duplication separating R
from σn in T is a (0, 2) and visible, then in T ′ the image of
this duplication will not be multiple, and R′will be on the
edge to σn−1 iff R is immediately above the duplication in
T . Thus, in this case also T is canonical iff T ′ is canonical.

QED
Hence, apart from the special cases when n = 2, 3, the

construction of Theorem 1 holds. Thus, following the
proof of Theorem 2 we obtain the same recurrences but
with different initial values.
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Theorem 3

The number DT(n) =∑n−2
k=0 a (n, k), of duplication trees

for n ≥ 4 segments can be determined by the two param-
eter recursion: where for 1 ≤ k ≤ n− 3,

a (n, 0) = a (n− 1, 0)+ a (n− 1, 1), (6)

a (n, k) = a (n− 1, k + 1)+ a (n, k − 1), (7)

a (n, n− 2) = a (n, n− 3) = a (n, n− 4) = DT(n− 1), (8)

with initial values

a (2, 0) = 1, a (3, 0) = 0, a (3, 1) = 1,

(hence DT(2) = DT(3) = 1).

The calculation of the values of a (n, k), for n = 2, · · · , 7
and 0 ≤ k ≤ n− 2, are derived in Figure 3 using the re-
currences of Theorem 3.

Corollary 1

For n ≥ 3,

RDT(n) = 2DT(n),

i. e., the number of rooted duplication trees is twice the
number of duplication trees.

Proof.—In Figure 3, the equation holds for n = 3 and
n = 4, and p(4, k) = 2a (4, k) for k = 0, 1, 2. By their com-
mon recursions Equations 3 and 7, p(n, k) = 2a (n, k)
for all n > 4 and 0 ≤ k ≤ n− 2, and the result follows.

QED
In Appendix 1, we use generating functions to find an

asymptotic expression for DT(n), which grows like 6.75n.

TABLE 1. Numbers of duplication histories and trees calculated using the recurrences of Theorems 1 and 2. DH(n) is the number of duplication
histories (Eq. 1). DT(n) is the number of (unrooted) duplication trees, and f (n) is the value of the asymptotic approximation to DT(n) given by
Equation (9). BT(n) is the number of (unrooted) binary trees with n labeled leaves, which is determined by the recursion BT(n) = (2n− 5)BT(n− 1);
for n > 3, BT(3) = 1 (Cavalli-Sforza and Edwards, 1967). The ratio DT(n)/BT(n) is the probability that an arbitrary binary tree phylogeny represents
a duplication tree.

n DH(n) DT(n) f(n) BT(n) DT(n)/BT(n)

3 2 1 0.0999 1 1
4 7 3 0.4380 3 1
5 32 11 2.1157 15 7.33 × 10−1

6 182 46 10.864 105 4.38 × 10−1

7 1,224 210 58.194 945 2.22 × 10−1

8 9,500 1,021 321.51 1.04 × 104 9.82 × 10−2

9 8.35 × 104 5,202 1818.7 1.35 × 105 3.85 × 10−2

10 8.19 × 105 2.75 × 104 1.05 × 104 2.03 × 106 1.36 × 10−2

11 8.86 × 106 1.49 × 105 6.13 × 104 3.45 × 107 4.33 × 10−3

12 1.05 × 108 8.30 × 105 3.63 × 105 6.55 × 108 1.27 × 10−3

13 1.35 × 109 4.71 × 106 2.17 × 106 1.37 × 1010 3.42 × 10−4

14 1.87 × 1010 2.71 × 107 1.31 × 107 3.16 × 1011 8.57 × 10−5

15 2.78 × 1011 1.58 × 108 7.99 × 107 7.91 × 1012 2.00 × 10−5

16 4.41 × 1012 9.32 × 108 4.90 × 108 2.13 × 1014 4.37 × 10−6

17 7.45 × 1013 5.56 × 109 3.02 × 109 6.19 × 1015 8.98 × 10−7

18 1.33 × 1015 3.34 × 1010 1.87 × 1010 1.92 × 1017 1.74 × 10−7

19 2.52 × 1016 2.02 × 1011 1.16 × 1011 6.33 × 1018 3.19 × 10−8

20 5.01 × 1017 1.23 × 1012 7.28 × 1011 2.22 × 1020 5.56 × 10−9

Corollary 2

As n→∞

DT(n) ∼ d
(

27
4

)n

n−3/2 (9)

where d ' 0.00168809016.
Exact and approximate values for DT(n) are displayed

in Table 1 for n ≤ 20. The asymptotic Approximation 9 is
sufficient for application purposes even with relatively
small n (e.g., n = 20). Moreover, we recover the result
from Elemento et al. (2002) that the a priori probability
for a phylogeny of nine segments to be a duplication tree
is only'0.0385, whereas the same probability with seven
segments is'0.222. This latter relatively high value indi-
cates that finding one duplication tree among four seven-
segment phylogenies can be due to chance, as suggested
by Fitch (1977: note added in proof).

UNIFORM RANDOM GENERATION OF DUPLICATION
TREES

The recursions of Theorems 2 and 3 provide a means
to generate sample duplication trees with uniform prob-
ability, both for the rooted and unrooted trees. These
trees can be generated by starting from the unique
two-segment history (0, 1) and iteratively adding seg-
ments, using the reverse mapping of Theorem 1, until
the desired number of segments f is obtained. Let T ′
be the current tree in P(n, k), for 0 ≤ k ≤ n− 2. Then
T , the mapping of T ′, is obtained by either (1) creat-
ing a twin of σ j , for some j , where 1 ≤ j ≤ n− k or
(2) when k > 0, extending the first visible (k, s) dupli-
cation to a (k − 1, s + 1) duplication. Then T belongs to
P(n+ 1, n− j) or P(n+ 1, k − 1), respectively. To obtain
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a uniform distribution, we draw from among these pos-
sible moves with a probability that is proportional to the
number of trees with f segments that can be generated
from these moves. To generate unrooted trees, we gen-
erate canonical rooted trees only. Starting from the (0, 1)
history, the unique possible first move (the (1, 1) dupli-
cation) is taken, and further steps are as for the rooted
trees.

Let m( f, n, k), for 3 ≤ n ≤ f and 0 ≤ k ≤ n− 2, be the
number of rooted trees of f segments that can be gener-
ated from a single tree in P(n, k). Clearly m( f, f, k) = 1
and from the above remarks,

m( f, n, k) =
n−1∑

j=max(0,k−1)

m( f, n+ 1, j),

which for 0 ≤ k ≤ n− 2 gives

m( f, n, 0) = m( f, n, 1),

m( f, n, k) = m( f, n+ 1, k − 1)+m( f, n, k + 1),

m( f, n, n) = m( f, n+ 1, n− 1).

To generate uniformly random trees with f segments,
we must first compute by dynamic programming all
m( f, n, k) values for 3 ≤ n ≤ f and 0 ≤ k ≤ n− 2. Then
these values are used at each step to compute the prob-
ability of each possible move.

The number of rooted duplication trees on f segments
is m( f, 2, 0), and the number of canonical rooted duplica-
tion trees and hence the number of unrooted duplication
trees on f segments is m( f, 3, 1), thus

RDT( f ) = m( f, 2, 0), DT( f ) = m( f, 3, 1).

Further, for f ≥ 3, m( f, 3, 0) = m( f, 3, 1), so

m( f, 2, 0) = m( f, 2, 1) = m( f, 3, 0)+m( f, 2, 2)

= m( f, 3, 0)+m( f, 3, 1) = 2m( f, 3, 1),

which gives another proof of

RDT( f ) = 2DT( f ).

LINEAR-TIME RECOGNITION ALGORITHM

Tang et al. (2002) and Elemento et al. (2001, 2002) pro-
vided an O(n2) algorithm for testing whether a given
rooted phylogeny on n ordered leaves is a duplication
tree. Recently, Zhang et al. (2002) proposed a linearO(n)
algorithm to solve the same problem. To recognize un-
rooted trees, which is the real problem because inferred
trees are unrooted, potential roots were considered at
each edge in the path from σ1 to σn, providing an O(n2)
algorithm. This time complexity can be a serious dis-
advantage (at least for large n) when using the inference

procedure that consists of selecting from among the (pos-
sibly numerous) near-optimal phylogenies those that are
duplication trees.

The recursion of Theorem 3 suggests an O(n) recogni-
tion algorithm for unrooted trees. Starting with the or-
dered segments σ1, · · · , σn at the leaves of a phylogeny, it
searches for the leftmost visible duplication. If no visible
duplication is found, then the answer is “no,” otherwise
the duplication is reduced. If the reduction returns a tree
of three segments, then the answer is “yes,” otherwise it
returns to the previous search with the reduced tree.

For the algorithm to remainO(n), the search for the left-
most visible duplication uses a pointer that scans across
the segments in order from σ1, never moving to useless
points and storing the location of twins. A block, or par-
tially visible duplication, is a nested sequence of twins,
(σi , σi+r ), (σi+1, σi+1+r ), · · ·, (σi+g, σi+g+r ), for g < r . The
algorithm remembers the endpoints of already encoun-
tered blocks, so that after the removal of a visible dupli-
cation, the pointer can continue the investigation of an
uncovered duplication, without returning to its leftmost
segment. In this way, the pointer always moves from
left to right, unless a visible duplication is reduced, in
which case it jumps to its starting point. Then the num-
ber of steps isO(n), as is the time complexity of the whole
algorithm.

The same algorithm applies to the rooted case, return-
ing “yes” when a tree is reduced to its root. More details
and a pseudocode description are given in Appendix 2.
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APPENDIX 1
PROOF OF COROLLARY 2

Consider the family of numbers {a (n, k); 0 ≤ k ≤ n− 2; n ≥ 2},
defined in Theorem 3, where for n > 3 and 1 ≤ k ≤ n− 2

a (n, 0) = a (n− 1, 0)+ a (n− 1, 1);

a (n, k) = a (n− 1, k + 1)+ a (n, k − 1), (10)

with initial values

a (2, 0) = a (3, 1) = 1, a (3, 0) = 0 (11)

and a (n, k) = 0 elsewhere. Of particular interest are the values
{b(n); n ≥ 2} for b(n) := DT(n), defined as

b(n) =
n−2∑
k=0

a (n, k) (= a (n+ 1, n− 1) for n ≥ 3). (12)

It is necessary to have bounds on the values of a (n, k). Here, we prove
the following property: for any β > 1, for n ≥ 3 and 0 ≤ k ≤ n− 2

a (n, k) ≤
(

β2

β − 1

)(n−3)

βk .

This is true for n = 3, because a (3, 0) = 0, a (3, 1) = 1. If the property
holds for n− 1 ≥ 3, then from Equation 10,

a (n, 0) = a (n− 1, 0)+ a (n− 1, 1)

≤ (1+ β)
(

β2

β − 1

)(n−4)

≤
(

β2

β − 1

)(n−3)

,

and if the equation holds for n > 3, k − 1 ≥ 0, then by Equation 7

a (n, k) = a (n− 1, k + 1)+ a (n, k − 1)

≤
(

β2

β − 1

)(n−4) [
βk+1 + β2

β − 1
βk−1

]

=
(

β2

β − 1

)(n−3)

βk .

Hence, for all n ≥ 3 and β > 1

b(n) = a (n+ 1, n− 2) ≤
(

β3

β − 1

)(n−2)

, (13)

and in particular, as β3

β−1 is minimized by β = 3/2,

b(n) ≤
(

27
4

)n−2

, ∀n ≥ 3.

We define generating functions for a (n, k) and b(n) as (omitting initial
terms)

A(x, y) =
∑
n≥4

(
n−2∑
k=0

a (n, k)yk

)
xn, B(x) =

∑
n≥4

b(n)xn = A(x, 1). (14)

Hence from these recurrences,

A(x, y) = x4 +
∑
n≥4

a (n− 1, 0)xn +
∑
n≥4

n−4∑
k=0

a (n− 1, k + 1)xn yk

+
∑
n≥4

n−2∑
k=1

a (n, k − 1)xn yk

= x4 + x A(x, 0)+ x
y

(A(x, y)− A(x, 0))

+ yA(x, y)− x(A(xy, 1)+ x3 y3).

Now grouping the terms involving A(x, y), we obtain the functional
equation

A(x, y)(y− x − y2) = x4 y(1− y3)+ x(y− 1)A(x, 0)− xyA(xy, 1). (15)

We now seek a solution to Equation 15 by applying the “kernel”
method (Odlyzko, 1995). The kernel of Equation 15 is the polynomial

K (x, y) = y− x − y2.

If x and y are such that K (x, y) vanishes while A(x, y) is analytic, then
the right side of Equation 15 must also vanish.

The roots of K (x, y) = 0 are y = r1,2(x), where

r1(x) = 1+√1− 4x
2

and

r2(x) = 1−√1− 4x
2

.

Both paths (x, r1,2(x)) enter the domain of Equation 14. Noting that
r1 + r2 = 1 and r1r2 = x, and writing B(x) := A(x, 1),

x3(1− xri )+ x(ri − 1)A(x, 0)− xri B(xri ) = 0

for i = 1, 2. Eliminating A(x, 0) gives

r 2
1 B(xr1)− r 2

2 B(xr2) = (x2 − x3)
√

1− 4x,

which implies

B(xr1) = r 2
2 (1− x)

√
1− 4x +

(
r2

r1

)2

B(xr2),

a functional equation to be solved for B(x).
Rearranging,

B ◦ R1 = g + f · B ◦ R2

where

R1(x) = xr1(x), R2(x) = xr2(x),

g(x) = r 2
1 (1− x)

√
1− 4x, f (x) =

(
r2

r1

)2

.

That is,

B = G + F · B ◦ R

where G = g ◦ R−1
1 , F = f ◦ R−1

1 , and R = R2 ◦ R−1
1 .
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Iterating the functional equation gives

B =
∞∑

n=0

Bn,

where B0 = G and Bn = F · Bn−1 ◦ R. Inspecting the graphs of R1 and
R2 shows that for 0 < x < 4/27, limn→∞ R(n)(x) = 0 and hence one can
check that limn→∞ Bn(x) = 0 also. In fact, F (x) = O[x3] and R(x) =
O[x2] as x→ 0, so Bn(x)→ 0 quadratically.

The singularity of R−1
1 (x) closest to the origin is the unique zero of

R′1(x), and this occurs at x = 2/9, R1 = 4/27. Near there,

R1(x) ∼ 4
27
− 9

(
x − 2

9

)2

,

so

R−1
1 (x) = 2

9
− 1

3
ε +O(ε2),

where ε = ( 4
27 − x)1/2. Thus each term Bn(x) has a square root singular-

ity at x = 4/27. Expanding for small ε, we find

R = 2
27
− 1

3
ε +O(ε2)

F = 1
4
− 9

4
ε +O(ε2)

G = 7
243
+ 1

81
ε +O(ε2).

Thus, for small ε, Bn is evaluated near x = 2/27, and

Bn = F · Bn−1 ◦ R

=
(

1
4
− 9

4
ε

)(
Bn−1

(
2

27

)
− 1

3
B ′n−1

(
2

27

)
ε

)
+O(ε2)

= 1
4

Bn−1

(
2

27

)
−
(

9
4

Bn−1

(
2

27

)
+ 1

12
B ′n−1

(
2

27

))
ε +O(ε2),

where

B ′n = F · R′ · B ′n−1 ◦ R+ F ′ · Bn−1 ◦ R.

From this, the coefficients cn of ε in Bn are computed to be

c0 = 1
81
' 0.01234567901,

c1 ' −0.02788743302,

c2 ' −5.455702743× 10−6,

c3 ' −3.328515425× 10−14.

That is,

B(x) = const.+ c
(

4
27
− x

)1/2

+O
(

4
27
− x

)

= const.+ c

√
4

27

√
1− 27x

4
+O

(
4
27
− x

)
,

where c =∑∞
n=0 cn. Recalling that the coefficient of xn in the Taylor

series of (1− x)1/2 is asymptotic to −n−3/2/(2
√
π ), the coefficient of xn

in B(x) is asymptotic to

d
(

27
4

)n

n−3/2,

where

d = − c√
27π
' 0.001688090160.

Comparison with actual values of b(n) supports this asymptotic be-
havior. A least-squares best fit of a quadratic polynomial P in 1

n to
b(n)( 27

4 )−nn1.5 gives

P ' 0.001688090156
(

1+ 11.6456
n

+ 43.1939
n2

)
,

which is consistent with the above asymptotic behavior.

APPENDIX 2
LINEAR-TIME RECOGNITION ALGORITHM

The algorithm inputs are the tree T and the ordered set of segments,
denoted as O. The leaves of T are bijectively associated with the seg-
ments of O. Initial segments are labeled by their rank: O = (1, 2, . . . , n)
where n is the number of segments. During the course of the algo-
rithm segments-leaves are removed from T and from O, but the or-
dering of two segments can still be computed in O(1) (i.e., constant
time) using their numerical values. Moreover, O is double chained,
so that the predecessor and successor of any given segment is also
computed in O(1) time. For the sake of simplicity, i − 1 and i + 1
are the predecessor and successor of i , and “last” denotes the last
element of O.

A cherry is a pair of twin segments, i.e., only one node separates
these segments-leaves in T . Twin(i) is the twin of i (when it exists).
Two cherries (i, j) and (k, l) are adjacent when k = i + 1 and l = j + 1,
or k = i − 1 and l = j − 1.

A block, or partially visible duplication, is a sequence of adjacent
cherries (i, i + r ), (i + 1, i + 1+ r ), . . . , (i + g, i + g + r ), for g < r ; i is
the block start and i + g is the block end. The block end might not be
the last segment involved in the block, which is i + g + r (see Fig. 4 for
an illustration) A block is a (fully) visible duplication when g = r − 1.
A block is memorized by a link, L , between its start and end segments,
i.e., L(i) = i + g and L(i + g) = i . So a block starting from i is a visible
duplication when twin(i) = L(i)+ 1; this enables one to test in O(1)
whether a visible duplication has been found. Block links are detected

FIGURE 4. In this partial tree representation, there are six cherries:
(1, 7), (2, 8), (3, 9), (5, 12), (6, 13), and (10, 11). The last is a simple (and
visible) duplication, whereas the others form two blocks; the first block
has 1 and 3 as start and end, respectively, and 5 and 6 define the second
block.
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and updated all along the course of the algorithm, using the Block
procedure. The initial default value of L(i) is i .

The basic principle of the algorithm is to iteratively reduce the left-
most visible duplication until either only three segments remains (re-
turning “yes”) or no more visible duplication can be found (returning
“no”). Let (i, i + 1, i + 2, . . . , i + 2r − 1) be the leftmost visible dupli-
cation; using the Reduce procedure, we remove from O and from T
the r segments-leaves (i + r, i + r + 1, . . . , i + 2r − 1). In T , the com-
mon parent of (i + j, i + r + j) is also removed; e.g., in Figure 4, to
reduce the cherry (10, 11), 11 and v are removed and 10 is directly
connected to u. Then, i cannot be on the right of the new leftmost vis-
ible duplication, but it can belong to this duplication, or be on its left.
We then restart from i , first checking whether i belongs to a visible
duplication.

The algorithm uses a pointer p that moves from left to right un-
less a visible duplication is found; then, as explained above, this
duplication is reduced and p becomes equal to its leftmost remain-
ing segment. When no reduction occurs, we continue with p + 1,
unless p is last in the order, which returns “no”. The main algo-
rithm (Dupli) and the Reduce and Block procedures are summarized
below.

Dupli (p, O, T)
If only three segments remain, then return YES;
Else if p is equal to last+1, then return NO;
Else if p has no twin,
then return Dupli(p + 1, O, T);

Else if p is one of (i, i + 1) that is a cherry,
then Reduce(i, i, O, T)
and return Dupli(i, O, T);

Else let b = Block(p),
If b is equal to (start, end),
then Reduce(start, end, O, T)
and return Dupli(start, O, T),

Else return Dupli(p + 1, O, T).

Reduce (s, e, O, T)
Remove the segments e + 1, e + 2, . . . , 2e − s + 1 from T and from

O, and the block link between s and e: L(s) = s and L(e) = e.

Block (p)
t = twin(p);
If t < p, then return Block(t);

If p − 1 has a twin such that
(p − 1, twin(p − 1)) is adjacent to (p, t),
then start = min(p − 1, L(p), L(p − 1)),
Else start = p;

If p + 1 has a twin such that
(p + 1, twin(p + 1)) is adjacent to (p, t),
then end = max(p + 1, L(p), L(p + 1)),
Else end = p;

L(start) = end and L(end) = start;
Unless p is equal to start or end, L(p) = p;
Unless p − 1 is equal to start, L(p − 1) = p − 1;
Unless p + 1 is equal to end,
L(p + 1) = p + 1;

If twin(start)is equal to end+1,
then return (start, end),
Else return nil.

Illustration
We illustrate the way this algorithm proceeds using Figure 4. Dupli

starts with p = 1 and builds a block between 1 and 2. Then p = 2, and
this block is updated and links 1 and 3. With p = 4, nothing changes
because 4 has no twin. Continuing, the block between 5 and 6 is built,
whereas with p = 7, 8, and 9 nothing changes, and the block 1, 3 re-
mains identical. With p = 10, a visible simple duplication is found; it
is reduced by removing 11 and Dupli is called again with p = 10. Now,
p belongs to a cherry and twin(10) = 4, so Block(10) calls Block(4); we
then have start = 1 and end = 6, which corresponds to a visible mul-
tiple duplication. This duplication is reduced by removing segments
7, 8, 9, 10, 12, and 13, and Dupli is called again with p = 1, but only
segments 1, 2, 3, 4, 5, and 6 remain.

Time Complexity
The time complexity of this algorithm with respect to n, the number

of segments, is as follows.

1. Reduce requires O(r ) to process a duplication composed of r cher-
ries, i.e., an “r-duplication.” So the total amount required by Reduce
is at mostO(n).

2. Block only uses tests and operations that are performed inO(1) and
then requires constant times.

3. Each call of Dupli also requires constant time, so the total complexity
depends on the number of recursive calls. Initially, p moves from left
to right, but it returns to the left when a reduction occurs. Assume
that when p = p1 we find an r1-duplication. Then the number of
calls is O(p1), and p = p1 − r1 + 1. When now moving to p2 and
finding an r2-duplication, there are O(p1 + p2 − (p1 − r1 + 1)+ 1) =
O(p2 + r1) calls, and p = p2 − 2r2 + 1 in the worst case. Continuing,
there are: O(p j + r1 + 2r2 + 2r3 + · · · + 2r j ) calls at step j , which is
O(n) for any j , because p j ≤ n and r1 + 2r2 + 2r3 + · · · + 2r j < 2n.
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