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Abstract.—Phylogenies based on gene content rely on statements of primary homology to characterize gene presence or
absence. These statements (hypotheses) are usually determined by techniques based on threshold similarity or distance
measurements between genes. This fundamental but problematic step can be examined by evaluating each homology hy-
pothesis by the extent to which it is corroborated by the rest of the data. Here we test the effects of varying the stringency
for making primary homology statements using a range of similarity (e-value) cutoffs in 166 fully sequenced and annotated
genomes spanning the tree of life. By evaluating each resulting data set with tree-based measurements of character consis-
tency and information content, we find a set of homology statements that optimizes overall corroborration. The resulting
data set produces well-resolved and well-supported trees of life and greatly ameliorates previously noted inconsistencies
such as the misclassification of small genomes. The method presented here, which can be used to test any technique for
recognizing primary homology, provides an objective framework for evaluating phylogenetic hypotheses and data sets for
the tree of life. It also can serve as a technique for identifying well-corroborated sets of homologous genes for functional
genomic applications. [CCM; consistency; corroboration; gene content; homology; ILD; phylogeny; presence absence; tree
of life.]

Phylogenies based on gene content are now feasi-
ble with the availability of multiple, fully sequenced
genomes. As in traditional systematic analyses, these
phylogenies use features of organisms, in this case, the
presence or absence of genes, as character data for recon-
structing the branching pattern of evolution (Bansal and
Meyer, 2002; Dutilh et al., 2004; Fitz-Gibbon and House,
1999; Gophna et al., 2005; Gu and Zhang, 2004; House
and Fitz-Gibbon, 2002; Lake and Rivera, 2004; Snel et al.,
1999; Tekaia et al., 1999; Wolf et al., 2001a, 2002). Sim-
ilar recent approaches have used the presence or ab-
sence of protein domains or folds (Lin and Gerstein, 2000;
Yang et al., 2005) and gene order/proximity (Wolf et al.,
2001b) as data. Because of the remarkable phylogenetic
breadth of available genomic data, many studies have
focused on the reconstruction of the tree of life (Bansal
and Meyer, 2002; Dutilh etal., 2004; Fitz-Gibbon and
House, 1999; Gophna et al., 2005; Gu and Zhang, 2004;
House and Fitz-Gibbon, 2002; Lake and Rivera, 2004; Snel
et al., 1999; Tekaia et al., 1999; Wolf et al., 2001a, 2002).
Recently, gene content data have also been used to ad-
dress the origin of eukaryotes (Lake and Rivera, 2004),
and there is emerging interest in using this type of data
to infer functional interactions, pathways, and networks
(Bowers et al., 2004; Marcotte et al., 1999; Overbeek et al.,
1999; Pellegrini et al., 1999).

Despite their wide acceptance, most gene content phy-
logenies show significant inconsistencies with otherwise
well-supported taxonomy (Clarke etal., 2002; Dutilh
et al., 2004; Lake and Rivera, 2004; Yang et al., 2005).
These discordances have been attributed to unspecified
phylogenetic noise, nonvertical gene events (e.g., hori-
zontal transfer) (Clarke et al., 2002; Dutilh et al., 2004;
Gophna et al., 2005), use of inappropriate optimality cri-
teria for tree construction (Dutilh etal., 2004; Gu and
Zhang, 2004; Huson and Steel, 2004; Lake and Rivera,
2004), and biases introduced by comparing genomes of
grossly different sizes (Bansal and Meyer, 2002; Lake

and Rivera, 2004; Yang etal., 2005). Solutions offered
to these problems have included elimination or down-
weighting of inconsistent characters (Clarke et al., 2002;
Dutilh et al., 2004; Gophna et al., 2005), weighted cor-
rections for smaller genomes (Bansal and Meyer, 2002;
Yang et al., 2005), accounting for multiple gene copies
in a genome (Gu and Zhang, 2004), and limiting gene
presence/absence groupings to those found in a specific
genome (i.e., conditioning) (Lake and Rivera, 2004).

A largely unexplored source of phylogenetic bias and
inconsistency is the step in which the initial statements
of gene content are specified. Preliminary hypotheses of
homology are often made using techniques based on a
similarity threshold, set as an a priori criterion, for defin-
ing whether a gene can be reasonably considered to be
absent or present. Any such technique risks lumping
genes together that are not true homologues and risks
separating genes that are valid homologues. Such inac-
curate homology statements can have large effects on
tree topology. A recent study by Hughes et al. (2005) that
examined six data sets determined at different similar-
ity thresholds for 99 prokaryotic genomes found that the
data sets produced contradictory phylogenetic trees that
differed both in topology and in their ability to resolve
ancient relationships. In the absence of an obvious crite-
rion for choosing one data set over another, Hughes et al.
(2005) concluded that their results "did not increase con-
fidence in the applicability of gene content analyses to
the resolution of prokaryotic phylogenies."

To limit erroneous homology statements, other re-
searchers have used database search operations that ac-
cept only mutually strong BLAST scores between genes
(Gophna et al., 2005; Lake and Rivera, 2004) or curated
gene families based on these scores (e.g., COGs [Clus-
ters of Orthologous Groups]; Tatusov et al., 1997). Others
have developed approaches that add more sophisticated
criteria to similarity searches and gene clustering tech-
niques (Clarke et al., 2002; Gophna et al., 2005; Harlow
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et al., 2004; Krause etal., 2005; Park and Teichmann,
1998). However, there is no clear empirical framework
or objective measure for evaluating differences between
techniques or choosing between data sets.

To further explore the effects of unexamined a priori
homology statements, we devised a method, based on
the principle of reciprocal illumination, for evaluating
primary homology statements that combines character-
based and topological tests for measuring corroboration
of each homology hypothesis. We used this method to
test 111 gene content data sets for 166 eukaryotic and
prokaryotic taxa, each constructed at different similar-
ity thresholds for defining homologue groups. From this
procedure, we derived highly corroborated data sets that
produce well-resolved phytogenies that greatly amelio-
rate previously noted inconsistencies in gene content
studies. We also compared these to data sets created with
the widely used COG database (Dutilh et al., 2004), and
a conditioned genome approach.

Reciprocal Illumination and Homology Testing

All phylogenetic analyses begin by making primary
homology statements that tentatively describe the evolu-
tionary relationships among attributes. These initial hy-
potheses can be tested and reformulated as secondary
homology hypotheses by measuring the extent to which
they are corroborated by other homology hypotheses on
the resulting phylogenetic tree (DePinna, 1991). Assess-
ing homology corroboration within this framework re-
lies on the principle of reciprocal illumination (Hennig,
1966), in which each individual hypothesis is evaluated
by the extent to which it agrees with the overall, favored
hypothesis given all available data. This operation entails
a test of each homology hypothesis (character) using, as
evidence, the relationships or nodes inferred from the op-
timal tree. For any given data set, reciprocal illumination
allows for the most severe test (sensu Popper, 1968) of
each homology hypothesis based on its congruence with
the total assembled information in the rest of the data
set. Using reciprocal illumination to evaluate homology
statements has received much attention for morphologi-
cal and molecular sequence data (Brower, 1996; DePinna,
1991; Kluge, 2003; Rieppel and Kearney, 2002; Wheeler,
2001), but gene content data have not been analyzed from
this perspective.

We suggest that in choosing among data sets, one
should prefer those that are composed of the most
severely tested, well-corroborated homology hypothe-
ses. Statements of gene presence or absence can be tested
by their agreement with the overall phylogenetic pat-
terns suggested by all other gene presence/absence state-
ments in the data set using measurements such as the
consistency index (CI; Kluge, 1969). However, it is impor-
tant to note that corroboration of a hypothesis is deter-
mined not only by consistency (i.e., the extent to which
the data do not disagree) but also by information con-
tent (i.e., the amount of evidence that could possibly re-
fute a hypothesis). The extent to which a hypothesis is
refutable is determined by the boldness, or resolution of

that hypothesis, and the amount of relevant information
available to test it.

METHODS

Data Set Construction

We used a single-linkage clustering (SLC) algorithm
to create 111 data sets at differing e-value thresholds.
This algorithm grouped sequences based on measure-
ments derived from an all-against-all amino acid simi-
larity search of 166 sequenced and annotated genomes
from UniProt (Apweiler et al., 2004) using BLAT (Bansal
and Meyer, 2002). The SLC algorithm groups protein se-
quences together if they have at least one pairwise e-
value score with any other member of the group that was
as good or better than each specified e-value threshold.
Therefore, all proteins that are being grouped together
only need one connection to any member of the group
(see Fig. 1). Based on each SLC group, we constructed
presence/absence matrices in which each column repre-
sents an SLC grouping and each row, a taxon. The pres-
ence in each taxon of at least one representative gene in
each SLC group was coded as a "1." Absence was coded
as a "0." All SLC groups with only one gene member
were excluded from the analysis. A distinct data set was
created for each e-value threshold.

We also used a technique based on the conditioning
method introduced by Rivera and Lake (2004) to con-
struct data sets based on mutually strong hits. In our
implementation of this technique, each protein sequence
from a single genome (referred to as the conditioning
genome) is used to search each genome in the data set.
The top three protein hits (based on e-value) from each
genome are then retrieved and used, in turn, to search
the conditioning genome. If any of the three protein se-
quences retrieves the original protein sequence as one of
its own top three hits in the conditioning genome, then
the genome receives a "1 ." This process is done for each
gene in the conditioning genome against every other
genome in the data set. We used three genomes, Arabidop-
sis thaliana, Escherichia coli, and Archeoglobus fulgidus, as
conditioning genomes. All data sets, databases, and com-
puter scripts are freely available from the authors upon
request.

We constructed elided SLC gene-content data sets by
concatenating individual matrices into a single matrix
(Wheeler et al., 1995). An SSU rDNA data set was gener-
ated to compare the results of the gene content data sets
with an external data set. SSU rDNA sequences were at-
tained from the Ribosomal Database Project-II (RDP-II)
(http://rdp.cme.msu.edu) for each of the species used
in this analysis and aligned using default alignment set-
tings in CLUSTALX 1.63.

Phylogenetic Analysis

For all data sets, we did heuristic searches for the most
parsimonious trees using the 'ratchet' method imple-
mented using PAUPRat (Sikes and Lewis, 2001) in con-
junction with PAUP4.0bl0 (Swofford, 2000). We did three
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FIGURE 1. Single linkage clustering (SLC) algorithm. The algorithm
combines objects (in this case, proteins) when they have at least one
linkage to another member of the groups. Panel (a) shows six proteins
A, B, C, D, E, and F have linkages based on measurements of similarity
that are better than some threshold (here labeled 10~x). These linkages
are A and B, B and C, D and E, and A and F. The single linkage-
clustering algorithm groups the proteins in two nonoverlapping
clusters (b).

sets of 200 replicates of the ratchet method, up weighting
15%, 17%, and 21% of the characters in each set, using
the tree-branch reconnection (TBR) technique and sav-
ing only one tree at each step. Using the resulting trees
as starting trees, we then did 100 TBR replicates sav-
ing multiple trees (up to 1000) at each step (multrees
option in PAUP). All characters and state transforma-
tions were given equal weight. To calculate confidence
in the resulting trees, we generated Bremer decay in-
dices using the program Autodecay (Eriksson, 1998) and
100 bootstrap replicates in PAUP with 100 iterations of
random addition followed by TBR. For distance-based

tree searches for all data sets, we used the default set-
tings for neighbor joining in PAUP. For Bayesian phy-
logenetic analysis of the SSU rDNA, data we used the
Metropolis-coupled Markov-chain Monte Carlo (MCM-
CMC) with four chains (heat 0.5) over 500,000 iterations,
with a burn-in of 100 iterations, in the computer program
MrBayes (Huelsenbeck and Ronquist, 2001). Default set-
tings (4-by-4 model nucleotide substitution model, equal
substitution rates, assuming equal among-site rate vari-
ation) produced trees equivalent in topology to more
complex models. For LogDet/paralinear we used default
settings in PAUP after converting our presence/absence
matrix to contain "A" and "T" in place of "I" and "0,"
respectively.

Consistency and Corroboration Analysis

We computed the rescaled consistency index (RCI)
(Farris, 1989), consensus fork index (Colless, 1980) and
the Rohlf consensus index 1 (Rohlf, 1982) using PAUP.
We computed the RCI for the optimal trees derived from
each data set. The RCI is defined as RCI = (M/S) x
[(G—S)/(G—M)l (where M is the minimum number of
steps on the tree, S is the observed number of steps,
and G is the maximum number of steps possible on
the particular tree). The consensus fork index (CFI) and
Rohlf CI1 were calculated using the strict consensus
tree. The CFI is found by dividing the number of bi-
furcating nodes on the consensus tree by the maximum
number of possible nodes. The Rohlf CI1 is a related
metric that gives greater weight to polytomies with a
greater number of dependent branches (i.e., nodes closer
to the root) while also correcting for biases introduced by
tree topology (Rohlf, 1982). We computed the combined
corroboration metric (CCM) for each data set by mul-
tiplying the RCI by each of the topological consensus
indices: CCMR = RCI x RohlfCIl and CCMCF = RCI x
CFI.

For comparison of gene content and SSU rDNA trees
using the ILD test, we used the partition homogeneity
function in PAUP to carry out 100 replicates of partition
randomization, each with 100 replicates of random ad-
dition followed by TBR.

RESULTS AND DISCUSSION

Data Set Construction, Composition, and Phylogenetic
Analysis

To construct data sets for homology assessment we
used a single linkage clustering (SLC) algorithm in which
a gene is included in a group if it has a similarity score
above a given threshold with at least one other gene from
the group (Fig. 1). A recent study by Hughes et al. (2005)
also used an SLC clustering algorithm to construct pres-
ence/absence data sets at different similarity thresholds
based on pairwise local (BLAST) alignments of all se-
quences in the analysis. These thresholds were defined
by percent sequence identity and length of the BLAST
alignment. For a similarity score threshold we used the

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/55/3/441/1670077 by guest on 24 April 2024



444 SYSTEMATIC BIOLOGY VOL. 55

BLAST-based e-value (or expect value) that is commonly
employed for nucleotide and protein sequence database
searches (Altschul et al., 1997). The e-value represents the
probability due to chance that a better sequence match
exists in the database. It is therefore an expression of the
probability of finding a given similarity score by chance
alone. The e-value calculation incorporates the similar-
ity and length of the matching sequence with the size of
query sequence and the size of the database. We created
111 gene content data sets for 166 organisms, each at a
different e-value threshold ranging from e-value 10~5 to
an e-value of 10~300.

Figure 2 shows the large amount of variation in the
composition of these data sets. The number of proteins
in each data set decreases with increasing stringency.
This is due to the exclusion of "singleton" genes that
cannot be assigned to any SLC group at a given thresh-
old. The total number of characters (or SLC groups) in
each data set initially increases with increasing similarity
stringency as groups are broken up into smaller groups,
but the number then decreases as SLC groups are divided
into groups of singletons and excluded from the analy-
sis. This trend is mirrored by a rise and fall in the number
of steps in the most parsimonious trees with increasing
similarity stringency. Like the total number of proteins,
the maximum cluster size decreases nearly linearly, but
the average cluster size decreases more rapidly and nears
an asymptote of approximately four to five proteins per
SLC group starting at e-values of approximately 10~50.
This indicates that a relatively small proportion of pro-
tein clusters contain many more members than the rest
of the clusters at mid-range similarity threshold strin-
gencies (approximately 10~50 to 10"100). It seems likely
that this small portion of proteins contains most of the
information about deeper phylogenetic relationships.

For comparison to our SLC data sets, we constructed
three data sets using a mutual best hits technique that in-
corporated the idea of conditioning genomes described
by Rivera and Lake (2004). Each of these three data sets
was "conditioned" by restricting gene content to genes
found in a single organism. We chose one organism from
each domain to condition the data (Archeoglobus fulgidus,
Escherichia coli, and Arabidopsis thaliana). Because a previ-
ous study noted differences in outcome when genomes of
different sizes are used (Lake and Rivera, 2004), we also
chose these genomes to represent a spectrum of genome
size: Archeoglobus fulgidus (2420 protein encoding genes),
Escherichia coli (4237 protein encoding genes), and Ara-
bidopsis thaliana (25,498 protein encoding genes).

In addition, we obtained a previously analyzed data
set derived from the COG database (Dutilh et al., 2004).
COGs, or clusters of orthologous groups, are determined
by a procedure in which all sets (or cliques) of three genes
drawn from any genome in the database that are all sim-
ilar to one another are identified. Then any cliques that
share at least two genes in common are merged to make
the final clusters (Tatusov et al., 1997). Current imple-
mentations for finding COGs add processes that remove
paralogous genes from the same COG. In addition, the
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FIGURE 2. SLC data set calulations at differing simliarity threshold
stringencies. Graphs are as follows: (a) the total number of proteins
used to make each data set; (b) the size (number of proteins) of the
largerst gene cluster in each data set; (c) the average size (number of
proteins) of a gene cluster in each data set; (d) the number of characters
in each analysis; (e) the number of steps in the optimal tree(s) found
for each data set. Graph (b) starts at an e-value of 10~25 rather than
10"5 because of scaling (the value at 10~5 (193,760 proteins) for this
graph were much higher than the range of the rest of the data). The
total number of proteins for each data set (a) and the maximum num-
ber of proteins in a single cluster (b) diminish regularly with increased
similarity threshold stringency, whereas the average number of pro-
teins in a cluster (c) nears a minimum number at a threshold of around
io-ioo
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COG databases are manually corrected, inspected, and
curated (Tatusov et al, 2001).

We aggressively searched for the optimal tree(s) for
each data set. Notably, for almost all of the data sets an-
alyzed here, the ratchet tree search technique of Nixon
(1999) found more parsimonious trees than were found
using less strategic searches available in PAUP, such as
multiple rounds of random addition followed by TBR
branch swapping.

Internal Consistency

Consistency for each character (homology hypothe-
sis) in a phylogenetic data set often is assessed using the
consistency index (CI), which is the ratio of the mini-
mum possible number of changes in a given character to
the observed number of changes on the tree. To correct
this value for artificial inflation when there are only a
few possible steps for a character, Farris introduced the
rescaled consistency index (RCI) (Farris, 1989). Ensemble
consistency indices, the average CI (or RCI) of all char-
acters in the data set (Kluge, 1969), represent the overall
degree to which homology statements within the data
set do not disagree.

Using the optimal tree (s) as a guide we calculated
the ensemble RCI for each SLC data set. As expected,
the ensemble RCI increased as the similarity threshold
became more stringent (Fig 3a), showing that higher lev-
els of overall internal consistency are obtained at higher
similarity stringencies.

In contrast, the RCI for the data set derived from the
COG database was remarkably low, which is consistent
with previous observations of a high level of noise in
this data set (Dutilh et al., 2004). RCI scores for all three
data sets made using our conditioned genome technique
were even lower, suggesting that these data sets also have
high levels of discordant phylogenetic signal (Fig. 3a).
This observation may be due to the fact that our condi-
tioning technique does not explicitly exclude potentially
paralogous genes from these data sets.

It is unclear why the SLC data sets had such dra-
matically higher consistency index scores even at low
similarity threshold levels. One possible explanation is
that the SLC technique requires only one point of sim-
ilarity for each gene to be assigned to a group. Genes,
therefore, never have any similarity above the thresh-
old with any gene outside the group to which they are
assigned. Thus, SLC guarantees that there will be no
ambiguity in the placement of genes in a gene homol-
ogy hypothesis, and each gene will be represented only
once in a given matrix. Duplicating the same gene in
different homology hypotheses could lead to an artifi-
cial increase in homoplasy, and therefore a decrease in
consistency.

External Congruence

Visual inspection of trees produced from data sets with
lower stringency similarity thresholds showed signifi-
cant deviations from widely accepted taxonomic rela-
tionships, whereas trees from data sets with mid-level

similarity stringency thresholds (e-values from 10 50

to 10~100) united most members of well-accepted taxo-
nomic groups (Fig. 4). Trees produced from even higher
levels of similarity stringency produced poorly resolved
consensus trees that give little taxonomic information. To
further explore these gestalt taxonomic observations, we
compared our data sets to independently derived phy-
logenetic data from the gene for small subunit ribosomal
DNA (SSU rDNA).

We compared the topology of each of the most parsi-
monious SLC gene content trees to trees generated with
the SSU rDNA data set using tree consensus indices as
measurements of tree similarity (Fig. 5). Tree consensus
indices measure agreement of trees as a function of the
number of fully resolved nodes in the consensus tree
obtained from all trees examined. Thus, tree consensus
indices are convenient measures of the topological agree-
ment among multiple trees, and can accommodate more
than one optimal tree for comparisons.

Topological tree comparison allowed us to compare
gene content trees to SSU rDNA trees constructed us-
ing different optimality criteria (Bayesian likelihood
and parsimony). These comparisons offered a partial
control for the possibility that our analysis was being
confounded by misleading biases that may affect differ-
ent phylogenetic inference techniques (Felsenstein, 1978;
Kolaczkowski and Thornton, 2004). Although all gene
content data sets had low topological agreement with
both the Bayesian- and parsimony-derived SSU rDNA
trees, a clear trend emerged with middle-range gene con-
tent data sets (e-values from 10~50 to 10~100) yielding trees
that conflicted least with the SSU rDNA trees (Fig. 5a, b).
The decline in consensus indices for trees constructed at
higher similarity stringencies is largely due to the poor
resolution of trees from gene content data sets themselves
(Fig. 3) and is, therefore, not only reflective of disagree-
ment with the SSU rDNA derived topology.

To further control for possible methodological biases in
our tree comparisons, we compared our parsimony trees
to distance analyses. Several recent studies have sug-
gested that parsimony analysis of gene content data sets
is more prone to gross taxonomic/classification errors
compared to distance-based techniques such as LogDet
(Dutilh et al., 2004; Lake and Rivera, 2004; Rivera and
Lake, 2004; but see also Fitz-Gibbon and House, 1999;
House and Fitz-Gibbon, 2002; Huson and Steel, 2004).
It is important to note that these errors have not been
attributed to long-branch attraction (LBA). They are in-
stead likened to the effects of nucleotide compositional
bias in DNA sequences (Lake and Rivera, 2004). To test
if the taxonomic inconsistencies we observed were due
simply to the use of parsimony-based analysis, we com-
pared gene content and SSU rDNA tree topologies
derived from distance (neighbor joining, LogDet) and
parsimony techniques. We found that trees from the SSU
rDNA data set were almost always more similar, based
on topological tree comparison indices (data not shown),
to the most parsimonious gene content trees than they
were to gene content trees made using distance meth-
ods. This finding held true regardless of the optimality
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FlG URE 3. Character consistency, topological consistency, and com-
bined indices at differing similarity threshold stringencies maximal
values, if present, are indicated with a curved arrow with the corre-
sponding e-value in parentheses. Values for the COG data set (Dutilh
et al., 2004) and the three conditioned data sets inspired by Rivera and
Lake (2004) are indicated with a straight arrow. Conditioned data sets
are designated with initials of genus and species of the conditioning
genome (A.f. = Archeoglobus fulgidus; A.t. = Arabidopsis thaliana; E.c.
= Escherichia coli). The scores for the COG data set are consistent with
previous findings that showed very high levels of noise (homoplasy)
in this data set (Dutilh et al., 2004). The scores for the conditioned
data sets showed high levels of homoplasy as well. Graphs are as

FIGURE 4. Tree topologies from a range of e-value stringencies.
Strict consensus trees derived from low to high similarity threshold
are shown from left to right. Taxa belonging to the Archaea are col-
ored orange; Eukarya, yellow; Bacteria, blue. Taxa belonging to the
proteobacteria are purple to illustrate taxonomic differences between
trees at the level of phylum. Note that as stringency increases, trees
become increasingly unresolved, and at lower stringencies many taxa
are misclassified.

criterion used for the SSU rDNA tree or the e-value of the
gene content data set. Thus, for these data sets and to the
extent that the SSU rDNA analysis is a valid represen-
tation of bacterial phylogeny, parsimony analysis seems
to be no more prone to taxonomic errors than distance-
based analyses.

Phylogenetic character corroboration by external data
sources can be assessed using the incongruence length
difference (ILD) test, which measures the extent and sta-
tistical significance of character disagreement between
separate or partitioned data sets (Farris, 1994). To test
our data sets in this framework, we concatenated our
gene content data sets with the SSU rDNA sequences
from each species. We then used the ILD test to mea-
sure the incongruence between gene content data sets
and the SSU rDNA alignment. In every case tested, the
SSU rDNA data set was statistically incongruent with the
gene content data sets (P < 0.01), but, mirroring the inter-
nal character consistency indices above, the ILD showed
less absolute and relative incongruence at lower e-values
(Fig. 5c, d).

It is important to note that we do not consider the
SSU rDNA data set, or indeed any single gene data set,
alone to be sufficient for inferring the phylogeny of the
tree of life. However, data sets composed of SSU rDNA
are widely regarded as containing reliable phylogenetic
information for at least some relationships in the tree
of life, and many of the major bacterial groupings are

follows: (a) the rescaled consistency index (RCI); (b) the consensus fork
index (CFI); (c) the combined corroboration metric (CCM) that uses the
CFI as the topological component (CCMCF); (d) the Rohlf consistency
index 1 for consensus trees (Rohlf CI1); (e) the CCM that uses the Rohlf
CI1 as the topological component (CCMR). The RCI increases with in-
creasing stringency. Both the Rohlf CI1 and the CFI indices show a
trend toward lower values at higher stringencies. Note that the Rohlf
CI1 and CCMR vary significantly over consecutive e-values, suggest-
ing that small differences between e-values can have drastic effects on
these indices. CCMR scores of data sets used in the elided matrix (top
5% CCMR) are shown in red in panel (e).
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FIGURE 5. Calculations of external corroboration of SLC gene con-
tent data sets. Panels a and b show scores of Rohlf consensus index
(y-axis) plotted against e-value thresholds (x-axis) used for construc-
tion of SLC gene content data sets. Each Rolf consensus index is derived
from the consensus tree of the optimal tree(s) from the SLC gene con-
tent data set combined with the optimal topology for the SSU rDNA
data set. The results are shown for comparison to SSU rDNA trees us-
ing unweighted parsimony (panel a) and Bayesian likelihood analysis
(panel b). Panels (c) and (d) show measurements of.data set incongru-
ence between the SSU rDNA data set and the SLC gene content data
sets (y-axis) plotted against the e-value thresholds (x-axis) used for con-
struction of SLC gene content data sets. Panel (c) shows the raw score
for the ILD, and panel (d) shows the ILD score normalized by dividing
by the total number of steps in the optimal tree.

defined largely based on their SSU rDNA sequences. We
therefore regard the topological and character congru-
ence with the SSU rDNA data sets as mutually informa-
tive indications of phylogenetic relationships.

Information Content

Both the ILD and character consistency indices
showed that higher stringency similarity thresholds cre-
ate data sets that have less conflict both internally and
with external data. However, using these measures alone
in assessing corroboration of hypotheses is misleading.
Several researchers have noted that the ILD test can be
biased in cases where one data set (or partition) con-

tributes more information than the other (Darlu and
Lecointre, 2002; Dolphin et al., 2000; Dowton and Austin,
2002; Hipp et al., 2004; Lee, 2001; Yoder et al., 2001). It
is possible that by weakening the contribution of the
gene content data set by increasing the similarity thresh-
old stringency may lead to false congruence in the ILD
test.

Likewise, because consistency indices address the ex-
tent to which characters do not disagree, loss of infor-
mation could yield high, but misleading, consistency
indices. Hypotheses can be highly consistent when they
are weakly defined or only have limited information
available to test them. Information loss can be reflected
in multiple, discordant, optimal trees, and the inability
to resolve certain phylogenetic relationships. In recipro-
cal illumination, the loss of resolution is critically detri-
mental, because loss of nodes entails loss of evidence for
testing each homology hypothesis.

Indeed, inspection of the consensus trees produced
from higher stringency data sets showed a lack of resolu-
tion in many nodes, suggesting that as similarity thresh-
old stringency and consistency increased, information
about certain relationships was lost (Fig. 3). To quan-
tify this loss of resolution, we used tree topology con-
gruence indices, the consensus fork index (CFI) (Colless,
1980) and the rohlf consensus index 1 (Rohlf CI1) (Rohlf,
1982), which measure tree disagreement as a function
of the number of uncertain relationships (polytomies) in
consensus trees. These measures showed that at strin-
gencies above approximately 10~100, the consensus trees
were less and less resolved (Fig. 3b, d).

Decreasing resolution at lower e-values (higher strin-
gencies) despite their higher CI and RCI values illumi-
nates the inability of character consistency indices to
alone measure corroboration of homology hypotheses.
Despite the high consistency of homology hypotheses
in these data sets, the information content is low, and,
therefore, the overall amount of corroboration and the
severity of test is weak.

The Combined Corroboration Metric

Because of the opposing trends in measurements of
phylogenetic consistency and resolution with increas-
ing similarity stringency, we sought to maximize both
character consistency (based on the RCI) and informa-
tion content (based on topological consensus indices) to
find the data set with the highest level of internal cor-
roboration. To accomplish this task, we searched for the
maximum value of the product of the character and topo-
logical indices (referred to here as the combined cor-
roboration metric, or CCM). The character consistency
component of the CCM measures the extent to which the
data do not disagree, whereas the topological component
of the CCM addresses the extent to which the data could
possibly refute each homology hypothesis based on the
resolution of the optimal tree. Thus, the CCM score is an
aggregate measure of the overall amount of corrobora-
tion (and the severity of test) for homology hypotheses
in the data set.
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We used two CCMs; one incorporates the CFI
(CCMCF)/ which weights all polytomies in consensus
trees equally, and the other is based on the Rohlf CI1
(CCMR), which emphasizes polytomies in those rela-
tionships closer to the root of the tree. Although each
of these measures indicated a different optimal data set
(Fig. 3c, e), both of these data sets produced trees that
were in remarkable agreement with accepted taxonomic
relationships.

In general, data sets constructed using SLC showed
much higher levels of corroboration as determined by
the CCM. This may stem from the much higher levels
of character consistency found in these data sets. The
COG data set and the data sets constructed using the
conditioning technique produced trees were as highly
resolved as many of the SLC-derived trees. However,
these data sets also had high levels of character con-
flict that were reflected in low consistency values. There-
fore, the CCM scores for these data sets are significantly
lower.

One interesting property of the SLC data sets produced
at any e-value is that they included many more informa-
tive characters than data sets constructed using the COG
gene families or the conditioned data sets, which, along
with the increased consistency of these data sets, makes
them especially attractive for testing phylogenetic hy-
potheses using as much available evidence as possible.
SLC also offers a computationally tractable and straight-
forward method for titrating the similarity threshold in
a search for optimal CCM scores.

Importantly, the CCM provides a measure for com-
paring future alterations and improvements to any ho-
mology recognition method, and more sophisticated
homology recognition techniques may yield data sets
with even higher levels of corroboration (e.g., Clarke
etal., 2002; Gophna etal , 2005; Harlow etal , 2004;
Krause et al, 2005; Park and Teichmann, 1998).

The Tree of Life

Because tree-of-life studies are mostly concerned with
more ancient basal relationships, we chose the CCMR to
continue our analysis. To account for trivial differences in
the highest CCMR scores, we concatenated the data sets
representing the top 5% of CCMR scores for a combined
analysis. In this technique, often referred to as elision
(Wheeler et al., 1995), data sets constructed using differ-
ent parameters are combined in the same analysis with
the goal of decreasing the effect of homology statements

that are not robust to parametric changes. Patterns of ho-
mology that persist in each data set are up-weighted by
being represented more than once in the matrix, whereas
patterns that only appear in one, or a few, are down-
weighted. In nucleotide alignments, elision is used to
ameliorate the effect of alignment ambiguous positions.
Here we used this technique to emphasize gene homol-
ogy hypotheses that persisted in all of our most highly
corroborated data sets. Elision of several data sets may
also help to account for differences in optimal similarity
criteria for delineating different gene families.

The single most parsimonious phylogeny derived
from the elided data set is presented in Figure 6. This
tree has high bootstrap and Bremer decay support and
greatly improves taxonomic inconsistencies seen in other
gene content phylogenies, such as the cosegregation of
the reduced genome proteobacteria (e.g., Rickettsia and
Buchnera), a phenomenon referred to as "big genome
attraction" (BGA) (Lake and Rivera, 2004). It also shows
strong Bremer (6.8) and bootstrap (100%) support for the
monophyly of Archaea, Eukarya, and Bacteria, lending
further support to the three Domain organization of life
(Woese et al., 1990).

Archaea.—In the optimal phylogeny presented here,
Nanoarchaeum equitans is the most basal branch of the Ar-
chaeal clade (Fig. 5). This result is consistent with phylo-
genies based on SSU rDNA sequence data (Huber et al.,
2002), transcription and translation machinery (Brochier
et al., 2005a), and on a concatenated data set of 35 riboso-
mal protein sequences (Waters et al., 2003). Arguments
for the ancient divergence of this lineage have also been
based on the presence of genes that are "split" such that
different portions of a functional gene product are found
and transcribed in different parts of the genome (Randau
et al., 2005; Waters et al., 2003). High gene density and a
paucity of operons and pseudogenes may also argue for
the antiquity of this lineage (Waters et al., 2003). This
hypothesis has been challenged by studies based on pro-
tein BLAST comparisons and phylogenetic analysis of
other protein encoding genes, which suggest that Nanoar-
chaeum equitans might be a highly derived Euryarchaeal
lineage and represents the result of genome reduction
(Brochier et al., 2005b).

The Archaeal domain is then split into two clades.
The first of these clades contains members of both of the
traditional major subdivisions of the Archaea, the Cre-
narchaeota, and the Euryarcheota. The second clade is
composed exclusively of Euryarcheota. Thus, based on
our tree, the Euryarcheota are a paraphyletic group. In

FIGURE 6. The most parsimonious tree from elision of data sets that had the top 5% CCMR values (produced at e-values 1 x 10"88,1 x 10"85,
1 x 10"81,1 x 10"73,1 x 10"72). The tree has a length of 401,170 steps (CI = 0.814, RI = 0.905, RCI = 0.737) and is completely resolved (therefore
CCMR= RCI = 0.737). Support values are shown on each branch as follows: Bremer decay indices/bootstrap percentage values. A dot indicates
bootstrap values greater than 80%. An asterisk indicates Bremer support values greater than 20. Some Bremer indices are shown as fractions
because each value was divided by 5 to account for the concatenation of five distinct data sets in the elision. Colors of taxonomic groups are
the same as in Figure 4, with additional colors indicating the Firmicutes (green), Cyanobacteria (darker blue), Actinobacteria (light green),
Mycoplasmales (yellow-green), and Chlamydiales (blue-green). Proteobacterial subgroups are labeled with their corresponding Greek letter.
Note the inclusion of the reduced genome Rickettsiales in the alpha protebacterial clade, and Buchnera within the proteobacteria. Also note that
epsilon and some delta subgroup members are not monophyletic with other proteobacteria.
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conjunction with the high support for the three-domain
structure of life, this result suggests that certain features
exclusively shared between the crenarcheota (or eocytes)
and the Eukarya (Lake et al., 1984; Rivera and Lake, 1992)
are either symplesiomorphic or inherited via nonvertical
inheritance events such as horizontal transfer.

Eukarya.—The most basal member of Eukarya in our
optimal tree is the cryptophyte Guillardia theta. The
next most basal lineage is a microsporidium, Encephal-
itozoon cuniculi, followed by the apicomplexan Plas-
modium falcipurans. The classification of microsporidia
as basal eukaryotes is also supported by phylogenetic
and comparative analysis of SSU rDNA (Curgy et al.,
1980; Ishihara and Hayashi, 1968; Leipe et al., 1993;
Vossbrinck et al., 1987; Vossbrinck and Woese, 1986),
phylogenies based on elongation factors (Kamaishi et al.,
1996a; Kamaishi et al., 1996b), and by the absence of mi-
tochondria in these organisms. However, our result is not
consistent with the more recent view that microsporidia
are highly derived, close relatives of fungi, which is sup-
ported by phylogenies based on tubulin genes (Edlund
et al., 1996; Keeling, 2003; Keeling and Doolittle, 1996),
the presence of mitochondrial genes in the nuclear
genome of four microsporidia (Germot et al., 1997; Hirt
et al., 1997; Katinka et al., 2001; Peyretaillade et al., 1998),
phylogenies based on the RNase PolII gene (Hirt et al.,
1999), and a phylogeny derived from genome-wide sam-
pling of genes thought to evolve slowly (Thomarat et al.,
2004).

Bacteria.—Our tree agrees with most of the tradi-
tional phylum designations in the Bacteria domain. The
Cyanobacteria and Actinobacteria each form a mono-
phyletic group. Interestingly, the Firmicutes form a
monophyletic group that excludes the Mollicutes (my-
coplasma). This result is also shared with other gene
content phylogenies (Hughes et al., 2005; Tekaia et al.,
1999; Wolf et al., 2001a) and some SSU rDNA analyses
(e.g., Brochier et al., 2002) but is not supported by phy-
logenies based on other single genes (Wolf et al., 2004)
or concatenated gene alignments (Brochier et al., 2002;
Brown et al., 2001; Eisen, 1995). Considering the small
size of Mollicutes genomes used here, this result may
signal that our analysis is still partially prone to the ef-
fects of BGA.

The Proteobacteria are mostly grouped together with
the exception of the members of the 8 and e subdivisions.
Whereas the 8 subdivision members do not form a clade,
the s subdivision species are found together at a posi-
tion just basal to the Firmicutes clade. This result, which
has been reported in many other gene content analy-
ses (Dutilh et al., 2004; Gu and Zhang, 2004; House and
Fitz-Gibbon, 2002; Hughes et al., 2005; Tekaia et al., 1999;
Wolf et al., 2001a; Yang et al., 2005), and is sometimes
seen in SSU rDNA trees as well, suggests that the clas-
sification of these organisms may need to be reassessed.
The remainder of the proteobacterial clade is divided
into two monphyletic groups representing the a sub-
division, which includes the reduced genome Rickettsia
group, and the ft and y subdivision, which includes the
reduced genome Buchnera group.

The phylogeny presented here and several other gene
content phylogenies (Dutilh et al., 2004; House and Fitz-
Gibbon, 2002; Tekaia et al., 1999; Wolf et al., 2001a; Yang
et al., 2005) do not agree with the traditional SSU rDNA-
based trees in the placement of thermophiles in the most
basal position of the tree—a subject that bears heavily on
reconstructions of the nature of the last universal com-
mon ancestor. Indeed, the placement of these taxa near
to the root of the universal tree is controversial (Brochier
and Philippe, 2002; Di Giulio, 2003a, 2003b), and there
seems to be no firm consensus.

Optimizing Homology Hypotheses Using Corroboration

The concept of reciprocal illumination underlies sev-
eral analytical techniques in systematic biology. In one
such technique, referred to as successive weighting or suc-
cessive approximations (Farris, 1969), fixed, primary ho-
mology hypotheses are iteratively reweighted based on
their consistency with the overall phylogenetic hypoth-
esis. Homology hypotheses that are consistent with the
overall favored hypothesis are given greater weights and
the analysis is run again. This process is repeated un-
til the analysis converges on a single tree or a set of
tree topologies. Another technique, Goloboff's implied
weights (Goloboff, 1993,1997), applies a similar opera-
tion during tree searching. In these techniques, the re-
ciprocal operation is used to down-weight inconsistent
primary homology hypotheses, which, nonetheless, re-
main unchanged or statically defined.

The rationale behind choosing the data set with the
highest CCM is related to the process of reciprocal il-
lumination in successive weighting. However, instead
of differentially weighting homology hypotheses, our
method effectively recodes homology statements based
on a new global homology recognition criterion, to find
a more corroborated set of homology hypotheses. From
this perspective, our technique can be conceived of as an
operation that precedes techniques that rely on the dif-
ferential weighting of characters to achieve consistency.
Further, because our technique does not explicitly down-
weight homology hypotheses that are not consistent with
the favored hypothesis, potential information in these in-
consistent characters is retained and can contribute to the
analysis.

Another related technique, referred to as sensitivity
analysis (Wheeler, 1995), optimizes congruence based on
weighting schemes or alignment parameters that mini-
mize incongruence between data partitions. Unlike mea-
sures of character consistency, sensitivity analysis does
not specifically assess each homology hypothesis but in-
stead tests corroboration between sets of homology hy-
potheses. This aspect has been criticized as decreasing
the overall amount of corroboration for each individ-
ual homology hypothesis (Grant and Kluge, 2003). Sen-
sitivity analysis may also be problematic when partitions
are arbitrarily or incorrectly defined (Siddall and Kluge,
1999).

The success of our homology-testing framework in
finding data sets that correct taxonomic inconsistencies
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suggests that weakly corroborated homology statements
may be as much of a problem as other suspected causes of
bias in gene content data sets, such as disparate genome
sizes or inappropriate optimality criteria. We prefer the
data sets with optimal CCM scores because they offer
the least refuted explanation of as much data as possi-
ble, and, therefore, the best possible tree of life hypothe-
sis given the data at hand. Using the most corroborated
data sets should limit false homology statements, and
may also act to decrease bias presented by horizontal
gene transfer and phylogenetic noise.

Our results show that a consistent, highly supported
tree of life can be produced without subjectively elim-
inating or differentially weighting data in the analysis.
The results also underscore the utility of the principle
of reciprocal illumination in evolutionary biology. The
CCM provides a means of using this principle to objec-
tively select a similarity stringency threshold appropri-
ate for the type of data and the taxa involved. Indeed,
this empirical framework can be used to assess any pri-
mary homology hypothesis, including those based on
morphological and sequence data.

Additionally, our technique can be used as an objective
basis for delineating which genes belong in a gene fam-
ily and which similar genes should be excluded. It can,
therefore, be used to validate the homology of genes that
are aligned in any sequence-based phylogenetic analy-
sis. Because they limit false homology, highly corrobo-
rated data sets also may improve techniques that rely on
the validity of the primary homology statements to infer
functional networks.

ACKNOWLEDGEMENTS

We thank Bas Dutilh for his updated COG matrix; Anthony Deo,
Indra Neil Sarkar, A. Phillips, David Figurski, and Mark Siddall for
helpful discussion; and Hans-Erik G. Aronson and the AMDeC Bioin-
formatics Core Facility at the Columbia Genome Center, Columbia
University, for computational resources. This work was funded by
grants from the US National Institutes of Health (to David Figurski,
RD, and PJP). EKL and JAR are partially supported by a training grant
from the US National Institutes of Health to New York University.
EKL and JAR are further supported by a McKracken Fellowship of
NYU.

REFERENCES

Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W.
Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A
new generation of protein database search programs. Nucleic Acids
Res. 25:3389-3402.

Apweiler, R., A. Bairoch, and C. H. Wu. 2004. Protein sequence
databases. Curr. Opin. Chem. Biol. 8:76-80.

Bansal, A. K., and T. E. Meyer. 2002. Evolutionary analysis by whole-
genome comparisons. J. Bacteriol. 184:2260-2272.

Bowers, P. M., S. J. Cokus, D. Eisenberg, and T. O. Yeates. 2004. Use of
logic relationships to decipher protein network organization. Science
306:2246-2249.

Brochier, C, E. Bapteste, D. Moreira, and H. Philippe. 2002. Eubacterial
phylogeny based on translational apparatus proteins. Trends Genet.
18:1-5.

Brochier, C, P. Forterre, and S. Gribaldo. 2005a. An emerging phyloge-
netic core of Archaea: Phylogenies of transcription and translation
machineries converge following addition of new genome sequences.
BMC Evol. Biol. 5:36.

Brochier, C, S. Gribaldo, Y. Zivanovic, F. Confalonieri, and P. Forterre.
2005b. Nanoarchaea: Representatives of a novel archaeal phylum
or a fast-evolving euryarchaeal lineage related to Thermococcales?
Genome Biol. 6:R42.

Brochier, C, and H. Philippe. 2002. Phylogeny: A non-
hyperthermophilic ancestor for bacteria. Nature 417:244.

Brower, A. 1996. Three steps of homology assesment. Cladistics 12:265-
272.

Brown, J. R., C. J. Douady, M. J. Italia, W. E. Marshall, and M. J. Stanhope.
2001. Universal trees based on large combined protein sequence data
sets. Nat. Genet. 28:281-285.

Clarke, G. D., R. G. Beiko, M. A. Ragan, and R. L. Charlebois. 2002. In-
ferring genome trees by using a filter to eliminate phylogenetically
discordant sequences and a distance matrix based on mean normal-
ized BLASTP scores. J. Bacteriol. 184:2072-2080.

Colless, D. 1980. Congruence between morphometric and allozyme
data for Menidia species—A reappraisal. Sys. Zool. 29:289-299.

Curgy, ]., }, Vavra, and C. Vivares. 1980. Presence of ribosomal
RNAs with prokaryotic properties in Microsporidia. Biol. Cell 38:49-
52.

Darlu, P., and G. Lecointre. 2002. When does the incongruence length
difference test fail? Mol. Biol. Evol. 19:432-437.

DePinna, M. 1991. Concepts and tests of homology in the cladistic
paradigm. Cladistics 7:367-394.

Di Giulio, M. 2003a. The ancestor of the Bacteria domain was a hyper-
thermophile. J. Theor. Biol. 224:277-283.

Di Giulio, M. 2003b. The universal ancestor and the ancestor of bacteria
were hyperthermophiles. J. Mol. Evol. 57:721-730.

Dolphin, K., R. Belshaw, C. D. Orme, and D. L. Quicke. 2000. Noise
and incongruence: Interpreting results of the incongruence length
difference test. Mol. Phylogenet. Evol. 17:401-406.

Dowton, M., and A. D. Austin. 2002. Increased congruence does not
necessarily indicate increased phylogenetic accuracy—The behavior
of the incongruence length difference test in mixed-model analyses.
Syst. Biol. 51:19-31.

Dutilh, B. E., M. A. Huynen, W. J. Bruno, and B. Snel. 2004. The con-
sistent phylogenetic signal in genome trees revealed by reducing the
impact of noise. J. Mol. Evol. 58:527-539.

Edlund, T, J. Li, G. Visvesvara, M. Vodkin, G. McLaughlin, and S.
Katiyar. 1996. Phylogenetic analysis of beta-tubulin sequences from
amitochondrial protozoa. Mol. Phylogenet. Evol. 5:359-367.

Eisen, J. A. 1995. The RecA protein as a model molecule for molecular
systematic studies of bacteria: Comparison of trees of RecAs and 16S
rRNAs from the same species. J. Mol. Evol. 41:1105-1123.

Farris, J. 1989. The retention index and the rescaled consistency index.
Cladistics 5:417-419.

Farris, J. 1994. Testing the Significance of Incongruence. Cladistics
10:315-319.

Farris, J. S. 1969. A successive approximations approach to character
weighting. Syst. Zool. 18:374-385.

Felsenstein, J. 1978. Cases in which parsimony and compatibility meth-
ods will be positively misleading. Syst. Zool. 27:401-410.

Fitz-Gibbon, S. T., and C. H. House. 1999. Whole genome-based phy-
logenetic analysis of free-living microorganisms. Nucleic Acids Res.
27:4218-4222.

Germot, A., H. Philippe, and H. Le Guyader. 1997. Evidence for loss of
mitochondria in Microsporidia from a mitochondrial-type HSP70 in
Nosema locustae. Mol. Biochem. Parasitol. 87:159-168.

Goloboff, P. 1993. Estimating character weights during tree search.
Cladistics 9:83-91.

Goloboff, P. 1997. Self-weighted optimization: Tree searches and charac-
ter state reconstructions under implied transformation costs. Cladis-
tics 13:225-245.

Gophna, U., W. F. Doolittle, and R. L. Charlebois. 2005. Weighted
genome trees: Refinements and applications. J. Bacteriol. 187:1305-
1316.

Grant, T., and A. Kluge. 2003. Data exploration in phylogenetic infer-
ence: Scientific, heuristic, or neither. Cladistics 19:379-418.

Gu, X., and H. Zhang. 2004. Genome phylogenetic analysis based on
extended gene contents. Mol. Biol. Evol. 21:1401-1408.

Harlow, T. J., J. P. Gogarten, and M. A. Ragan. 2004. A hybrid clustering
approach to recognition of protein families in 114 microbial genomes.
BMC Bioinformatics 5:45.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/55/3/441/1670077 by guest on 24 April 2024



452 SYSTEMATIC BIOLOGY VOL. 55

Hennig, W. 1966. Phylogenetic systematics. Translated by D. Dwight
Davis and Rainer Zangerl. Urbana, University of Illinois Press.

Hipp, A. L., J. C. Hall, and K. J. Sytsma. 2004. Congruence versus phylo-
genetic accuracy: Revisiting the incongruence length difference test.
Syst. Biol. 53:81-89.

Hirt, R. P., B. Healy, C. R. Vossbrinck, E. U. Canning, and T. M. Embley.
1997. A mitochondrial Hsp70 orthologue in Vairimorpha necatrix:
Molecular evidence that microsporidia once contained mitochon-
dria. Curr. Biol. 7:995-998.

Hirt, R. P., J. M. Logsdon, Jr., B. Healy, M. W. Dorey, W. F. Doolittle, and
T. M. Embley. 1999. Microsporidia are related to Fungi: Evidence
from the largest subunit of RNA polymerase II and other proteins.
Proc. Natl. Acad. Sci. USA 96:580-585.

House, C. H., and S. T. Fitz-Gibbon. 2002. Using homolog groups to
create a whole-genomic tree of free-living organisms: An update. J.
Mol. Evol. 54:539-547.

Huber, H., M. J. Hohn, R. Rachel, T. Fuchs, V. C. Wimmer, and K. O.
Stetter. 2002. A new phylum of Archaea represented by a nanosized
hyperthermophilic symbiont. Nature 417:63-67.

Huelsenbeck, J. P., and F. Ronquist. 2001. MrBayes: Bayesian inference
of phylogenetic trees. Bioinformatics 17:754-755.

Hughes, A., V. Ekollu, R. Friedman, and J. Rose. 2005. Gene family
content-based phylogeny of prokaryotes: The effect of criteria for
inferring homology. Syst. Biol. 54:268-276.

Huson, D. H., and M. Steel. 2004. Phylogenetic trees based on gene
content. Bioinformatics 20:2044-2049.

Ishihara, R., and Y. Hayashi. 1968. Some properties of ribosomes
from the sporoplasm of Nosema bombycis. J. Invert. Pathol. 11:377-
385.

Kamaishi, T., T. Hashimoto, Y. Nakamura, Y. Masuda, F. Nakamura,
• K. Okamoto, M. Shimizu, and M. Hasegawa. 1996a. Complete nu-

cleotide sequences of the genes encoding translation elongation fac-
tors 1 alpha and 2 from a microsporidian parasite, Glugea plecoglossi:
Implications for the deepest branching of eukaryotes. J. Biochem.
(Tokyo) 120:1095-1103.

Kamaishi, T., T. Hashimoto, Y. Nakamura, F. Nakamura, S. Murata, N.
Okada, K. Okamoto, M. Shimizu, and M. Hasegawa. 1996b. Protein
phylogeny of translation elongation factor EF-1 alpha suggests mi-
crosporidians are extremely ancient eukaryotes. J. Mol. Evol. 42:257-
263.

Katinka, M. D., S. Duprat, E. Cornillot, G. Metenier, F. Thomarat,
G. Prensier, V. Barbe, E. Peyretaillade, P. Brottier, P. Wincker, F.
Delbac, H. El Alaoui, P. Peyret, W. Saurin, M. Gouy, J. Weissenbach,
and C. P. Vivares. 2001. Genome sequence and gene compaction
of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450-
453.

Keeling, P. J. 2003. Congruent evidence from alpha-tubulin and beta-
tubulin gene phylogenies for a zygomycete origin of Microsporidia.
Fungal Genet. Biol. 38:298-309.

Keeling, P. J., and W. F. Doolittle. 1996. Alpha-tubulin from early-
diverging eukaryotic lineages and the evolution of the tubulin family.
Mol. Biol. Evol. 13:1297-1305.

Kluge, A. 1969. Quantitative phyletics and the evolution of Anurans.
Syst. Zool. 18:1-32.

Kluge, A. 2003. The repugnant and the mature in phylogenetic infer-
ence: A temporal similarity and historical identity. Cladistics 19:356—
368.

Kolaczkowski, B., and J. W. Thornton. 2004. Performance of maximum
parsimony and likelihood phylogenetics when evolution is hetero-
geneous. Nature 431:980-984.

Krause, A., J. Stoye, and M. Vingron. 2005. Large scale hierarchical
clustering of protein sequences. BMC Bioinformatics 6:15.

Lake, J. A., E. Henderson, M. Oakes, and M. W. Clark. 1984. Eocytes: A
new ribosome structure indicates a kingdom with a close relationship
to eukaryotes. Proc. Natl. Acad. Sci. USA 81:3786-3790.

Lake, J. A., and M. C. Rivera. 2004. Deriving the genomic tree of life in
the presence of horizontal gene transfer: Conditioned reconstruction.
Mol. Biol. Evol. 21:681-690.

Lee, M. S. 2001. Uninformative characters and apparent conflict
between molecules and morphology. Mol. Biol. Evol. 18:676-
680.

Leipe, D. D., J. H. Gunderson, T. A. Nerad, and M. L. Sogin. 1993. Small
subunit ribosomal RNA+ of Hexamita inflata and the quest for the

first branch in the eukaryotic tree. Mol. Biochem. Parasitol. 59:41-
48.

Lin, J., and M. Gerstein. 2000. Whole-genome trees based on the occur-
rence of folds and orthologs: Implications for comparing genomes
on different levels. Genome Res. 10:808-818.

Marcotte, E. M., M. Pellegrini, H. L. Ng, D. W. Rice, T. O. Yeates, and
D. Eisenberg. 1999. Detecting protein function and protein-protein
interactions from genome sequences. Science 285:751-753.

Nixon, K. C. 1999. The Parsimony Ratchet, a new method for rapid
parsimony analysis. Cladistics 15:407-414.

Overbeek, R., M. Fonstein, M. D'Souza, G. D. Pusch, and N. Maltsev.
1999. The use of gene clusters to infer functional coupling. Proc. Natl.
Acad. Sci. USA 96:2896-2901.

Park, J., and S. A. Teichmann. 1998. DIVCLUS: An automatic method
in the GEANFAMMER package that finds homologous domains in
single- and multi-domain proteins. Bioinformatics 14:144-150.

Pellegrini, M., E. M. Marcotte, M. J. Thompson, D. Eisenberg, and T. O.
Yeates. 1999. Assigning protein functions by comparative genome
analysis: Protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA
96:4285-4288.

Peyretaillade, E., V. Broussolle, P. Peyret, G. Metenier, M. Gouy, and C.
P. Vivares. 1998. Microsporidia, amitochondrial protists, possess a 70-
kDa heat shock protein gene of mitochondrial evolutionary origin.
Mol. Biol. Evol. 15:683-689.

Popper, K. R. 1968. The logic of scientific discovery, 3d edition. Hutchin-
son, London.

Randau, L., R. Munch, M. J. Hohn, D. Jahn, and D. Soil. 2005. Nanoar-
chaeum equitans creates functional tRNAs from separate genes for
their 5'- and 3'-halves. Nature 433:537-541.

Rieppel, O., and M. Kearney. 2002. Similarity. Biol. J. Linn. Soc. 75:59-82.
Rivera, M. C, and J. A. Lake. 1992. Evidence that eukaryotes and eocyte

prokaryotes are immediate relatives. Science 257:74-76.
Rivera, M. C, and J. A. Lake. 2004. The ring of life provides evidence

for a genome fusion origin of eukaryotes. Nature 431:152-155.
Rohlf, F. 1982. Consensus indices for comparing classifications. Math.

Biosci. 59:131-144.
Siddall, M. E., and A. G. Kluge. 1999. Letter to the editor. Cladistics

15:429-440.
Snel, B., P. Bork, and M. A. Huynen. 1999. Genome phylogeny based

on gene content. Nat. Genet. 21:108-110.
Tatusov, R. L., E. V. Koonin, and D. J. Lipman. 1997. A genomic per-

spective on protein families. Science 278:631-637.
Tatusov, R. L., D. A. Natale, I. V. Garkavtsev, T. A. Tatusova, U. T.

Shankavaram, B. S. Rao, B. Kiryutin, M. Y. Galperin, N. D. Fedorova,
and E. V. Koonin. 2001. The COG database: New developments in
phylogenetic classification of proteins from complete genomes. Nu-
cleic Acids Res. 29:22-28.

Tekaia, R, A. Lazcano, and B. Dujon. 1999. The genomic tree as revealed
from whole proteome comparisons. Genome Res. 9:550-557.

Thomarat, F, C. P. Vivares, and M. Gouy. 2004. Phylogenetic analysis of
the complete genome sequence of Encephalitozoon cuniculi supports
the fungal origin of microsporidia and reveals a high frequency of
fast-evolving genes. J. Mol. Evol. 59:780-791.

Vossbrinck, C. R., J. V. Maddox, S. Friedman, B. A. Debrunner-
Vossbrinck, and C. R. Woese. 1987. Ribosomal RNA sequence
suggests microsporidia are extremely ancient eukaryotes. Nature
326:411-414.

Vossbrinck, C. R., and C. R. Woese. 1986. Eukaryotic ribosomes that
lack a 5.8S RNA. Nature 320:287-288.

Waters, E., M. J. Hohn, I. Ahel, D. E. Graham, M. D. Adams, M.
Barnstead, K. Y. Beeson, L. Bibbs, R. Bolanos, M. Keller, K. Kretz,
X. Lin, E. Mathur, J. Ni, M. Podar, T. Richardson, G. G. Sutton,
M. Simon, D. Soil, K. O. Stetter, J. M. Short, and M. Noordewier.
2003. The genome of Nanoarchaeum equitans: Insights into early ar-
chaeal evolution and derived parasitism. Proc. Natl. Acad. Sci. USA
100:12984-12988.

Wheeler, W. 1995. Sequence alignment, parameter sensitivity, and the
phylogenetic analysis of molecular data. Syst. Biol. 44:321-341.

Wheeler, W. 2001. Homology and the optimization of DNA sequence
data. Cladistics 17:S3-S11.

Wheeler, W. C, J. Gatesy, and R. DeSalle. 1995. Elision: A method
for accommodating multiple molecular sequence alignments with
alignment-ambiguous sites. Mol. Phylogenet. Evol. 4:1—9.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/55/3/441/1670077 by guest on 24 April 2024



2006 LIENAU ET AL.—RECIPROCAL ILLUMINATION IN THE TREE OF LIFE 453

Woese, C. R., O. Kandler, and M. L. Wheelis. 1990. Towards
a natural system of organisms: Proposal for the domains Ar-
chaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:4576-
4579.

Wolf, M., T. Muller, T. Dandekar, and J. D. Pollack. 2004. Phylogeny
of Firmicutes with special reference to Mycoplasma (Mollicutes) as
inferred from phosphoglycerate kinase amino acid sequence data.
Int. J. Syst. Evol. Microbiol. 54:871-875.

Wolf, Y. I., I. B. Rogozin, N. V. Grishin, and E. V. Koonin. 2002. Genome
trees and the tree of life. Trends Genet 18:472-479.

Wolf, Y. I., I. B. Rogozin, N. V. Grishin, R. L. Tacusov, and E. V. Koonin.
2001a. Genome trees constructed using five different approaches sug-
gest new major bacterial clades. BMC Evol. Biol. 1:8.

Wolf, Y. I., I. B. Rogozin, A. S. Kondrashov, and E. V. Koonin. 2001b.
Genome alignment, evolution of prokaryotic genome organization,
and prediction of gene function using genomic context. Genome Res.
11:356-372.

Yang, S., R. F. Doolittle, and P. E. Bourne. 2005. Phylogeny determined
by protein domain content. Proc. Natl. Acad. Sci. USA 102:373-378.

Yoder, A. D., J. A. Irwin, and B. A. Payseur. 2001. Failure of the ILD
to determine data combinability for slow loris phylogeny. Syst. Biol.
50:408-424.

First submitted 17 May 2005; reviews returned 23 August 2005;
final acceptance 11 January 2006

Associate Editor: Frank Anderson

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/55/3/441/1670077 by guest on 24 April 2024




