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∗Correspondence to be sent to: Department of Statistics, University of California, Berkeley, 367 Evans Hall #429, Berkeley, CA 94720-3860, USA; E-mail:

matsen@berkeley.edu.
All authors contributed equally to this manuscript.

Abstract.—In this paper, we present a new way to describe the timing of branching events in phylogenetic trees.
Our description is in terms of the relative timing of diversification events between sister clades; as such it is
complementary to existing methods using lineages-through-time plots which consider diversification in aggregate.
The method can be applied to look for evidence of diversification happening in lineage-specific “bursts”, or the
opposite, where diversification between 2 clades happens in an unusually regular fashion. In order to be able
to distinguish interesting events from stochasticity, we discuss 2 classes of neutral models on trees with rela-
tive timing information and develop a statistical framework for testing these models. These model classes in-
clude both the coalescent with ancestral population size variation and global rate speciation–extinction models. We
end the paper with 2 example applications: first, we show that the evolution of the hepatitis C virus deviates
from the coalescent with arbitrary population size. Second, we analyze a large tree of ants, demonstrating that a
period of elevated diversification rates does not appear to have occurred in a bursting manner. [Branch length; key in-
novation; neutral models; phylogenetics.]

Understanding the tempo and mode of diversifica-
tion is one of the major challenges of evolutionary bi-
ology. Phylogenetic trees with timing information are
powerful tools for answering questions about tempo
and mode. Such trees were once available only in sit-
uations with a rich fossil record, where the timing in-
formation might have come from radiocarbon dating or
stratigraphic information. However, modern techniques
of phylogenetic analysis not only are capable of recon-
structing the topology of phylogenetic trees, but also can
reconstruct information about the timing of diversifica-
tion events even when limited or no fossil evidence is
available. This can be done in one of a number of ways.
One can first test if a molecular clock is appropriate
(see Felsenstein 1981, 1988) and then reconstruct under
the assumption of a molecular clock. Or one can recon-
struct a tree with branch lengths using any method and
then apply rate smoothing (Sanderson 2003). One may
also choose from the variety of “relaxed clock” meth-
ods that allow the rate of substitution to vary within
the tree (Gillespie 1984; Huelsenbeck et al. 2000; Drum-
mond et al. 2006). Of course, the accuracy of any of these
techniques depends on a correct choice of model and
a strong phylogenetic signal, along with perhaps some
fossil calibration points.

Phylogenetic trees with timing information can then
be used to make inferences about the forces guiding
the evolution of the taxa. For example, the paper by
Moreau et al. (2006) observes that there was a period of
high diversification rate in ant lineages during the rise
of angiosperms. Another paper by Harmon et al. (2003)
uses the deviation of 4 groups of lizards from the pure-
birth (i.e., constant rate of speciation across lineages; no
extinction) model of diversification to make inferences
about their evolutionary radiations.

One way to compare trees to models is based on like-
lihood and model selection. The strategy of these tests
is to calculate the likelihood of several models of vary-
ing complexity and then to choose the model with the
best balance of likelihood and complexity. Paradis (1997)
initiated this approach, choosing between 3 diversifi-
cation models based on a likelihood ratio test and the
Akaike Information Criterion. More recently, Rabosky
(2006) and Rabosky and Lovette (2008a, 2008b) have fur-
thered this work, choosing between various models of
global rate variation.

Our work presented here is different from that of
these authors in several respects. First, although we will
call rejection of neutral models “lineage-specific burst-
ing” (LSB) speciation, the method is not tied to any
specific alternative diversification model. Rather, we are
proposing the use of a summary statistic, analogous to
γ (described below), or a tree shape statistic, which can
be shown to have a known distribution under certain
types of models and thus can be used to test deviation
from those models. If a new type of neutral model is de-
veloped, our statistics may well prove useful to test that
model.

Because our method does not compute fit in terms of
likelihood, it can be used to compare the fit of models
with an arbitrary number of fit parameters. In contrast,
because one must discount the likelihood by a func-
tion of the number of free parameters when comparing
the fit of various models using likelihood, the models
compared using likelihood tend to have a small number
of parameters. Paradis (1998), for instance, allows for
shifts in diversification parameters along several edges
of a phylogenetic tree. In the alternative model of
Rabosky (2006), there is a change in the speciation
and extinction rates for all lineages at a single time.
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Rabosky and Lovette (2008b) consider demographic sce-
narios where speciation and extinction rates follow con-
stant or exponential trajectories. Our methods, on the
other hand, can imply rejection of whole classes of mod-
els with an arbitrary number of parameters, such as the
complete class of models with global speciation and ex-
tinction rates.

A simpler approach is taken by Nee, May, and Harvey
(1994), who test the hypothesis of equal speciation and
extinction rates for a collection of lineages in the tree.
The test works as follows: assume that there are some
number n of descendants of k lineages. Under the hy-
pothesis of equal rates, one can obtain closed-form equa-
tions for the probability that one of these lineages had
q descendants or more. Given some tree, one can then
attach a p value to the observed number of descendant
lineages of the k chosen lineages under the equal rates
assumption. For more details, see Schluter (2000).

Another popular way of comparing trees to models
uses lineages-through-time (LTT) plots and the associ-
ated γ-statistic introduced by Pybus and Harvey (2000)
(for a helpful review article, see Ricklefs 2007). LTT plots
have time t on the x-axis and simply show the number
of lineages that were present in the phylogenetic tree at
time t on the y-axis. A constant rate pure-birth process
would have the number of taxa increasing exponen-
tially; it is thus common to compare LTT plots to an
exponential curve (Zink and Slowinski 1995; Harmon
et al. 2003). The γ-statistic is computed from the length
of the periods during which the number of lineages
stays constant (called the “internode intervals”): if gi is
the time between the i− 1th branching event and the ith
branching event for i= 2, . . . , n, then

γ =

∑n−1
i=2
∑i

j=2 jgj − t
2

(n− 2) t√
12(n−2)

,

where t is the tree length
∑n

j=2 jgj. The γ for a pure-birth
diversification process will have a standard normal dis-
tribution. Broadly speaking, γ < 0 implies that diversi-
fication rates were high early in history, whereas under
the pure-birth process γ > 0 implies that most diversi-
fication has happened more recently. A similar statistic
with the same goals in mind was constructed by Zink
and Slowinski (1995).

However, much more information is available in a
phylogenetic tree with diversification timing informa-
tion than that which can be summarized in an LTT plot
or a derivative statistic. Consider the tree in Figure 1,
with 2 sets of sister taxa, A and B. The taxa in B had
a period of relatively high diversification rate early in
evolutionary history, during which time the lineage
leading to A is in a period of stasis. Then lineage A ex-
periences a burst of diversification, and the taxa in B do
not experience any bifurcation (lineage-splitting) events
during this time. We will call the sort of diversification
seen in Figure 1 LSB diversification, as such patterns can
emerge when lineages descending from a single node
alternate periods of high diversification. Note also that

FIGURE 1. A motivating example showing “bursting” diversifi-
cation. Namely, in the oldest part of the tree, diversification events
happen exclusively in the B lineage, followed by a period of high di-
versification rate in the A lineage. This paper constructs a statistical
framework for analyzing such “bursting” patterns or their opposite.

we will often use the word “bifurcation” of lineages
rather than “speciation”, as the former word pertains to
both the micro- and the macroevolutionary settings.

The LSB diversification seen in Figure 1 would not
be apparent in an LTT plot. Indeed, LTT plots take the
timing information out of the context of the phyloge-
netic tree from which they are derived and thus ignore
information about how the timings relate to topology of
the tree. This context can be crucial, as we now argue.

One would like to be able to say if, for example, the
pattern seen in Figure 1 arose simply “by chance.” In
order to do so, we need 2 things: first, a convenient way
to summarize the timing information and, second, a
set of neutral models which define what we mean with
“by chance.” For a given internal node, we summarize
the relative timing information at that node by writing
down the order of diversification events by clade. For
instance, we associate with the root node of Figure 1 the
sequence s = BBBBBAAAAAAAB which we will call a
“shuffle” in analogy to a shuffling of cards labeled A
and B. We make a more formal definition of shuffles in
the section labeled “Tree Shuffles.”

Now that we have summarized the relative timing in-
formation as a shuffle, s, at the root node we would like
to think about if s arose “by chance.” This of course re-
quires us to define a probability distribution on shuffles;
we demonstrate below that a wide class of neutral mod-
els on phylogenetic trees gives the uniform distribution
on shuffles. The uniform distribution in this setting is
what one would get by throwing the A’s and B’s of the
shuffle into a bag and drawing them out one by one uni-
formly at random. Thus, it seems reasonably unlikely
that the shuffle s would arise by chance, having first a
long run of B’s and then a long run of A’s.

We can attach a p value to a shuffle by using the “runs
distribution.” The number of “runs” is simply the num-
ber of sequences of the same letter: in this case, there
is a run of B’s, then a run of A’s, then another of B’s.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/58/2/167/1670747 by guest on 23 April 2024



2009 FORD ET AL.—INVESTIGATING RELATIVE TIMING ON PHYLOGENETIC TREES 169

That totals 3 runs. Under the uniform distribution, the
probability of seeing a given number of runs in this set-
ting is known from classical statistics and can be calcu-
lated via equation (1). The probability of seeing 3 runs
with 6 A’s and 7 B’s is about 0.00641, and the probabil-
ity of seeing 2 runs is about 0.00117. We can interpret
the sum of these 2 probabilities, 0.00758, as the signifi-
cance level of the LSB diversification seen in Figure 1.
Being below the 1% significance level, we can interpret
this shuffle as being quite significant; thus, if the tree in
Figure 1 came from data, the observed lineage-specific
diversification might require some explanation.

One can use shuffle-derived information in 2 ways.
First, one can look at a single node and consider the
significance level of that node as done in the above ex-
ample. Such an approach would make sense if one has
a prior hypothesis about a single clade, for example,
if one would like to test if a given innovation led to
an increased level of diversification in the short term.
However, care needs to be taken to avoid a multiple
testing problem; for example, a statistically dangerous
approach would be to use the shuffle p values of all the
internal nodes to find one which looks like it is “burst-
ing” and then use that p value without a correction.

Alternatively, we investigate all shuffles simultane-
ously in the rest of this paper by taking the sum of the
number of runs for all internal nodes in the tree. In
doing so, a statistically significant total number of runs
may indicate that diversification is driven by “repeated”
discovery of new key innovations. Viruses provide an
example of such a process: when a virus mutates in a
significant way to escape the host’s immune defenses,
it gains an advantage over the rest of the viral popula-
tion. This may allow it to increase to a higher frequency,
and in doing so it diversifies in other ways; upon re-
construction, such diversification should be visible as
a collection of lineage-specific bursts. In macroevolu-
tion, one would expect to see such a pattern when key
innovations repeatedly open up new ecological niches.

However, like a significantly negative value of γ, a
significantly small value of the runs distribution may
appear for a number of reasons. Certainly a substan-
tial change in relative diversification rates would lead
to clustering of the same letter, but the converse need
not hold. For example, assume in the macroevolution-
ary case that there are 2 lineages descending from the
root; the left lineage has a moderate speciation rate
and no extinction, whereas the right lineage has a very
high speciation and extinction rate. Because of the high
extinction rates, the right lineage will have most of its
internal nodes at a time close to the present day. This
phenomenon has been called “the pull of the present”
(Nee, Holmes, et al., 1994). Such a setting might be iden-
tified by our method as LSB diversification, even though
no change in relative diversification rates has occurred.

Is the “pull of the present” likely to cause a false
identification of varying relative diversification rates?
It is possible, but consider what would be involved.
Because in our applications we are taking the sum of
the number of runs across all internal nodes of the

tree, it is not enough to have just a single pair of sis-
ter clades with significantly differing extinction rates:
there must be a general pattern of such extinction rate
differences across the tree. Thus, consider a phylogeny
with 2 subtrees, L and R, branching off the root. Say
subtree L has 2 subtrees LL and LR. In order to have
a nonuniform shuffle due to the pull of the present,
we need to have the extinction rate in (say) L be sig-
nificantly higher than that in R, and within L we need
the extinction rate of (say) LL to be significantly higher
than that of LR. Continuing in this way down the tree,
there must be some lineages with exceedingly high bi-
furcation and extinction rates compared with others.
Although such a setup is possible, we consider it to
be less likely than changes in relative diversification
rates.

We also note that this method, like any method based
on phylogenetic trees, is subject to biases introduced by
nonuniform taxon sampling. As discussed below, the
runs p value is not biased by uniform taxon sampling;
however, it is not hard to devise a sampling scheme
which would bias the results. For example, say we have
2 subpopulations descending from a single internal
node by a process that induces the uniform distribu-
tion on shuffles. On side L sampling is done uniformly,
whereas on side R, similar lineages are unlikely to be
part of the sampling. Such a scheme would bias the sur-
viving internal nodes in R to be farther back in the past,
resulting in a nonuniform distribution on shuffles.

We now present the goals and scope of this paper. The
first aim of this paper is to provide analytical tools to
compare patterns of diversification between lineages. In
doing so, we hope to provide a complementary perspec-
tive to that provided by LTT plots and associated statis-
tics. In particular, we would like to detect cases where
the relative diversification rates in 2 sister clades vary
over time. One might expect changes in diversification
rates if a lineage diversifies to fill variants of a single
niche or if a key innovation appears that makes further
diversifications more likely. By comparing the results of
our analysis to results using LTT plots, we may be able
to tease apart causes of diversification rate changes—are
they lineage specific or due to global events?

The second aim of this paper is to develop neutral
models of phylogenetic trees with relative timing infor-
mation. In contrast to the setting of phylogenetic tree
shape, where a number of models are available (Aldous
1995; Ford 2006; Mooers et al. 2007), there are relatively
few models available for trees with any notion of timing
information. Null models are important as they allow us
to distinguish between stochastic sampling and actual
events which need investigation; they are thus impor-
tant tools for assessing significance.

We conclude the paper with example applications.
Our first example application uses hepatitis C virus
(HCV) data and shows that trees from these data demon-
strate a limited but significant amount of LSB diversifi-
cation. Furthermore, several of the HCV data sets show
a very substantial deviation from the coalescent model
as seen by the runs statistic and a classical tree shape
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statistic. This analysis implies a note of caution for
researchers using coalescent methods to analyze HCV
data. Our second application is to the ant data of Moreau
et al. (2006) and Moreau (2008), the lineages of which
do not appear to demonstrate significant LSB diversifi-
cation, despite some other interesting characteristics of
their history.

Our paper is one contribution to the area of under-
standing mechanisms of diversification from phyloge-
netic trees, which is a very large field of study. Besides
LTT plots, γ, and likelihood methods, there is an entire
literature on phylogenetic tree shape (which does not in-
clude branch length); for an excellent review, see Mooers
and Heard (1997). There are also a number of interesting
papers which use trait or geographic information, for
example, Pagel (1997), Ree (2005), Weir (2006), and
Maddison et al. (2007).

TREE SHUFFLES

Our method is based on “ranked” phylogenetic trees:
trees for which the order of branching events in the
tree is specified in a way compatible with the topology
(more specific definition below). Such trees have been
called “dendrograms” (Page 1991). We will show that a
ranked phylogenetic tree is equivalent to a phylogenetic
tree with a “shuffle” at each internal node specifying rel-
ative timing information. As described below, a broad
class of neutral diversification models give the uniform
distribution on shuffles, which leads to some natural
tests for deviation from these models. Thus, evidence
of deviation from the uniform distribution on shuffles
is evidence of deviation from this entire class of neutral
models. (Often, a model with branch lengths is given,
in which case we consider the induced model given by
considering ranks.)

The intuition behind the shuffle idea is presented in
Figure 2. The relative order of bifurcation events for an
internal node of a tree is determined by the sequence
of full and hollow circles on the left side of each tree.
We call this sequence a “shuffle.” Shuffles also have a
natural interpretation in terms of evolutionary history.
Namely, “bursting” diversification leads to symbols of
a shuffle clustering together. The opposite situation,
where there is a postdiversification delay before a lin-
eage can diversify again, can be recognized by the in-
terspersing of different symbols. This latter situation

has been called “refractory” diversification (Losos and
Adler 1995).

We now make more formal definitions of our terms.
For the purposes of this paper, a “phylogenetic tree” is
a rooted tree with distinct leaf labels. We assume that
the trees are equipped with branch lengths which make
them ultrametric (i.e., the total branch length from the
root to any leaf is constant). We will also assume that
the tree is only on extant taxa, that is, that no extinct
taxa are included in the tree. We will denote the set of
interior nodes of a phylogenetic tree T with NT. For an
internal node v in NT, define Tv to be the rooted subtree
of T containing all the descendants of v. The “daughter
trees” of v are the 2 subtrees of Tv which we obtain by
deleting v and its 2 incident edges. For the first part of
the paper, we assume that our phylogenetic trees are bi-
furcating (and describe later how to generalize the ideas
presented to the case of multifurcating trees).

A “rank function” on an arbitrary set S is simply an
ordering of the elements of that set; mathematically, it is
a one-to-one mapping from S to ranks {1, 2, . . . , |S|}. A
“rank function on a phylogenetic tree” T is a rank func-
tion on the set of interior vertices NT with the property
that the ranks are increasing on any path from the root
to a leaf. We call a phylogenetic tree with a rank function
a “ranked phylogenetic tree” or simply a “ranked tree”
(Semple and Steel 2003). Assuming that no 2 bifurcation
events happen simultaneously, any clock-like phyloge-
netic tree will define a unique ranked tree; the order in
the ranking is given by time.

In this paper, an (m,n) shuffle on symbols p and q is
simply a sequence of length m + n containing m p’s and
n q’s. The complete terminology for such a sequence is
“riffle shuffle” (Aldous and Diaconis 1986). For exam-
ple, pqppq is a (3, 2) shuffle on p and q.

We can use shuffles to develop a recursive formula-
tion of ranked phylogenetic trees. Assume that v is an
internal node of a tree and that the tree Tv containing
the descendants of v is composed of 2 daughter subtrees
Lv and Rv. Assume that Lv and Rv have m and n internal
nodes, respectively. We define a “shuffle at an internal
node” v to be an (m,n) shuffle on symbols � and r. The
utility of these shuffles in the present context is summa-
rized in the following observation.
Observation 1. Let T be a tree with the 2 distinguishable
daughter trees L and R. Let L (respectively R) have m (respec-
tively n) interior vertices. Given a rank function on L and R,

FIGURE 2. A shuffle at a given internal node. Bifurcations on the left subtree are marked with a hollow circle, and those on the right subtree
are marked with a solid circle. The relative timing for these events is shown beside the tree; we call this sequence of symbols a “shuffle.” A
set of shuffles for every internal node of a phylogenetic tree exactly determines the relative order of bifurcation events. Similar type symbols
occurring together as in the left tree is evidence of lineage-specific bursts.
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the rank functions on T respecting the rank functions on L and
R are in one-to-one correspondence with the (m,n) shuffles on
the symbols l, r.

To see how this works, assume that orderings l1 <
l2 < · · · < lm on the interior vertices of L and r1 < r2 <
· · · < rn on the interior vertices of R are given, along with
an (m,n) shuffle on l and r. The required ranking on T is
obtained by progressing along the shuffle and substitut-
ing li and rj for l and r in order: for example, the shuffle
lrllr uniquely defines the ordering l1 < r1 < l2 < l3 < r2
when l1 < l2 < l3 and r1 < r2. In the other direction,
a rank function on T uniquely defines an (m,n) shuffle
and a rank function on L and R.

By this observation, a rank function on the internal
nodes of Tv respecting the rank functions on the internal
nodes of Lv and Rv is equivalent to a shuffle at the in-
ternal node v. Therefore, we can recursively reconstruct
the rank function for any ranked oriented tree (ROT)
given a shuffle at each internal node. We define a tree
shuffle to be such a choice of shuffles. With Observation
1, we have the following result, which is crucial to our
analysis.

Observation 2. Each rank function on a given tree being
equally likely is equivalent to the statement: For each internal
node v, each shuffle at v is equally likely and these shuffles are
independent.

NEUTRAL MODELS FOR RANKED TREE SHAPES

In this section, we discuss 2 classes of neutral mod-
els. First we discuss a slightly generalized version of the
equal rates Markov (ERM) model (Mooers and Heard
1997). Then we introduce the constant relative proba-
bility (CRP) models, which are a neutral class of mod-
els that allow clades to evolve with different rates. The
common theme between these 2 classes of models is that
they both induce the uniform distribution on tree shuf-
fles for each tree.

It will be convenient to discuss ROTs rather than
ranked phylogenetic trees, for reasons discussed below.

Definition 3. An “oriented tree” is a finite rooted binary
tree where the children of each internal node are labeled
left and right, respectively. An ROT is an oriented tree
with a rank function.

These trees are called “oriented” because they are
oriented graphs, that is, the edges around each ver-
tex have a fixed orientation. Oriented trees can also be
called “planar” trees as they are equivalent to a depic-
tion of a tree in the plane.

ROTs are convenient as they allow us to distinguish
the children of each vertex without having to explicitly
label species which may later become extinct. It might
seem more natural to consider phylogenetic trees, that
is, trees with leaf labels, by assigning a unique label for
each new leaf and eliminating the label in case of extinc-
tion. For trees on n leaves evolving under a bifurcation
and extinction model, however, we cannot guarantee

that all such trees on n species will have the same leaf
labels (due to random extinction events). On the other
hand, by considering oriented trees, we can still distin-
guish between species because there is a unique path
from the root to any leaf but do not need to worry about
explicitly labeling leaves and what to do with extinct
leaf labels.

We will call ranked trees without orientation or label-
ing “ranked tree shapes”. The runs statistic operates on
ranked tree shapes as it is independent of orientation
and labeling of a tree. Therefore, for applications, we
will be comparing the ranked tree shape distribution in-
duced by our neutral models to the ranked tree shape
given by reconstructed trees.

We now explain how the oriented trees are gener-
ated by an evolutionary model, by which we mean a
“forward time ranked-oriented-tree-valued stochastic
process”. In particular, we consider birth–death pro-
cesses where the transitions between trees involve
either a bifurcation (e.g., speciation) or an extinction
event. Call these “ranked-oriented-tree birth–death pro-
cesses”. The details of bifurcation (birth) and extinction
(death) events are as follows. If there is a bifurcation
event, the new branches descending from the bifur-
cation event are assigned left and right. If there is an
extinction event, occurring at a leaf vertex, the leaf and
its adjacent edge are deleted. The ancestor of the extinct
leaf is now a degree-2 vertex. This vertex is suppressed
by replacing it and its 2 adjacent edges by a single edge,
with orientation inherited from the edge closer to the
root. In this way, the ancestor still has a left and right
child. The ranking of internal vertices is induced by
the time ordering of their associated bifurcation events.
If extinction events are not allowed, then call such a
process a “pure-birth ranked-oriented-tree process”.

We will now discuss 2 classes of ranked-oriented-tree
birth–death stochastic processes as neutral models for
bifurcation and extinction, the ERM models and the CRP
models.

ERM Models
We define an ERM model to be a forward time

ranked-oriented-tree birth–death process such that
any new bifurcation or extinction event is equally
likely to occur in any extant lineage. We will con-
sider the projection of this process onto ranked tree
shapes by forgetting the orientation of children at
each internal node. Any model described in terms
of rates is an ERM model if the bifurcation and ex-
tinction rates are equal between all lineages at any
given time. This class of models includes the Yule
(1924) model, the critical branching process model
(Aldous and Popovic 2005), the constant rate birth and
death process (Nee, May, and Harvey 1994), and the
coalescent (Kingman 1982).

Note that the ERM class includes models that have
bifurcation and extinction rates varying in an arbitrary
fashion depending on time or the current state of the
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process, such as global speciation and extinction rate
variation due to global environmental conditions. Fur-
thermore, it is also possible to incorporate models with
random incomplete taxon sampling, which is equivalent
to the deletion of k species uniformly at random from
the complete tree. Namely, if the complete tree evolved
under an ERM model, then we simply run the model
longer with the probability of bifurcation set to zero and
the extinction probability nonzero and uniform across
taxa. This extended model is clearly still within the ERM
class.

The ERM class also includes microevolutionary mod-
els such as the coalescent with arbitrary population size
history. This very simple but important fact means that
the tests for nonneutral diversification described in later
sections are not “fooled” by ancestral population size
variation, as are a number of other tests in the literature.

The crucial fact about these models which makes our
statistical analysis possible is that ERM models give the
uniform distribution on ROTs as well as the uniform
distribution on rank functions given a tree shape. This
fact is demonstrated in the appendix, but we give a sim-
ple version here. The starting point is that all ROTs are
equiprobable under an ERM model. This can be seen by
induction: say it is true for all trees with n tips. Each
new tree is uniquely determined by choosing such a tree
(with equal probability, by induction) and then choosing
a tip to bifurcate (with equal probability, by the ERM
assumption). This then gives a uniform distribution on
trees with n + 1 tips. Extinction can be dealt with in a
similar way, as described in the appendix.

The uniform distribution on ROTs yields the uniform
distribution on rank functions conditioned on the ori-
ented tree. Therefore, each orientation of a given tree
shape gives the uniform distribution on rank functions;
a weighted sum of uniform distributions is still uni-
form, so we have a uniform distribution on rank func-
tions conditioned on the tree shape. We also show in
the appendix that, for the case of pure-birth models, the
ERM models are the only models for bifurcation and ex-
tinction which induce a uniform distribution on ROTs.
These properties of the ERM models will be useful for
the runs test as described below.

CRP Models
The motivation for the CRP models comes from

considering the models on ranked trees which might
emerge from nonselective diversification, perhaps based
on physical or reproductive barriers. For example, as-
sume that we could watch a set of species emerge via
allopatric speciation, and the fundamental geographic
barrier divides the land into 2 regions, A and B. These
regions may differ in size or fecundity, so there may be
some difference in the rate of diversification in A versus
B. However, our neutral assumption for the CRP class is
that the “relative” rate stays constant over time. In con-
trast, nonneutral models might dictate that a bifurcation
in one region will shift the equilibrium such that further
diversification in that region will become more likely

(“bursting” diversification) or less likely (“refractory”
diversification).

Again, for convenience, we work with ROTs so we
may distinguish the 2 children of any bifurcation event.
For each internal node, v (representing a bifurcation
event), let Lv and Rv denote the “left” and “right” lin-
eages descending from v (daughter subtrees of v).

A CRP model is a forward time pure-birth ranked-
oriented-tree process together with a probability distri-
bution P on the unit interval [0, 1], where each internal
node v has a real number, pv, associated with it. Each
new bifurcation occurring in the clade below v occurs in
Lv with probability pv and occurs in Rv with probability
1 − pv. For each new bifurcation event (internal node),
v, choose the value pv by an independent draw from P.
Note that CRP models are Markov processes on trees
equipped with probabilities pv for every internal node v.

In other words, given a tree on n species, the CRP
model chooses a leaf to bifurcate as follows. At the root
ρ of T, we choose the left daughter tree Lρ with probabil-
ity pρ versus the right daughter tree Rρ with probability
1−pρ. Assume for the sake of description that we choose
Lρ, with root vertex v. Then, as before, the next bifurca-
tion will happen in Lv with probability pv and Rv with
probability (1 − pv). Repeat in this manner until a leaf
is reached. The bifurcation of that leaf makes a new in-
ternal node w, for which we draw pw by an independent
draw from P. For an example, see Figure 3.

Note that the CRP and ERM models are disjoint. As-
sume that we are watching a CRP tree grow such that
at the stage with 2 leaves, the probability of picking 1 of
each of the 2 leaves is equal. Then after the next event,
we will have a tree with 3 leaves, which cannot all have
the same probability of bifurcation. Indeed, if the 2 new
leaves are to have equal probability of bifurcation, then
they must have probability 1/4 each, whereas the leaf
that did not bifurcate in the second event has probability
1/2 of bifurcation.

Given the CRP definition, it should not be too hard
to believe that CRP models induce a uniform distribu-
tion on shuffles for a given oriented tree or tree shape.

FIGURE 3. An oriented tree that evolved under the CRP model
with the bifurcation probabilities pv for each internal node v. Assum-
ing that we see a speciation event next, the probability for the farthest
left leaf to speciate next is 0.5× 0.3= 0.15. In contrast, under the ERM
model, each leaf is equally likely to speciate with probability 1/5.
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Namely, assume that we are looking at lineages de-
scending from an internal node v. Any shuffle with
n descendants on the left side and m descendants on
the right side of v will have probability pn

v(1 − pv)
m.

A complete argument showing that the CRP mod-
els give uniform distributions on shuffles is given in
the appendix. The CRP may be viewed as a gener-
alization of the stick-breaking models (Aldous 1995)
from tree shapes to ranked trees, but this argument is
omitted.

The CRP definition shows how tree balance and shuf-
fle structure can be independent sources of information.
Indeed, imagine that the probability mass of the distri-
bution P is concentrated on the boundaries of the inter-
val, so that pv is always very close to 0 or 1. In such a
case, the resulting trees will be very imbalanced (as there
will always be a significant difference in relative rates of
diversification between 2 sister clades), but as for any
CRP model the shuffle distribution will be uniform. On
the other hand, if P is concentrated near the middle of
the interval, then the resulting trees will tend to be quite
balanced.

As shown in the appendix, the ERM models are the
only pure-birth models that induce a uniform distri-
bution on ROTs. The ERM and the CRP models both
induce a uniform distribution on rankings conditional
on the tree topology. Stadler (2008) has determined the
whole class of pure-birth models that induce a uniform
distribution on rankings conditional on the tree topol-
ogy. This class is defined by a set of conditions that
are difficult to interpret in a biological sense, and only
the ERM and the CRP models appear to have a simple
biological interpretation.

TESTS FOR BURSTING DIVERSIFICATION BASED ON
SHUFFLES

In the previous section, we discussed the ERM and
CRP models and observed that they induce the uniform
distribution on tree shuffles. In this section, we describe
a way of testing for deviation from the uniform distri-
bution on tree shuffles and thus test for deviation from
these neutral models. We emphasize that this can go
beyond testing the coalescent or Yule models, which are
typically considered to be the definition of neutrality.
Indeed, rejection of the uniform distribution on shuffles
rejects all the ERM and CRP models simultaneously.
Although the focus of this section is to consider all
the shuffles of a ranked tree at once, one can also con-
sider a shuffle at a particular node as described in the
Introduction.

There are several useful tools available to test whether
a shuffle is likely to have come from the uniform dis-
tribution on shuffles. In fact, a number of classical sta-
tistical tests for equality of distributions (e.g., the runs
test, the Mann–Whitney–Wilcoxon test) actually imple-
ment a test of deviation from the uniform distribution
on shuffles. These tests work as follows: assume that we
are given 2 sets of real samples {�i}i=1,...,m and {rj}j=1,...,n
and would like to test the hypothesis that they are draws

from the same distribution. To test, combine the draws
and put the samples in increasing order (assume that all
draws are distinct). This clearly gives a shuffle on sym-
bols � and r. If the draws are from identical distribu-
tions, then the induced distribution on shuffles will be
uniform; if on the other hand symbols cluster together
in the shuffle, there is some evidence that the draws are
from unequal distributions.

One can then test deviation from the uniform distri-
bution on shuffles in one of several ways. One way is to
count the number of “runs.” As described in the Intro-
duction, a run is simply a sequence within the shuffle
using only one symbol; the shuffle ��rrrr� has 3 runs.
Let Xm,n denote the number of runs under the uniform
distribution on shuffles on m symbols of one type and n
of another. The distribution of Xm,n is classical (see, e.g.,
Hogg and Craig 1994):

P{Xm,n = 2k + 1}=
(m−1

k

)(n−1
k−1

)
+
(m−1

k−1

)(n−1
k

)
(m+n

m

) ,

P{Xm,n = 2k}= 2
(m−1

k−1

)(n−1
k−1

)
(m+n

m

) .

(1)

Asymptotic results for the mean and variance are also
known:

E[Xm,n] = µm,n = 2
mn

m + n
+ 1,

Var[Xm,n] =
(µm,n − 1)(µm,n − 2)

m + n− 1
. (2)

The usual application of the runs test makes a shuffle
from the 2 draws as described above, calculates the
number of runs in the shuffle, and then uses the above-
calculated probabilities to test deviation from the uni-
form distribution on shuffles. However, the same method
can be applied in any situation to test deviation from
the uniform distribution on shuffles. In the present case,
we can use an analogous process to investigate tree
shuffles.

As described in the Introduction, a tree shuffle sim-
ply assigns to each internal node of the tree a shuffle of
the appropriate type, (m,n); from the previous section,
we know these shuffles to be distributed uniformly and
independently for a variety of neutral models. Using
runs we can test whether a single shuffle is drawn from
the uniform distribution, but some method is needed to
combine this information across the internal nodes of
the tree.

We chose to combine our data from each vertex by
simply summing the number of runs across all the shuf-
fles in the corresponding tree shuffle. Let R(T) denote
the number of runs for T, a tree shape, an oriented tree,
or a phylogenetic tree. The distribution of R(T) under
the assumption that each tree shuffle is equally likely
can be calculated recursively as shown in the next 2
sections.

We calculate 2 distinct null distributions for R. First,
we condition on the observed tree shape T and calculate
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the distribution of R(T) under the uniform distribution
of shuffles on T, leading to what we call pcond below. Sec-
ond, we calculate the distribution of R(T), where T is
drawn from the uniform distribution on ROTs, which
is the distribution corresponding to the ERM model. As
shown below, the uniform distribution on ROTs induces
the uniform distribution on shuffles on any single tree,
but the converse is not true.

Note that there are a number of alternative ways to
test deviation from the uniform distribution on shuffles.
First, we have made one choice—namely, summation—
concerning how the statistics for each shuffle are com-
bined. One certainly could use an alternative method,
potentially including weights. Second, there are other
statistics, such as Mann–Whitney–Wilcoxon, that which
could be used in place of the runs statistic. The ad-
vantage of summation is that it results in simple for-
mulas, and the advantage of the runs statistic is that it
is easy to interpret. We have not tested any alternate
formulations.

pcond: Testing conditioning on an observed tree shape. We
first condition on the observed tree, defining a p value
which we will call the “conditioned runs p value”, or
pcond. We do so because the imbalance of a given tree
shape has a substantial influence on the range of the
total number of runs. Indeed, consider a given internal
node with an (m,n) shuffle: that is, one daughter subtree
has m internal nodes and the other has n internal nodes.
If m = n, then the maximum number of runs at that in-
ternal node is equal to 2n. If instead m > n, then the
maximum number of runs is 2n + 1. Thus, the maximum
number of runs at an internal node is bounded above by
a function of the size of the smallest descendant subtree;
consequently imbalanced trees will have a smaller up-
per bound for the total number of runs compared with
balanced trees. Informally, when selecting a tree from
some distribution on tree shapes, imbalanced trees will
“tend” to have fewer runs than balanced trees. How-
ever, by conditioning on a given tree shape, we eliminate
the contribution of tree shape to the distribution on the
number of runs and focus only on timing information.

As shown in the appendix, the ERM and CRP models
each induce the uniform distribution on shuffles con-
ditioned on a tree shape (Corollaries A2 and A6 and
Proposition A8). For a tree with 1 leaf, we have P{R(T)=
0} = 1. For a tree with 2 leaves, we also have P{R(T) =
0}= 1 (the 2 daughter subtrees have no internal nodes).

Assume that a random tree T from a distribution in-
ducing the uniform distribution on shuffles is composed
of 2 ranked subtrees L and R of size m and n, respec-
tively. Then, we have

P{R(T) = k} =
k∑

i=0

P{Xm−1,n−1 = i}

×
k−i∑
j=0

P{R(L) = j}P{R(R) = k− i− j}. (3)

It is shown in the appendix that this distribution can
be calculated recursively on a tree with n leaves in time
O(n3 log2 n), with small constant. Thus, it is practical to
obtain a p value for R(T) analytically. If n is ever so
large that this computation is prohibitively expensive,
then simulation may be used to efficiently approximate
the cumulative distribution function (CDF) of R(T) and
thus the p value.

We define the conditioned runs p value pcond(S) for a
ranked tree shape S as

pcond(S) =
R(S)−1∑

i=0

P{R(T) = i} +
1
2
P{R(T) =R(S)},

where P{R(T) = k} is computed from equation (3). We
use this quantity rather than P{R(T) < R(S)} or the
classical P{R(T) ≤ R(S)}, as these alternative formula-
tions lead to uninformative extreme p values for small
trees.

punif: Testing the uniform distribution on ROTs. Now
for the second case, we define the “uniform runs p
value” punif, assuming that we want to test a model
such that each ROT is equally likely. This includes the
ERM models, and in the case of pure-birth models, this
is exactly the set of the ERM models (Proposition A7).
Let R(n) be the random variable “runs of a tree with n
leaves,” where the tree is drawn from the uniform dis-
tribution on ROTs. The distribution of R(n) can again
be obtained recursively. Note that for a uniform ranked
tree on n leaves, the probability that one daughter tree
has size r and the other daughter tree has size n − r is
1/(n− 1) for all r. Thus,

P{R(n) = k}= 1
n− 1

n−1∑
r=1

k∑
i=1

P{Xr−1,n−r−1 = i}

×
k−i∑
j=0

P{R(r)= j}P{R(n− r)= k− i− j}.

(4)

The complexity for recursively calculating the distribu-
tion of runs for trees with n leaves is O(n4 log2 n), by an
argument analogous to that for equation (3).

We define the uniform runs p value punif(S) for a
ranked tree shape S as

punif(S) =
R(S)−1∑

i=0

P{R(n) = i} +
1
2
P{R(n) =R(S)},

where P{R(n) = k} is computed from equation (3).
A ranked tree T that is more balanced than Yule

model will tend to have punif(T) > pcond(T), whereas
a tree less balanced than Yule model will tend to have
the opposite relation. The underlying reason is that
balanced ranked trees with shuffles drawn from the
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uniform distribution tend to have more total runs than
imbalanced ones; indeed, by equation (2), the expecta-
tion of Xm,k−m is maximized when m = �k/2�, that is,
the perfectly balanced case. A maximally imbalanced
vertex, on the other hand, can have only one run. These
statements suggest the trend punif(T) > pcond(T) for bal-
anced trees and punif(T) < pcond(T) for imbalanced trees
because punif compares the given ranked tree to ranked
trees with the Yule model distribution on tree shapes,
whereas pcond compares it to ranked trees with the same
tree shape. It might be possible to make these statements
more formal by fixing a notion of balance, but we do not
pursue that here.

A python package for computing pcond and punif is
available at http://www.tb.ethz.ch/people/tstadler. For
a collection of trees (e.g., a sample from the Bayesian
posterior), the individual p values can be averaged. In
addition to the calculation of the runs statistic and the
p value for the whole tree, the package can calculate
the runs statistic and p value for each interior vertex of
a single tree. This feature may be useful for biologists
looking for signals of a key innovation.

Shuffles in the Bayesian Setting
In our work up to now, we have assumed that the

correct tree and diversification timing information are
known. This assumption is not realistic for a number of
data sets. For example, below we apply our methodol-
ogy to a sample of HCVs, which probably do not have
enough sequence divergence to perfectly reconstruct a
phylogenetic tree with timing information.

One way of working with such data sets is to take
a Bayesian approach, where rather than a single tree
one gets a posterior distribution on trees. For each sin-
gle tree, one can compute the p value of the total runs
statistic, either conditioning on the topology or assum-
ing a uniform distribution on ranked tree shapes. We
then simply take the average of the p values thus com-
puted for each tree. The average of p values in this case
is a simple type of posterior predictive p value (Meng
1994; Ree 2005). As such, it is not exactly uniformly dis-
tributed under the neutral model as a proper p value
should be, although the average does share many of the
characteristics of a classical p value.

Runs and Neutrality
Here we note that the runs statistic can be used to

test the coalescent in the presence of ancestral popula-
tion size variation. Tests of neutrality in the presence of
historical population size variation are of particular re-
cent importance as new coalescent-based methods are in
use to infer population size history in a Bayesian frame-
work (Drummond et al. 2005; Opgen-Rhein et al. 2005).
If these methods are to be used on a given set of se-
quences, it is important to test the central assumption
of the methods, namely, that the sequences have a ge-
nealogy that can be accurately described using the coa-
lescent with arbitrary population size history.

Unfortunately, classical statistics such as the D statis-
tics of Tajima (1989) and Fu and Li (1993) confound
ancestral population size changes and nonneutral evo-
lution. One solution to this problem is to investigate
the Bayesian posterior on phylogenetic trees for evi-
dence of nonneutral evolution rather than using the
sequence information directly. This has been done by
Drummond and Suchard (2008), who use a posterior
predictive p value approach. Here we simply point out
that, as described above, the coalescent with arbitrary
population size history is an ERM model and thus will
induce the uniform distribution on ranked phylogenetic
trees; therefore, by rejecting the ERM class we reject a
general coalescent model. We will apply this fact below
in the example application to HCV data.

Generalization for Nonbinary Trees
Polytomies (i.e., nonbinary splits) are common in re-

constructed phylogenetic trees. Some polytomies are
certainly due to a lack of information to resolve the
splits; however, it has been argued that molecular- and
species-level polytomies actually exist (Jackman et al.
1999; Slowinski 2001). The methodology described in
this paper can be extended to trees with “hard” poly-
tomies, that is, cases of multiple divergence which are
essentially simultaneous in evolutionary time.

The new ingredient needed is the “multiple runs
distribution,” that is, the analog of equation (1) for
shuffles on more than 2 symbols. Such distributions
are described in David and Barton (1962). Using these
distributions, the probability of a shuffle consisting of
symbols from the k daughter trees can be found for a
shuffle at a nonbifurcating split v in the same recursive
manner.

EXAMPLE APPLICATIONS

In this section, we describe 2 applications of the meth-
ods in this paper. First, we apply the methods to re-
laxed clock phylogenetic trees of the HCV. The pcond
values for this data set show some bias toward LSB
diversification. However, for certain data sets, punif
clearly rejects any ERM model such as the coalescent
with varying population size. The second application is
to phylogenetic trees for ants, whose timing information
was reconstructed through fossils and the r8s (Sander-
son 2003) rates smoothing program. These ant trees do
not show any evidence of LSB evolution, despite some
interesting history in terms of diversification rates.

Our HCV data are derived from 5 independent stud-
ies in the literature. The first data set, “China,” came
from a survey of HCV in China (Lu et al. 2005). From
this survey, we used 132 sequences of the E1 region. The
second data set, “Donlin,” consists of samples from 8
clinical centers in the United States (Donlin et al. 2007).
From this study, we used the 48 sequences that were
sampled in the year 2002. The third, “Egypt,” is an
alignment of E1 sequences from a survey of 71 HCV-
infected individuals in Egypt (Ray et al. 2000). The
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fourth alignment, “Henn,” came from those HCV se-
quences with accession numbers EU155213–EU155344
which were sampled in the year 2006 (a total of 35
sequences; each from a distinct patient in the United
States). “Timm,” the fifth data set, supplies 71 sequences
from a study of HCV-positive subjects in Boston (Timm
et al. 2007). All sequences were downloaded from the
Los Alamos HCV sequence database (Kuiken et al.
2005).

Phylogenetics in HCV is typically done on the core/
envelope (CE) region, which codes for the nucleocap-
sid and envelope glycoproteins, or the nonstructural 5
(NS5) region, which codes for an interferon-resisting
protein and RNA polymerase. We also restricted the
alignments to these regions. Specifically, the study by
Timm et al. (2007) sequenced a substantial segment in-
cluding the NS5 region but not the CE region, so we
restricted our study to the NS5 region. The studies by
Donlin et al. and Henn et al. sequenced the complete
genome, so we cut out the CE and the NS5 regions of
the alignments and analyzed them separately. They are
labeled as such below: for example, “Donlin CE” means
the Donlin data set restricted to the CE region.

In order to avoid confounding temporal informa-
tion with molecular rate variation, we applied the
relaxed clock model of Drummond et al. (2006) as im-
plemented in the BEASTv1.4 suite of computer pro-
grams (Drummond and Rambaut 2007). We chose
uncorrelated lognormally distributed local clocks, the
Hasegawa–Kishino–Yano model, and 4 categories of
gamma rate parameters in the gamma + invariant sites
model of sequence evolution. We performed separate
analyses using both the constant population size and
the exponential growth coalescent priors. All other pa-
rameters were left as default; the corresponding BEAST
XML input files are available from the authors upon
request.

The Markov chain Monte Carlo (MCMC) chain for
these analyses was run for 10–100 million generations
and convergence to stationarity was checked with the
BEAST program Tracer. For each model parameter, the
minimum effective sample size was at least 100, with
most being significantly greater. The first 10% of the run
was removed, and 100 trees were taken from the tree log
file, equally spaced along the run of the MCMC chain.
We interpret these trees as being independent samples
from the posterior. As a check, the analysis was rerun
with an empty alignment; no significant deviation from
the uniform distribution on shuffles was detected (re-
sults not shown).

After running the BEAST analysis, we calculated ex-
pected p values for each data set using our statistics.
First, we calculated pcond, the p value of the number of
runs conditioning on tree shape, calculated via equation
(3). This is the p value of the total number of runs ob-
served on the tree compared with the number of runs
for a tree of the same shape where the shuffles are drawn
from the uniform distribution. By thus conditioning on a
tree topology, we consider the deviation of just the tim-
ing information from that of an ERM or a CRP model,

rather than deviation of timing and topological infor-
mation. Next we calculated punif, which is the p value
of the observed number of runs under the assumption
of the uniform distribution on ROTs. This p value tests
ERM models, such as the coalescent with arbitrary pop-
ulation size history. Last we calculated a p value for the
uniform distribution on ROTs using Ic, Colless’ imbal-
ance statistic (Colless 1982). Ic is calculated as follows:
for each internal node v, let iv be the difference of the
number of leaves of the 2 daughter trees of v. Now Ic
is simply the sum of the iv for all internal nodes v. We
included it for comparison, as it is a statistic that only
includes tree shape and not timing information. The re-
sults are displayed in Table 1.

First, note that pColl is always less than one-half for
these alignments. One such p value being less than one-
half does not have any statistical significance; however,
Table 2 shows that the combination of all such p val-
ues is highly statistically significant, meaning that the
trees are more imbalanced than would be expected un-
der neutrality. Thus, because imbalanced trees tend to
have fewer runs than balanced trees (see the section in-
troducing pcond), one would expect that pcond would be
greater than punif; this is indeed the case here. Second,
note that for all data sets except for Henn NS5, pcond
is quite a bit greater than punif. In those cases, the to-
tal number of runs is governed primarily by tree shape
rather than by timing information. By looking at the ta-
ble, clearly it is those cases where pcond is much greater
than punif, where pColl is small. On the other hand, for
the Henn NS5 data set, pColl is large and pcond is not too
far from punif. Although the results for the CE and NS5
regions are relatively similar for the Donlin data set, the
results for the same regions are quite different for the
Henn data set. We do not have a clear explanation for
why this would be.

We also note that the China and Egypt data sets,
which focused on broad geographic sampling, appear
to have more deviation from neutrality in terms of shape
than clinic-based studies in the United States. One rea-
son for this might be that the China and Egypt studies
had enough sequence divergence to pull the observed
distribution away from the prior in our BEAST ana-
lysis. Another possibility is that something about the
sampling biased the tree shape away from neutrality.

In any case, it is clear from looking at Table 1 that
for the China, Egypt, and Henn NS5 data sets, the ob-
served trees deviate significantly from the distribution
given by the arbitrary population size coalescent. This
is topical as it is common practice to use the coalescent
to estimate viral population size history, for example,
the paper by Opgen-Rhein et al. (2005), which uses the
Egypt data set. Other papers that use the coalescent to
estimate population size history include Drummond
et al. (2005) and Minin et al. (2008). This assumption
goes untested as no methods were available at the time
to test the coalescent in the presence of ancestral pop-
ulation size changes; it would be interesting to know
how this would impact the historical population size
estimates in these papers.
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One might also take as a null hypothesis “HCV
evolves according to some ERM or CRP model” and
find a p value for that statement given this collection
of independent studies. To do so, we combine p values
as described below with the idea that although a single
tree with a p value of around 0.25 has very little statisti-
cal significance, the fact that 5 independent studies give
p values around that value is significant.

Combining p values is a common procedure in such
situations with independent tests. See Loughin (2004)
for a comparison of several methods. These 5 data sets
are from separate studies; thus, we assume that the
p values are independent. Here, we use 3 different
methods of combining p values. They are the Anderson–
Darling (A-D) test for uniformity (Marsaglia G. and
Marsaglia J.C.W. 2004), sums of uniform quantiles, and
sums of normal quantiles (Loughin 2004). As noted
above, we obtained different results when choosing the
CE region versus the NS5 region for building trees in the
Donlin and Henn data sets; thus, for every combining
method we made one choice of region for both Donlin
and Henn and ran the analysis. The results are shown in
Table 2.

We now describe the methods of combining p values.
The A-D test uses a test statistic based on the differ-
ence between the empirical CDF and the CDF of the
proposed distribution, in this case the uniform distri-
bution as our samples are p values. This method is of-
ten used to test pseudorandom number generators, as
in Marsaglia’s set of DieHard tests (Marsaglia and Tsang
2002). The distribution of the A-D statistic is computed
by simulation in this case, to find the p value for our
combined sample of 5 numbers. The latter 2 tests in-
volve choosing a distribution and summing the quan-
tiles corresponding to each p value (see Loughin 2004).

All choices and tests reject the ERM model at the 5%
level (seen in the columns labeled punif and pColl). The
evidence from pcond, conditioning on tree shape (and
considering timing information only), is not so strong.
In most cases, summing the quantiles of the uniform
distribution is the most powerful test. As detailed in
Loughin (2004), the uniform quantile method of p value
combination is more powerful than the normal (and
many others) against such cases where evidence against
the hypothesis is weak and spread evenly among the

contributing p values. The uniform test rejects the ERM
and CRP models at the 5% level using pcond for both
the CE and the NS5 data when the exponential prior is
used.

We would like to note that these results were found
despite the fact that the coalescent was used as a prior
in the Bayesian phylogenetic analysis. That is, if any
bias could be expected in the trees, it would be toward a
coalescent prior and a uniform distribution on shuffles.
By looking at Tables 1 and 2, it is clear that the prior has
a significant influence: indeed, just the difference be-
tween a constant population size and an exponentially
increasing population size prior is enough to signifi-
cantly change the timing and shape of the tree. Thus,
we believe that our results form an upper bound for the
actual statistics of the HCV lineages.

For the second application, we investigated 2 dif-
ferent trees of ant taxa. The first tree (149 taxa) is that
of Moreau et al. (2006), showing the diversification
of the major ant lineages. The timing information in
this tree is quite remarkable, in that the corresponding
LTT plot shows a substantial increase in diversifica-
tion rate during the Late Cretaceous to Early Eocene,
which corresponds to the rise of angiosperms (flower-
ing plants). Given the tools at our disposal, one might
wonder if this increase in diversification rates affected
all lineages equally or if it occurred in lineage-specific
bursts. The second ant tree we investigated was that
of Pheidole, a “hyperdiverse” ant genus. Pheidole is al-
most certainly monophyletic and yet comprises about
9.5% of the ant species in the world, according to latest
estimates (Moreau 2008). Moreau has recently recon-
structed a phylogeny of this genus (171 taxa) which we
have analyzed along with the tree of the ant lineages
in general. Both trees were reconstructed via maximum
likelihood and then made ultrametric using the pe-
nalized likelihood method of the r8s rates smoothing
program (Sanderson 2003).

In Figure 4, we show a plot of the internal nodes of
each tree. The x-coordinate in the plot is the number of
taxa below an internal node, and the y-axis is the p value
of the number of runs in the shuffle statistic. As can be
seen, there is no clear correlation between the number of
taxa below an internal node and the shuffle statistic, and
at no stage does diversification appear to be consistently

TABLE 1. Expected p values of the number of runs in the posterior for a Bayesian analysis of HCV data

Data set Const pcond Exp pcond Const punif Exp punif Const pColl Exp pColl

China 0.102 0.0778 0.00122 0.000454 0.00059 0.000377
Donlin CE 0.32 0.193 0.14 0.13 0.094 0.307
Donlin NS5 0.365 0.455 0.156 0.193 0.106 0.122
Egypt 0.344 0.322 0.03 0.0131 0.00391 0.00162
Henn CE 0.224 0.243 0.106 0.122 0.117 0.13
Henn NS5 0.0617 0.0388 0.0477 0.0363 0.324 0.334
Timm NS5 0.576 0.464 0.389 0.271 0.154 0.0879

Notes: Each row represents one data set. “Const” means that the BEAST analysis used a constant population size coalescent prior, and “Exp”
denotes the use of an exponentially increasing population size coalescent prior. We display results using 3 methods of testing as described in
the text: the conditioned runs p value pcond, the uniform runs p value punif, and the p value for the Colless index pColl testing against an ERM
model. The punif columns reject ERM models for certain data sets, as do the pColl columns.
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TABLE 2. Combined runs p values for the 5 studies of HCV data

Data set Const pcond Exp pcond Const punif Exp punif Const pColl Exp pColl

A-D CE 0.781 0.9013 0.99803 0.999479 0.999939 0.999875
A-D NS5 0.829 0.887 0.99896 0.999735 0.999614 0.999857
Uniform CE 0.076 0.0311 0.00112 0.000397 7.4× 10−5 0.000359
Uniform NS5 0.0524 0.0384 0.00079 0.000277 0.000592 0.000387
Normal CE 0.0666 0.0434 0.00021 2× 10−5 3× 10−5 <1× 10−6

Normal NS5 0.095 0.0582 0.00953 0.0068 0.0103 0.0208

Notes: We combine using the A-D test for uniformity, sums of uniform quantiles (labeled Uniform), and sums of normal quantiles (labeled
Normal). The rows are also labeled CE or NS5 based on if we used the CE or the NS5 region for phylogenetic analysis in the Donlin and Henn
data sets.

bursting or refractory in a lineage-specific sense. We can
also compute the p value of the total number of runs
across the tree: for tree (a) this is about 0.9052 and for
tree (b) this is about 0.6718. Thus, for these 2 ant trees we
do not see any significant evidence of LSB or refractory
diversification. This analysis forms an interesting coun-
terpoint to the LTT results for the ants, which shows an
overall increase in diversification rate during the Late
Cretaceous to Early Eocene across the entire tree.

CONCLUSIONS

We have developed a framework that allows testing
for nonneutral diversification timing. Our work consists
of 3 main components: first, a simple, recursive way of
quantifying the relative timing information on a phy-
logenetic tree; second, 2 classes of neutral models on
trees with relative timing information; and third, a sum-
mary statistic that allows comparison of reconstructed
trees to these neutral models. In our methodology, tim-
ing information is considered relative to sister taxa and
considered in the context of the tree, which may make
it a valuable complementary method to LTT plots. We
compute the significance of the deviation of relative tim-
ing information from a neutral model analytically using
a simple method drawn from classical statistics.

This method was conceived for the macroevolution-
ary case in order to find historical evolutionary pat-
terns requiring explanation. However, it is also quite
applicable in the microevolutionary case, where it can
test neutrality in the presence of historical population
size variation. This is particularly relevant as methods
are now available to describe historical population size
under a coalescent assumption.

We emphasize that our methodology can go beyond
testing for deviation from the coalescent or the Yule
models, which are usually the entire class of “neu-
tral” models considered. Indeed, because any ERM or
CRP model induces the uniform distribution on shuf-
fles, deviation from this distribution is evidence to reject
any model in the ERM or CRP classes.

However, sometimes one may wish to test only a
more restricted set of models, such as only the ERM
models (which include the coalescent with arbitrary
population size history) and not the ERM and CRP
models together. By testing a more restricted class of
models, a particular data set will be more likely to fall
outside the chosen class. For example, in the application
of our methods to HCV data above, the data show some
weak evidence of not coming from an ERM or a CRP
model. However, if one tests for conformity to the ERM
class (again, including the coalescent with arbitrary

FIGURE 4. The distribution of the runs statistic for the internal nodes in 2 trees of ant taxa. Each point in each plot represents an internal
node in the corresponding tree; the x-axis gives the number of taxa below the internal node, and the y-axis gives the p value of that internal node
in terms of the runs statistic. The plot on the left is for the tree of Moreau et al. (2006), and the plot on the right is for a tree of Pheidole appearing
in Moreau (2008). These 2 trees do not appear to consistently show either LSB or refractory diversification.
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population size history), one obtains rejection at the
5% level.

We recall that our method uses “relative” timing in-
formation rather than actual branch lengths. In some
ways this is an advantage. In a microevolutionary set-
ting, this means that the corresponding tests are invari-
ant to changes in ancestral population size, and thus
our test for neutrality is not “fooled” by ancestral pop-
ulation size variation. In a macroevolutionary setting,
the statistics are robust to branch length estimation er-
ror over long timescales. Such estimations are known to
be difficult (Kimura 1981). We note further that from a
modeling perspective it is possible to specify a proba-
bility distribution on ranked phylogenetic trees without
specifying a particular distribution on branch lengths.
This flexibility means that it may be possible to reject
many models at once as described above.

Nevertheless, it may be useful at some future stage to
combine topology and continuous branch length infor-
mation, rather than the discretized version considered
here. However, quantifying the shape of such objects ap-
pears to be challenging as the relevant geometry is quite
intricate (Billera et al. 2001; Moulton and Steel 2004). In
contrast, by discretization to ranked trees we obtain a
purely combinatorial object.

We close by noting that although various techniques
for reconstructing phylogenetic trees with timing in-
formation have been present for many years, these
methods are currently seeing an intense period of devel-
opment and will only improve. With this improvement
we expect to see an increase in the number of trees
present in the literature with interesting patterns of di-
versification timing due to adaptive radiation or other
factors. We hope that our technique will prove to be a
useful analytical tool for these future investigations, not
only for finding interesting diversification patterns but
also for testing potential biases of timing reconstruction
methods.

SUPPLEMENTARY DATA
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oxfordjournals.org/.
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APPENDIX

ROTs, Phylogenetic Trees, and Tree Shapes
For the following proposition, we define a “symmet-

ric vertex” to be one for which the unoriented shapes of
the subtree below each child of this vertex are the same
(isomorphic as tree shapes). A “big symmetric vertex” is
a symmetric vertex with more than 2 leaves below.

Proposition A1. A uniform distribution on rank func-
tions on a given oriented tree induces a uniform distri-
bution on rank functions of its corresponding tree shape.

Proof. Let t be an oriented tree with n leaves and t′ its
corresponding tree shape. Let q denote the number of
big symmetric vertices of t or t′. For n=2, which implies
q=0, we have for the ranking on t′ exactly 1=20 ranking
on t. Assume that the following claim is true for all ori-
ented trees with less than n leaves: for each ranking on t′
there are exactly 2q rankings on t which are sent to it by
the map which forgets orientation of vertices. This claim
implies the proposition as then the number of rankings
on t which get sent to a given ranking R on t′ does not
depend on the choice of R. The induction now breaks
into 2 cases.

Case 1: Suppose the 2 children of the root branch
point of t′ are nonisomorphic tree shapes. They may
therefore be distinguished from each other, and given a
ranking on t′ the shuffle at the root node of t is deter-
mined. Call the 2 child subtrees “left” and “right” with
q1 and q2 being big symmetric vertices, respectively.
By the inductive assumption, there are 2q1 rankings
for the left subtree of t and 2q2 rankings for the right
subtree which map to the corresponding rank func-
tion on the left and right subtree shapes. This gives
2q1+q2 total because there is no choice for the shuf-
fle at the root branch point of t. This completes the
induction as q1 + q2 is the number of big symmetric
vertices of t′.

Case 2: Suppose that the 2 children of t′ are isomor-
phic. Therefore, they may not be distinguished except
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by the ranking. Therefore, the shuffle at the root branch
point of t is only determined up to swapping the left
and right subtrees. After this choice the 2 subtrees are
distinguished: which subtree of t′ is “left” and which
is “right” is determined by the shuffle. The rest of the
argument proceeds as before, except that this time there
are 2q1+q2+1 rank functions on t which map to the given
rank function on t′, and q1 + q2 + 1 is the number of big
symmetric branch points of t′.

The result now follows by induction. �
Corollary A2. If a probability function on ROTs is uni-
form on rank functions conditioned on an oriented tree,
then it is also uniform on rank functions of an (unori-
ented) tree shape when conditioned on that (unoriented)
tree shape.

Proof. This follows from the previous proposition be-
cause the resulting mixture of uniform distributions on
rank functions on t′ (one for each oriented tree t with
shape t′) is also uniform. �

This corollary allows us to apply our rank tests to
trees which are given without orientation: ranked tree
shapes.

The ERM Model
In this section, we prove the properties of the ERM

models mentioned in the main text. The following 2
facts are needed for the proof of Proposition A5.

Proposition A3. There are (n− 1)! ROTs on n leaves.

Proof. Proceed by induction on n; for n=2 the statement
is obviously true, there is only one ROT. Suppose there
are (n− 1)! ROTs with n leaves. For any tree on n leaves,
there are n possibilities to attach a leaf which evolved
at the nth bifurcation event. Attaching a leaf to any of
the trees on n leaves gives us the set of ROTs on n + 1
leaves. Thus, there will be n(n− 1) !=n! ROTs with n + 1
leaves. �
Lemma A4. Given an ROT with n leaves, there are n(n + 1)
ways to add an additional leaf.

Proof. First, decide which rank the new internal node
will have, from 1 (earliest) to n (latest). If the new inter-
nal node has rank k, then there are k choices at that level
for the edge to add it to, and then 2 choices for which
side of this edge the new pendant leaf will sit. This gives

a total of 2
∑n

i=1 i = 2 n(n+1)
2 = n(n + 1) ways to insert the

new leaf edge. �
Proposition A5. At all times in an ERM model, the dis-
tribution of ROTs with n leaves is uniform.

Proof. Assume that after k events, all (m − 1)! ROTs of
size m are equally likely. If the next event is a bifurcation,
then, because the result of each (tree, bifurcation event)
pair is distinct, after this event all m! ROTs with m + 1
leaves are equally likely. Similarly, if the next event is an
extinction, then for each of the (m − 1)! equally likely
trees there are m equally likely choices for which leaf to

extinguish, giving m! possibilities in all. By Lemma A4,
each ROT with m − 1 leaves results from m(m − 1) of
these tree-plus-leaf choices. Thus, each ROT with m − 1
leaves is equally likely, with probability m(m − 1) × 1/
m != 1/(m− 2)!.

Because this is true for any such sequence of bifurca-
tions and extinctions it is true at all times. �

Of course, any model giving the uniform distribution
on ROTs with n tips gives the uniform distribution on
rank assignments conditioned on the oriented tree with
n tips. Thus, we have the following corollary.

Corollary A6. Any ERM model gives the uniform dis-
tribution on rank assignments (and thus tree shuffles)
given an oriented tree.

We have the following limited converse of Proposi-
tion A5.

Proposition A7. Pure-birth ERM models are precisely
the set of pure-birth ranked-oriented-tree processes
which, for any n ≥ 1, give the uniform distribution
on ROTs with n taxa when halted as soon as n taxa are
present.

Proof. By the proof of Proposition A5, pure-birth ERM
models result in a uniform distribution on ROTs of size
n (because there have been exactly n− 1 events).

Now consider a model that does not satisfy the ERM
condition. Assume that the kth bifurcation event was
not picked uniformly among lineages, that is, there is a
ranked tree T0 with lineages l1 and l2 which have proba-
bilities p1 � = p2 to speciate. Let T1 (respectively T2) be the
ranked tree produced if l1 (respectively l2) bifurcates. In
a pure-birth process, T1 and T2 may only be reached in
this way,

P[T1] = P[T0] · p1 � =P[T0] · p2 = P[T2],

which shows that this model cannot give the uniform
distribution on ranked trees when the process is halted
at k taxa. There is only one way to build each ROT with
n leaves so the distribution on these cannot be uniform
because an equal number must descend from each of T1
and T2. Thus, by contradiction, there is no such k and so
no such model. �

Note that in the last proposition, the restriction to a
pure-birth process is needed. Consider a process with
extinction where bifurcation is equally likely for each
species, but extinction is history dependent: whenever
an extinction event occurs, it undoes the most recent bi-
furcation event. This model clearly does not belong to
the class of ERM models. However, it gives a uniform
distribution on ranked trees of some fixed size.

The CRP Model
Proposition A8. A CRP model, stopped at a time de-
pending only on the time and number of leaves, gives
the uniform distribution on rank functions for each ori-
ented tree.
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Proof. Consider the distribution of ROTs resulting from
the stopped CRP. Consider a particular oriented tree, t,
with k internal vertices v1, . . . , vk. Let ni and mi denote
the number of internal vertices below the left and right
subtrees, respectively, of vertex vi. Fix a ranking on this
tree. We now compute the probability of this ROT under
the model (conditional on the total number of leaves).
Fix an assignment of pvi to each internal vertex vi. Given
this choice, the probability of the given ranked tree
is the product of the probabilities of each bifurcation
event. For a bifurcation at vertex vi, the probability of
this event is the product of pvj for all vj for which vi lies
on its left subtree times the product of (1− pvj) for all vj
for which vi lies on its right subtree. In the product of
these probabilities over all vi, the term pvj occurs exactly
nj times (once for each internal vertex on the left subtree
of vj) and the term (1−pvj) occurs exactly mj times (once
for each internal vertex on the right subtree of vj). Thus,
the probability of this ranked tree (given the choice
of pv) is

k∏
j=1

pnj
vj

(
1− pvj

)mj .

Note that this is independent of the ranking. Because the
pvi are picked independently from a distribution P, the
probability of this ranked tree shape is

∫
pv1

· · ·
∫

pvk

k∏
j=1

pnj
vj

(
1− pvj

)mj dP · · ·dP,

which is again independent of the ranking. Therefore,
all rankings of this oriented tree are equally likely. �

Time Complexity of Calculating the Runs Distribution
Here we provide a proof of the time complexity

bound for the computation of the runs distribution
R(T) (i.e., conditioning on a given tree shape). This
distribution may be computed easily for certain tree
shapes, such as the comb tree. However, here we pro-
vide a bound that holds for all tree shapes. This bound
makes use of a bound on the number of runs in a ranked
tree.

Let r(n) denote the maximum number of runs for a
ranked tree with n leaves. Thus, r(1) = r(2) = 0, r(3) = 1,
and r(4)=2. Let Ii=n/2 be 1 if i=n/2 and 0 otherwise. For
a tree with at least 2 leaves, if the first branch point has i
leaves on one side and n− i leaves on the other, with i ≤
n− i, then the number of runs at this vertex may be up to
2(i− 1)+ 1− Ii=n/2 (note that we have an (i− 1,n− i− 1)
shuffle at this vertex). This maximum is obtained by a
shuffle that interleaves the elements from each set, one
from each side for as long as possible, starting with the
largest side.

Thus, r(n) satisfies the following recurrence: r(1) =
r(2) = 0 and for n ≥ 2,

r(n) = max
1≤i≤n/2

(2i− 1− Ii=n/2 + r(i) + r(n− i)).

Proposition A9. For all integers n ≥ 1, r(n) ≤ n log2 n.

Proof. The statement is true for n = 1. Suppose that the
statement is true for all k < n. Then,

r(n) = max
1≤i≤n/2

(2i− 1− Ii=n/2 + r(i) + r(n− i))

≤ max
1≤i≤n/2

(2i− 1 + i log2 i + (n− i) log2(n− i)).

Note that 2i − 1, i log2 i, and (n − i) log2(n − i) are all
convex functions of i so their sum is convex also. Thus,
the maximum of 2i−1+i log2 i+(n−i) log2(n−i) occurs at
an extreme value. Setting i=1 gives 1+0+(n−1) log2(n−
1), whereas setting i= n

2 gives 2 n
2−1+2 n

2 log2
n
2=n
(
log2 2+

log2
n
2

)−1=n log2 n−1. Both of these values are less than
n log2 n and so r(n) must be at most n log2 n. The result
follows for all n ≥ 1 by induction. �

We now proceed to bound the complexity of comput-
ing the distribution of runs for a tree. For a tree T with 1
or 2 leaves, the number of runs is always 0.

Let T be a tree with n ≥ 3 leaves; we assume a uni-
form distribution on tree shuffles. Let L and R be the 2
randomly ranked subtrees of T, with a and b leaves,
respectively.

Equation (3) may be rewritten as follows:

P{R(T) = k}

=

A1∑
i=0

P{Xa,b = i}
A2∑

j=0

P{R(L) = j}P{R(R) = k− i− j}

=

A1∑
i=1

P{Xa,b = i}P{R(L) +R(R) = k− i}, (A.1)

where A1=min(k,n) and A2=min(k− i, r(a)). Note that
a + b= n ≥ 3 implies Xa,b ≥ 1 andR(T) ≥ 1.

Because R(T) is supported on (i.e., 0 outside of)
k = 1, . . . , �n log2 n�, and for each k, the computation
of equation (A.1) costs 2n − 1 operations, the cost of
computing its distribution with this formula is at most
(�n log2 n�)(2n − 1) arithmetic operations plus the cost
of computing P{Xa,b = i} for i = 1, . . . , n and P{R(L) +
R(R) = x} for x= 0, . . . , r(n)− 1 ≤ n log2 n− 1.

For these fixed a and b, the values of P{Xa,b= i} can be
calculated using equation (1) in constant time (at most
5 × 2 + 4 = 14 arithmetic operations each) with a lin-
ear overhead as follows. The binomial coefficients

(a
k

)
for

a ≤ b and k ≤ b in equation (1) may be calculated with
at most 2 arithmetic operations from the factorials, j! for
1 ≤ j ≤ n, which may in turn be precalculated in linear
time (n−1 multiplications). Thus, calculating P{Xa,b= i}
for i = 1, . . . , n takes at most 14n arithmetic operations,
with a one-time overhead of n− 1.

The distribution of P{R(L)+R(R)=x} is supported on
x= 0, . . . , � n log2 n�−1. It may be computed by repeated
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application of the formula

P{R(L)+R(R)=x}=
�(n−1) log2(n−1)�∑

j=0

P{R(L)=j}P{R(R)=x−j}

as long as the distributions of R(L) and R(R) are
known. This computation requires at most n log2 n(2(n−
1) log2(n − 1) + 1) arithmetic operations, and at most
(n−1) log2(n−1)+1 multiplications and (n−1) log2(n−1)
additions for each of n log2 n values of x. Note that
the distribution of P{R(L)} is supported by j = 0, . . . ,
�(n − 1) log2(n − 1)�because L has at most n − 1
leaves.

So, if the distribution of R(L) and R(R) are known,
the distribution of R(T)may be calculated in at most

(�n log2 n�)(2n−1)+14n+n log2 n (2(n− 1) log2(n− 1) + 1)

arithmetic operations. This is at most

2n2 log2 n + 2n2 log2
2 n + 14n

for all n ≥ 3. Because R(T) is 0 for n = 1, 2, the time to
calculate it is 0.

This procedure may be applied recursively, comput-
ing the distribution of runs of all subtrees before finally
computing the runs distribution of T. Because there are
n − 1 internal vertices and each has at most n leaves
below it, the total number of arithmetic operations re-
quired is at most n(2n2 log2 n + 2n2 log2

2 n + 14n + 1)
(including the overhead for precomputing j!). This is
O(n3 log2

2 n).
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