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Abstract.—Quantitative traits have long been hypothesized to affect speciation and extinction rates. For example, smaller
body size or increased specialization may be associated with increased rates of diversification. Here, I present a phylogenetic
likelihood-based method (quantitative state speciation and extinction [QuaSSE]) that can be used to test such hypotheses
using extant character distributions. This approach assumes that diversification follows a birth–death process where speci-
ation and extinction rates may vary with one or more traits that evolve under a diffusion model. Speciation and extinction
rates may be arbitrary functions of the character state, allowing much flexibility in testing models of trait-dependent di-
versification. I test the approach using simulated phylogenies and show that a known relationship between speciation and
a quantitative character could be recovered in up to 80% of the cases on large trees (500 species). Consistent with other
approaches, detecting shifts in diversification due to differences in extinction rates was harder than when due to differ-
ences in speciation rates. Finally, I demonstrate the application of QuaSSE to investigate the correlation between body size
and diversification in primates, concluding that clade-specific differences in diversification may be more important than
size-dependent diversification in shaping the patterns of diversity within this group. [Birth–death process; Cope’s rule;
extinction; macroevolution; speciation.]

Species selection may be responsible for much of the
variation in diversity among clades. Species fulfill the
(Lewontin 1970) definition of units of selection; different
species have different traits, differential “fitness” (rates
of speciation and extinction) that may be attributable
to these traits, and the traits and their fitness differ-
ences are heritable. Although the concept of species
selection has been controversial since its inception (e.g.,
Stanley 1975; Vrba and Gould 1986), there now seems
to be reasonable agreement that the process may oper-
ate (recently discussed in Okasha 2006; Jablonski 2008;
Rabosky and McCune 2009). Many traits have been pro-
posed to affect rates of speciation and extinction, such
as body size (Gittleman and Purvis 1998), sexual system
(Heilbuth 2000), and dispersal ability (Phillimore et al.
2006). In addition, hypotheses that invoke “key inno-
vations” (e.g., floral nectar spurs; Hodges and Arnold
1995) or evolutionary “dead ends” (e.g., asexuality;
Schwander and Crespi 2009) generally invoke trait-
dependent variation in rates of diversification.

Phylogenies contain information about the timings of
speciation events and patterns of diversification (Nee
et al. 1994) and have been used extensively in com-
parative analyses to attempt to identify correlates of
elevated speciation or extinction rates. Sister clade anal-
yses have been widely used for detecting correlates of
diversification for binary traits (e.g., Mitter et al. 1988;
Heilbuth 2000; Vamosi and Vamosi 2005). These require
that clades are characterized by a single character state
and assume that all lineages within the clade have taken
this value for the majority of its evolutionary history.
More recently, likelihood approaches such as binary
state speciation and extinction (BiSSE; Maddison et al.
2007) have allowed this assumption to be relaxed, al-
lowing any distribution of characters among extant

species, by using the entire pattern of branching in a
phylogeny. For example, BiSSE has recently been used
to demonstrate a correlation between live-bearing (vs.
egg-laying) snake species and elevated speciation rates
(Lynch 2009).

Sister clade analyses will not generally be appropriate
for detecting correlation between diversification rates
and continuous traits because a clade does not have
a single body size, geographic range, or latitude (but
see Gittleman and Purvis 1998, for an approach that
uses mean clade traits). Several recent methods have
been developed explicitly for continuous traits. Clauset
and Erwin (2008) used a diffusion model to calculate
equilibrium trait frequency distributions under a model
where species selection is opposed by individual-level
selection. However, this approach cannot incorporate
phylogenetic information. The methods developed by
Paradis (2005) and Freckleton et al. (2008) are explicitly
phylogenetic, but they assume that ancestral character
states can be estimated without accounting for the effect
of the character on speciation and extinction (see below).
None of these methods can distinguish between differ-
ential speciation and differential extinction. However,
speciation and extinction rates may be correlated (high
extinction rates may accompany high speciation rates;
e.g., Gilinsky 1994; Coyne and Orr 2004; Liow et al.
2008), and many traits are thought to change diversi-
fication rates through their effect on extinction rather
than speciation (e.g., Harcourt et al. 2002; Cardillo et al.
2005). Approaches that allow differential speciation to
be distinguished from differential extinction will there-
fore allow testing of a broader array of evolutionary
hypotheses.

Inferring the states of ancestral nodes is problem-
atic when the character affects speciation or extinction
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(Maddison 2006; Paradis 2008). For example, trait
values might be inferred at ancestral nodes that are
unlikely because they would lead to high rates of ex-
tinction if the processes of character evolution and spe-
ciation/extinction are treated separately. More subtly,
the trait values estimated in this way will be incorrect if
the evolution of the trait has a directional tendency, as it
is not possible to detect directional shifts in a character
under a Brownian motion model of character evolution
on an ultrametric tree (Schluter et al. 1997). However,
where speciation, extinction, and character evolution
are treated simultaneously, and where speciation rates
are state dependent, these directional changes can po-
tentially be inferred. This would allow detection of
cases where species selection and individual-level se-
lection oppose (i.e., directional character change toward
trait values that are disfavored by species selection).
For example, it has been suggested that large-bodied
individuals tend to have higher fitness (leading to an
increase in mean size over time), whereas populations
of large-bodied individuals are more prone to extinction
(Clauset and Erwin 2008).

Here, I describe a new comparative phylogenetic
method, quantitative state speciation and extinction
(QuaSSE), for inferring the effect of quantitative traits on
speciation and extinction rates. I first derive likelihood
equations that can be used to calculate the probability of
a phylogenetic tree and distribution of character states
among species under a general model of cladogenesis
and character evolution. I then investigate the power
of this method to detect differential diversification by
applying it to simulated trees. Finally, I demonstrate
the method and illustrate some potential pitfalls by
investigating the correlation between body size and
diversification in primates.

CHARACTER EVOLUTION AND DIVERSIFICATION

I model speciation and extinction as a birth–death
process (similar to Nee et al. 1994), allowing the rates
of speciation and extinction to vary with a simultane-
ously evolving character. Assume that a species can be
characterized by its mean value of some character trait,
x, which varies on the interval (−∞,∞), and that this
character affects diversification through its effect on the
rate of speciation or extinction (or both). Let the rate of
speciation for a lineage in state x be λ(x) and the rate of
extinction be μ(x). These may be arbitrary nonnegative
functions of x, and I do not assume anything about their
form. In the most general case, these can also be func-
tions of time, so that the speciation rate for a lineage
in state x at time t is λ(x, t), but for notational brevity,
I will omit this time dependence. Incorporating time
dependence allows modeling of clade-wide changes in
diversification rates (e.g., Rabosky 2006).

It is convenient to model character evolution along
lineages using a diffusion process (Allen 2003). Diffu-
sion processes are attractive for modeling character evo-
lution because they allow for stochasticity while being

mathematically tractable. I will measure time backward,
with the present at time 0, and t > 0 representing some
time in the past. Let g(z, t|x, t + Δt) be the transition
probability density function for the diffusion process;
the probability density that a character state changes
from x at time t + Δt to state z at time t, where t is closer
to the present than t + Δt (0 < t < t + Δt). The diffusion
assumptions state that

φ(x, t) = lim
Δt→0

1
Δt

∫ ∞

−∞
(z− x)g(z, t|x, t + Δt)dz, (1a)

σ2(x, t) = lim
Δt→0

1
Δt

∫ ∞

−∞
(z− x)2g(z, t|x, t + Δt)dz, (1b)

0= lim
Δt→0

1
Δt

∫ ∞

−∞
(z− x)kg(z, t|x, t + Δt)dz, k > 2,

(1c)

where the integral is taken over all possible character
transitions (Allen 2003). I will refer to φ(x, t) as the
“directional” term, which captures the deterministic or
directional component of character evolution; this is
the expected rate of change of the character over time
and may be due to selection or other any other within-
lineage process that has a directional tendency. This
term is typically referred to as the “drift” term (e.g.,
Allen 2003), but I avoid this terminology to prevent
confusion with genetic drift. The term σ2(x, t) is the
“diffusion” term and is the expected squared rate of
change; this captures the stochastic elements of charac-
ter evolution. The condition (1c) formally captures the
assumption that large changes are unlikely by asserting
that character evolution is described entirely the first
two moments of the transition probability density func-
tion. Note that both φ(x, t) and σ2(x, t)may be functions
of both the character state and time. I assume that the
character state is perfectly inherited by both daughter
species during speciation (e.g., speciation does not lead
to character displacement).

The above diffusion process generalizes other mod-
els of character evolution. Brownian motion can be
modeled by setting the functions φ(x, t) and σ2(x, t)
to the constants φ and σ2. Where φ = 0, this is stan-
dard Brownian motion, and where φ is nonzero, this
is Brownian motion with a directional tendency
(Felsenstein 1988). The Ornstein–Uhlenbeck process
captures stabilizing selection that pulls the a character
toward a long-term mean x̂ (Hansen and Martins 1996).
This can be modeled by setting the directional term,
φ(x, t), to the linear function α(x̂ − x), where α is the
strength of this stabilizing force and setting the diffu-
sion term, σ2(x, t), to the constant σ2. Note that when the
model of character evolution is Brownian motion (with
no directional tendency), this birth-death-diffusion pro-
cess is essentially that described by Paradis (2005) and
Freckleton et al. (2008) and by Slatkin (1981) and Clauset
and Erwin (2008) but disallowing character changes at
nodes.

Before describing the approach, it is worth empha-
sizing some limitations that follow from the above
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assumptions. The birth–death process leads to an ex-
ponential growth in the number of species (at rate λ− μ
when these rates are character independent; Nee et al.
1994), which is clearly not sustainable indefinitely. In
addition, no interaction is possible between any of the
lineages in the phylogeny; the rates of speciation, ex-
tinction, and character evolution cannot depend on the
number of extant species or the character states of those
species. This prevents modeling of density-dependent
diversification (Phillimore and Price 2008) or frequency-
dependent character evolution.

LIKELIHOOD CALCULATIONS

In this section, I will derive equations to compute
the probability of a phylogenetic tree and character
state distribution among extant species under the above
model of character evolution and character-dependent
speciation and extinction. I will assume that the calcula-
tions are carried out on a single ultrametric phylogenetic
tree that has branch lengths proportional to time. It is
straightforward to extend this analysis to integrate over
a family of trees (e.g., bootstrapped trees or samples
from a Bayesian analysis). I also assume that the tree
is complete and fully resolved; that is, that it includes
every extant species above a common ancestor and con-
tains no polytomies. Later, I will relax this assumption
slightly to allow for partial taxon sampling.

The calculations follow the same general structure
as those of BiSSE (Maddison et al. 2007). Following the
notation of BiSSE, let E(x, t) be the probability that a lin-
eage in state x at time t goes completely extinct, leaving
no descendants by the present (time 0). This is a contin-
uous function in both trait space and time in contrast
to the analogous quantities in BiSSE that were contin-
uous only in time. Similarly, let DN(x, t) be the proba-
bility that a lineage in state x at time t would evolve
into the extant clade N as observed, including branch
lengths and present-day character states. The subscript
N denotes that this function applies to a particular
lineage N.

Probability of Extinction

Assume that we know the function E(x, t) at some
time t in the past. If we can express E at a time immedi-
ately prior to this, t + Δt, in terms of its values at time t,
then we can continue to do this until reaching the origin
of a branch (Felsenstein 1981). To do this, consider all the
events that could occur over a very short period of time,
Δt, and write E(x, t + Δt) by multiplying the probability
of each event happening by the probability of extinction
given that a particular event happened (Fig. 1). I assume
that in this small period of time, at most one speciation
or extinction event may occur (specifically, I assume
that the probability of two or more events occurring is
of order (Δt)2 and therefore negligible with sufficiently
small Δt). Over this period of time, there are three pos-
sibilities: 1) the lineage goes extinct with probability

FIGURE 1. Possible ways a lineage extant at time t + Δt might
go extinct. If at most a single lineage-changing event occurs, then
a) extinction happens with probability μ(x)Δt, leading to total ex-
tinction with probability 1, b) a speciation event happens with
probability λ(x)(1 − μ(x))Δt, leading to total extinction with proba-
bility E(x, t)2, or c) no speciation or extinction happens with probabil-
ity (1 − μ(x)Δt − λ(x)Δt), leading to total extinction with probability
E(x, t). We must integrate over the character change that might occur
during this period of time; lineages in which the character may change
are indicated in black.

μ(x)Δt, 2) speciates with probability λ(x)Δt(1− μ(x)Δt),
or 3) neither speciates nor goes extinct with probability
(1 − λ(x)Δt)(1 − μ(x)Δt) (see Maddison et al. 2007). If
extinction does not occur in this time interval, character
change may have occurred along the branch, and we
must account for all possible character transitions that
might have occurred. Where speciation occurred, this
character change occurs independently on both lineages
and both lineages must be extinct by the present (Fig. 1).
Summing over these possibilities gives

E(x, t + Δt) = μ(x)Δt× 1 + (1− μ(x)Δt)λ(x)Δt

×

[∫ ∞

−∞
g(z, t|x, t + Δt)E(z, t)dz

]2

+ (1− λ(x)Δt)(1− μ(x)Δt)

×
∫ ∞

−∞
g(z, t|x, t + Δt)E(z, t)dz

+ O(Δt2), (2)

where O(Δt2) includes terms of order (Δt)2 or higher
(see Fig. 1). Subtracting E(x, t) from both sides, divid-
ing by Δt, taking the limit Δt → 0, and using the diffu-
sion conditions above, the following partial differential
equation can be derived (see Appendix 1 for details):

∂E(x, t)
∂t

= μ(x) + λ(x)E(x, t)2 − (λ(x) + μ(x))E(x, t)

+ φ(x, t)
∂E(x, t)
∂x

+
σ2(x, t)

2
∂2E(x, t)
∂x2

. (3)

Probability of the Data

Next, consider the probability of a lineage including
topology, branch lengths, and character states among its
extant descendants in clade N, DN(x, t). Because the cal-
culations here assume that we are not at a node, only a
single lineage can be present in the reconstructed phy-
logeny. The three possible events that could occur over
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FIGURE 2. Possible ways a lineage extant at time t + Δt might lead
to exactly the clade N as observed. If at most a single lineage-changing
event occurs, then a) extinction happens with no chance of explaining
the data, b) a speciation event requiring the extinction of either lineage
(probability of 2DN(x, t)E(x, t) of explaining the data), or c) no specia-
tion or extinction, with probability DN(x, t) of explaining the data. See
Figure 1 for other details.

the period of time Δt that are consistent with this are 1)
extinction, with no chance to explain the data (the extant
clade N), 2) speciation, requiring the eventual extinction
of either of the resulting lineages (with the other becom-
ing clade N), and 3) no speciation or extinction, leaving
a single lineage to become clade N (Fig. 2). Incorporat-
ing the possible character transitions in all nonextinct
lineages as for E(x, t) gives

DN(x, t + Δt) = μ(x)Δt× 0 + 2λ(x)(1− μ(x)Δt)Δt

×

[∫ ∞

−∞
g(z, t|x, t + Δt)DN(z, t)dz

]

×

[∫ ∞

−∞
g(z, t|x, t + Δt)E(z, t)dz

]

+ (1− λ(x)Δt)(1− μ(x)Δt)

×
∫ ∞

−∞
g(z, t|x, t + Δt)DN(z, t)dz

+ O(Δt2).

(4)

The 2 in equation (4) appears because either of the two
lineages that are extant after a speciation event could be
consistent with the observed data, provided the other
goes extinct (Maddison et al. 2007). Using the same logic
as was used to derive E(x, t) gives the partial differential
equation

∂DN(x, t)
∂t

= 2λ(x)DN(x, t)E(x, t)− (λ(x) + μ(x))DN(x, t)

+ φ(x, t)
∂DN(x, t)
∂x

+
σ2(x, t)

2
∂2DN(x, t)
∂x2

. (5)

Equations (3) and (5) form the core of QuaSSE.

Initial and Boundary Conditions

Equations (3) and (5) do not have known analytic so-
lutions. However, given appropriate initial and bound-
ary conditions, they may be integrated numerically
along a branch toward the root of the tree. For the initial
condition for E, note that a lineage cannot go extinct in
zero time, so E(x, 0) = 0 for all x. The initial condition

for DN(x, t) must be a probability distribution function;
that is, it must integrate to 1 over all x because at time 0
a lineage does exist. If we knew with absolute certainty
that an extant species had state xobs, we could use a
Dirac delta function,

DN(x, 0) = δ(x− xobs),

which concentrates the probability distribution on the
observed character state xobs and integrates to 1. How-
ever, in contrast with discrete data, a species’ state is
never known without error due to both within-species
variation and measurement error. In the examples be-
low, I will use a normal distribution centered on xobs,
with standard deviation σobs, but any probability distri-
bution could be used.

To integrate these equations numerically, a finite do-
main and boundary conditions need to be specified.
Suppose that the range (xl, xr) is modeled; I assume
that at these boundaries, the derivative of E(x, t) and
DN(x, t) with respect to x is zero (i.e., Neumann bound-
ary conditions). This requires that the derivative of λ(x)
and μ(x) with respect to x is approximately zero at the
boundaries and that the region is sufficiently wide that
DN(x, t) is very close to zero at the boundaries so that the
probability of explaining the data from states beyond
these boundaries is negligible.

Calculations at the Nodes

Given the initial and boundary conditions above,
equations (3) and (5) can be integrated along a branch
to give distributions at the base of nodes. At the node
N′ that joins the branches leading from nodes N and M,
the initial condition is

DN′(x, t) =DN(x, t)DM(x, t)λ(x). (6)

This is the probability of the lineage at the node being
in state x at time t speciating, then giving rise to both
the N and M clades. This value is then used as the initial
condition for the integration along the branch leading
down from this node.

Calculations at the Root

At the base of the tree, we have a function DR(x, tR),
where tR is the time at the root. To get a single likelihood
value, DR, we must integrate over all possible character
states x. This has been discussed elsewhere for the bi-
nary case (Goldberg and Igić 2008; FitzJohn et al. 2009).
The simplest approach is to integrate over the possible
states:

DR =

∫ xr

xl

DR(x, tR)dx. (7)

This is equivalent to assigning a flat prior to the charac-
ter state at the root (e.g., Pagel 1994). However, the tree
and model contain some information about the likely
state at the root, and we can use this by weighting the
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state x by its relative probability of yielding the observed
data

DR =

∫ xr

xl

DR(x, tR)
DR(x, tR)∫ xr

xl
DR(y, tR)dy

dx. (8)

The latter approach is used in the calculations in this
paper.

Extensions

Incomplete phylogeny.—Where a phylogenetic tree does
not include all extant relatives, the above calculations
may not be used, as they will produce incorrect likeli-
hoods (see FitzJohn et al. 2009). However, if the species
included in a phylogeny represent a random sample
from the extant taxa, a simple modification to the calcu-
lations above allows the tree to be used, following Nee
et al. (1994) and FitzJohn et al. (2009). Suppose that a
species in state x has probability f (x) of being sampled
for inclusion in the tree. We can model this sampling
event similar to a mass extinction at the present (Nee
et al. 1994). If the probability of being included in a
phylogenetic tree is thought to be independent of the
character of interest, then we may set f (x) = f . Above,
E(x, t) was defined as the probability that a lineage in
state x at time t would have no extant descendants. For
incomplete trees, we can interpret this as the probability
of failing to appear in the phylogenetic tree either by ex-
tinction or by not being sampled. The initial conditions
then become E(x, 0)=1−f (x). Likewise, we can interpret
DN(x, t) as the probability that the lineage evolves into
a clade N and is sampled. The initial condition D(x, 0) is
then the product of a distribution describing uncertainty
in the extant species state and f (x).

Multiple characters.—Multiple traits may affect diversifi-
cation rate, and these may not evolve independently. For
example, body size and latitude are likely to be corre-
lated and are thought to both have effects on speciation
and/or extinction rates (Jablonski 2008). Suppose that
we are tracking k traits. Let x be a vector of character
states of length k, and let xi be the ith trait (i=1, 2, . . . , k).
The speciation and extinction functions become λ(x)
and μ(x). As above, we retain just the first two moments
of character evolution (which now includes covariances)
so that φi(x, t) is the rate of directional evolution of the
ith trait, σi,i(x, t) is the rate of diffusion of the ith trait,
and σi,j(x, t) is the instantaneous covariance between
the ith and jth traits (i =/ j). In Appendix 2, I derive the
multivariate analogues to equations (3) and (5):

∂E(x, t)
∂t

=μ(x) + λ(x)E(x, t)2 − (λ(x) + μ(x))E(x, t)

+
k∑

i=1

φi(x, t)
∂E(x, t)
∂xi

+
k∑

i=1

k∑

j=1

σi,j(x, t)

2
∂2E(x, t)
∂xi∂xj

(9)

and

∂DN(x, t)
∂t

= 2λ(x)DN(x, t)E(x, t)− (λ(x) + μ(x))DN(x, t)

+
k∑

i=1

φi(x, t)
∂DN(x, t)
∂xi

+
k∑

i=1

k∑

j=1

σi,j(x, t)

2
∂2DN(x, t)
∂xi∂xj

, (10)

where the single sums are taken over the directional
parameters, and the double sums are taken over the
diffusion parameters (when i = j) and the covariances
between characters (i =/ j). A similar approach can be
used where the second character is a binary state (see
Appendix 2).

Implementation & Technical Details

To integrate equations (3) and (5) numerically, I used
an implicit integration scheme, where the propagation
of the values in character space are performed using fu-
ture values of E and DN. To do this, I discretized both
the character space and time. In each time step of size
Δt, the changes in E and DN through time are initially
set to the character-independent solutions to equations
(3) and (5),

E(x, t + Δt)

=
μ(x)−λ(x)E(x, t) + e(λ(x)−μ(x))Δt(1 + E(x, t)−μ(x))
μ(x)−λ(x)E(x, t) + e(λ(x)−μ(x))Δt(1 + E(x, t)−λ(x))

,

(11a)

DN(x, t + Δt) =DN(x, t)

×

(
e(λ(x)−μ(x))Δt(λ(x)− μ(x))

e(λ(x)−μ(x))Δtλ(x)(1− E(x, t))− μ(x) + λ(x)E(x, t)

)2

.

(11b)

(Although these are character independent, these equa-
tions need to be evaluated for each of the discretized
x positions.) Following this, for each step, I integrate
over the character evolution that may have occurred
during this period of time. For constant directional
and diffusion terms (i.e., when the character evolves
under Brownian motion), this can be done efficiently
by convolving the functions E(x, t) and DN(x, t) with
a normal distribution with mean φΔt and variance
σ2Δt, that is, the solution to the diffusion process de-
scribed by the partial derivatives on the right-hand
side of equations (3) and (5). I implemented these cal-
culations in R (R Development Core Team 2008), us-
ing the fast Fourier transform routines in the package
FFTW (Frigo and Johnson 2005) to perform the convo-
lutions. I focus on maximum likelihood (ML) estimation
in the analyses in this paper, using the subplex algo-
rithm in R to maximize the likelihood function with
respect to the parameters of λ(x), μ(x), and the direc-
tional and diffusion coefficients. However, the likeli-
hoods computed could be used in Bayesian calculations
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(e.g., FitzJohn et al. 2009), although the choice of ap-
propriate priors may not be trivial and the number of
calculations required to draw samples from the poste-
rior using Markov chain Monte Carlo will make this
fairly slow in practice. This implementation (currently
allowing only one character) is available in the R pack-
age “diversitree” (available from http://www.zoology
.ubc.ca/prog/diversitree).

Tree Simulation

I tested the performance of QuaSSE on simulated
trees. To simulate a tree, I started with a single lineage
in state x0. Each time step, I allowed at most one lin-
eage to speciate or go extinct and then updated the
character state of every lineage stochastically follow-
ing a Brownian motion model of character evolution.
I scaled time so that on average 500 time steps would
occur between lineage-changing events by setting the
time step equal to 1/

(
500(

∑
i λ(xi) + μ(xi))

)
, where xi

is the character state of the ith lineage and the sum is
taken over all extant lineages in the tree. This ensured
that the character had adequate time to evolve between
speciation events to approximate continuous character
evolution.

I simulated trees where there was no effect of a char-
acter on speciation or extinction (i.e., λ(x) = λ, μ(x) =μ),
and where speciation or extinction were sigmoidal func-
tions of the character state,

y0 +
(y1 − y0)

1 + exp(r(xmid − x))
,

where y0 and y1 are the asymptotic values at low and
high x, r describes the steepness of the sigmoid, and
xmid is the inflection point. I chose a sigmoidal function
as this captures a directional effect of a character on
speciation or extinction while preventing negative or
extremely large speciation or extinction rates. When
constant, the speciation rate was 0.1 and the extinction
rate was 0.03. For the differential speciation simulations,
the speciation rates varied with x from 0.1 to 0.15 (low
difference), 0.1 to 0.2 (medium), or 0.1 to 0.3 (high). For
differential extinction, the rates varied from 0.03 to 0.045
(low difference), 0.03 to 0.06 (medium), or 0.03 to 0.09
(high). For all simulations, I set xmid= 0 and r= 2.5. I also
used two rates of character diffusion; low (σ2 = 0.01) or
high (σ2 = 0.025). For these simulations, there was no
directional tendency (φ = 0). Note that the scale used
for x is arbitrary (making the choice of xmid arbitrary),
and changing r is equivalent to changing σ2 when only
one of λ(x) and μ(x) varies with x and φ = 0. For the
parameter values used, most of the variation in specia-
tion rate with respect to the character occurred over the
region [−2, 2]; I started simulated trees in a character
state chosen randomly from a uniform distribution on
this range.

Sigmoidal functions require four parameters (plus
parameters for extinction and character evolution), and

there may not be sufficient signal in the data to be able
to fit such complicated models (see Simulation Results).
Therefore, I fit models where speciation and extinction
were constant, linear, or sigmoidal functions of the trait.
To make the linear models satisfy the boundary condi-
tion that ∂E(x, t)/∂x is effectively zero at extreme values
of x, I set the slope to zero for λ(x) and μ(x) once the
character was 20 times the character-independent ML
diffusion coefficient away from the extant character dis-
tribution. I also set the functions to zero if they became
negative.

To test if speciation or extinction functions that vary
with character state fit better than constant functions,
I used likelihood ratio tests (LRTs) where model com-
parisons were nested. Even with large trees, the appro-
priate cutoff value for the χ2 statistic may not be the
expected 3.84 (e.g., Maddison et al. 2007). I used sim-
ulated trees where speciation and extinction rates were
independent of any character states to estimate the false-
positive rate. For all tree sizes, the false-positive rate for
tests of differential speciation was close to 5% at the 5%
level (Kolmogorov–Smirnov test of observed distribu-
tion vs. χ2 distribution with 1 df, P > 0.45). However, for
differential extinction, the false-positive rate was higher
(12% significant results at the 5% level), and the distri-
bution of likelihood ratios significantly deviated from a
χ2

1 distribution (P < 0.008). I therefore used empirically
determined cutoff values for the three tree sizes of 6.50
(125 species), 5.98 (250 species), and 5.72 (500 species)
based on these simulations for the power calculations
reported below.

SIMULATION RESULTS

On simulated trees, there was often power to de-
tect differential speciation, whereas differential extinc-
tion was always difficult, but not impossible, to detect
(Fig. 3). Because a linear function was significant for
almost all cases where a sigmoidal function was signif-
icant, I interpret a significant fit of the linear function
as detection of differential speciation or extinction. As
tree size increased, the power to detect differential spe-
ciation grew from 10% to 40% on 125 species trees to
up to 70% on 500 species trees. As the difference be-
tween minimum and maximum speciation or extinction
rates increased, differential speciation and extinction be-
came easier to detect. However, there was essentially no
power to detect differential extinction for the simulated
trees unless the character had a large effect on rates of
extinction (Fig. 3f–h). Differential speciation was easier
to detect in simulations with higher diffusion param-
eters. Increasing the diffusion parameter increases the
sampling of the character space where λ(x) changes
most with respect to x, effectively increasing the sam-
pling of the relevant character states. Power to detect
trait-dependent speciation also depended strongly on
the starting position of the simulation (data not shown).
The power to detect differential speciation was highest
on trees where the simulation started slightly below the
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FIGURE 3. Power to detect differential speciation (a–d) and differential extinction (e–h) with QuaSSE on simulated phylogenies. Trees were
evolved with 125, 250, or 500 species, and no, low, medium, or high effect of a character state on speciation or extinction. The character state
evolved under Brownian motion at a low or high rate, as indicated by dashed or solid lines. Error bars are 95% binomial confidence intervals
over the 200 replicate simulated trees. Horizontal dotted lines indicate the 5% significance level.

mean diversification rate, again reflecting the amount
of sampling of the informative region of differential
speciation.

Even though the trees were simulated using a sig-
moidal effect of character on speciation or extinction,
linear models were often preferred to the full sigmoidal
model when fits were compared using the Akaike
information criterion (AIC) (Fig. 4). Sigmoidal mod-
els were rarely preferred for the extinction function.
As tree size increased, the sigmoidal speciation mod-
els were more often preferred over linear models (data
not shown). However, even for 500 species trees, sig-
moidal functions were preferred in less than 40% of
significant cases. This is probably due to the fact that
for most smaller trees, most species occupy the roughly
linear part of the sigmoidal function (Fig. 4). In addi-
tion, the sigmoidal model that was fit was often a step
function rather than a smooth sigmoid (Fig. 4), showing
that although differences in extreme speciation rates are
detectable, the exact pattern may not be.

To investigate if there is power to detect directional
changes in character states, I ran some simulations that
included a nonzero directional parameter, φ. I used
only the set of parameters with the highest power in
the absence of directional evolution (500 species, high
rate of character evolution, large effect of the trait on
speciation). I ran simulations where this directional ten-
dency was negative and opposed species selection (i.e.,
the trait tended to decrease along a lineage, whereas
species with larger trait values had higher rates of
speciation) and where the tendency was positive and

reinforced species selection. When rates of this direc-
tional tendency were very high in either direction, the
power to detect differential diversification was reduced
as character states tended to evolve into flatter regions
of the speciation function (Fig. 5). When the directional
tendency opposed species selection, there was some
power to detect the trend, but this power was never
high for the parameter values explored (Fig. 5). There
was essentially no power to detect the presence of the
directional tendency where it reinforced species selec-
tion, as both processes moved most character states into
regions where speciation was constant with respect to
the character state.

APPLICATION TO PRIMATE BODY SIZE DATA

Several studies have suggested that speciation and/or
extinction are correlated with animal body size. Typi-
cally, smaller bodied species have been hypothesized to
have higher speciation rates or lower extinction rates
than larger bodied species (e.g., Cardillo et al. 2005;
Clauset and Erwin 2008). In some groups, there is also
paleontological evidence for increases in body size over
evolutionary time, with species tending to be larger than
their ancestors (Cope’s rule; Alroy 1988; Jablonski 1997).
I investigated body size evolution in primates, testing
whether body size is a correlate of speciation or extinc-
tion. I used a recent primate supertree (Vos and Mooers
2006). This tree contains several polytomies that need
to be resolved before running the analysis (213 of 232
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FIGURE 4. Representative speciation (a–c) and extinction (d–f) function fits. Functions were fit to 200 trees containing 250 taxa with a high
rate of character evolution (σ2= 0.025) and a medium effect of speciation (λ(x) ranged from 0.1 to 0.2) or a high effect of extinction (μ(x) ranged
from 0.03 to 0.09). Thick black lines show the true values used in the simulations. Gray lines show fits for individual trees and span the range of
observed character data for each tree. Only the best fit chosen by LRT or AIC is displayed (see text for details).

internal nodes are resolved; Fig. 6). The polytomies
reflect phylogenetic uncertainty, but the likelihood
calculations above would interpret them as bursts of
speciation followed by relatively low rates of specia-
tion. It is not sufficient to randomly resolve the nodes
and leave branch lengths as effectively zero, as branch
lengths need to be specified in some way to prevent
this misinterpretation. To do this, I used a bifurcating
tree generated by T. Kuhn in which he randomly re-
solved the topology of the polytomies and then used
BEAST (Drummond and Rambaut 2007) to simulate
unknown branch lengths under a constant rates birth–
death model (Kuhn T., Thomas G.H., and Mooers A.Ø.,
personal communication). I used log-transformed fe-
male body mass from a recent collection of primate trait
data as a measure of size (Redding et al. 2010).

For each tree, I fit several functions: constant rates for
both speciation and extinction, and models where the
speciation or extinction function was linear, sigmoidal,
or modal. For the modal function, I used a vertically off-
set Gaussian

y0 + (y1 − y0)exp

(

−
(x− xmid)

2

2ω2
x

)

,

where y0 is the rate at low and high x, y1 is the rate at
the mid point xmid, and ω2

x is the width (variance) of
the Gaussian kernel. To test for the presence of direc-
tional body size evolution (e.g., Cope’s rule), I also ran
models where there was a nonzero, but constant,
directional term (φ).

Among models with a directional relationship be-
tween log body size and speciation, there was strong
support for a positive linear relationship between log
body size and speciation rates (LRT against the constant
rate model: χ2

1 = 10.8, P = 0.001), with a step-shaped
sigmoidal curve preferred (Δ AIC = 2.8, Fig. 7). Con-
trary to the predictions above, speciation rates were
inferred to increase with increasing body size. How-
ever, the best-fit model was a modal-speciation model
(Table 1), where species with body masses around 2.5–
13.4 kg had elevated speciation rates (Fig. 7). Including
a positive directional term, consistent with increasing
average body size along lineages, improved model fit
significantly (Table 1).

The body size with elevated speciation rates inferred
using the modal-speciation function is concentrated
in the Cercopithecoidea and Hominoidea (Old World
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FIGURE 5. Power to detect trait-dependent speciation (dashed
lines/open circles) and directional character change (solid lines/filled
circles) at different rates of the directional tendency on simulated 500
species phylogenies.

monkeys and apes), and this section of the tree does ap-
pear to have undergone a recent burst of relatively rapid
diversification compared with the rest of the tree (Fig. 6).
It is possible that any character that is concentrated in
this clade could lead to a significant correlation with
diversification, so this body size result could be spu-
rious. To explore this further, I used modelling evolu-
tionary diversification under stepwise AIC (MEDUSA;
Alfaro et al. 2009) to test for clade-specific differences in
diversification across the tree. Using the suggested AIC
difference of 4, there was support for a single partition
that separated the tree into the Old World monkey clade
(superfamily Cercopithecoidea; Fig. 6), and the rest of
the tree (LRT χ2

3 = 24.9, P < 0.0001).
I modified QuaSSE to allow this partition. I allowed

a “background” group (all clades except for the Old
World monkeys) to have one set of speciation and
extinction functions and a “foreground” group (the
Old World monkeys) to have another. The two groups
shared a common diffusion coefficient and I set the di-
rectional term to zero. A model with constant speciation
and extinction functions that could differ between the
partitions had a lower (better) AIC and fewer param-
eters than the unpartitioned modal-speciation model
(Table 1). I found no support for any relationship be-
tween body size and either speciation or extinction for
the “background” group (Table 1). However, there was
support for a model where speciation was a decreasing
linear function of log-body size among the Old World
monkeys (LRT vs. the constant rate partitioned model:
χ2

1 = 5.1, P = 0.024) or where extinction was an increas-
ing function of log-body size within this group (χ2

1=9.8,
P = 0.002), suggesting decreasing diversification with

FIGURE 6. Phylogenetic tree of the primates from Vos and Mooers
(2006). Log body size (in grams) is shown by the horizontal bar for
each species. The vertical dashed lines indicate the approximate range
of body masses for which QuaSSE inferred elevated speciation rates
under the “modal” speciation model (the lines indicate masses that
are 10% above the base speciation rate). The arrow indicates where
MEDUSA inferred a shift in speciation and extinction rates compared
with the rest of the tree.

increased body size in this group. However, the latter fit
suggested an extremely high rate of extinction among
large Old World monkeys (Fig. 7).

The results presented here are in broad accord with
the analysis of body size evolution in primates by
Paradis (2005), Gittleman and Purvis (1998), and
Freckleton et al. (2008), despite using different meth-
ods, phylogenetic trees, and data sets. These studies all
initially inferred a relationship of increasing diversifi-
cation rates with increasing body size, though this was
not significant in Gittleman and Purvis (1998). Paradis
(2005) also looked at a partitioned data set and found
support for decreasing diversification with increasing
body size after allowing clade-specific diversification
rates.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/59/6/619/1711291 by guest on 25 April 2024



628 SYSTEMATIC BIOLOGY VOL. 59

FIGURE 7. Primate speciation and extinction rate model fits. a) Pri-
mate body mass distribution. b) ML speciation rate model fits for the
complete tree, showing constant, linear, sigmoidal, and modal func-
tions. The modal model provided the best fit to the data (Table 1).
c) ML speciation and extinction functions on the partitioned tree: Gray
lines are fits for the “background group,” and the black lines are fits
for the Cercopithecoidea. The reverse-L shape of the Cercopithecoidea
extinction rate function (black dashed line in panel c) indicates a zero
extinction rate for all observed body sizes and an extremely high ex-
tinction rate for species with body masses slightly greater than the
largest observed mass in the Cercopithecoidea.

DISCUSSION

How much signal is there within a phylogeny about
the evolutionary processes that generated it? On the
simulated trees used here, it was generally possible
to infer the correct trend in the character dependence
of speciation but difficult to infer the exact functional
form of the trend. For instance, both the linear and sig-
moidal functions capture the tendency of speciation
to increase or decrease with increasing character state
and the inferred linear speciation function was often a
rough characterization of the true function (Fig. 4). It is
often difficult to infer ancestral states with confidence
(which are needed to identify a speciation-trait correla-
tion, even though this is only done implicitly here), as
the information provided by the tips attenuates deeper

TABLE 1. Summary of model fits for the correlation between body
size and diversification for primates

Model type ln L n AIC ΔAIC

Constant −834.8 3 1675.7 29.6
Linear λ −829.4 4 1666.9 20.8
Sigmoidal λ −826.0 6 1664.1 18.0
Modal λ −822.4 6 1656.8 10.7

With directional tendency
Linear λ −826.0 5 1661.9 15.8
Sigmoidal λ −823.8 7 1661.7 15.6
Modal λ −818.8 7 1651.7 5.6

Partitioned tree (no directional tendency)
Constant −822.0 5 1654.0 7.8
Linear λ (fg) −819.4 6 1650.9 4.7
Linear λ (bg) −821.6 6 1655.2 9.0
Linear λ (both) −819.1 7 1652.2 6.1
Linear μ (fg) −817.1 6 1646.1 0.0
Linear μ (bg) −821.7 6 1655.4 9.3
Linear μ (both) −816.8 7 1647.7 1.6

Notes: “Fg” and “bg” refer to the Cercopithecoidea clade (Old World
monkeys) and the rest of the tree, respectively. “Both” is where the
functions were fit to both groups separately. ln L is the log likelihood
of the ML fit, n is the number of parameters, and ΔAIC is the AIC
difference relative to the best model (linear μ (fg)).

into the past. Here, adding more species improved the
ability to recover the more specific model, but this may
be through the larger number of shallow nodes rather
than through more accurate information about deep
ancestral states (Mossel and Steel 2005).

It is possible that extinction is not possible to reliably
detect on real (nonsimulated) molecular phylogenies.
Accurate detection of extinction requires that we de-
termine the rate at which species fail to appear in our
phylogeny, which is a difficult task. ML estimates of
the extinction rates are frequently zero despite fossil
evidence of nonzero extinction (e.g., Nee 2006; Purvis
2008). However, even when ML estimates are zero, the
confidence intervals around extinction rate estimates
may be large, allowing potentially high levels of ex-
tinction to be consistent with the observed data. Where
we have strong independent evidence of high extinc-
tion rates, perhaps our analyses would be improved
by including these rates directly either through a prior
distribution on extinction rates in a Bayesian analysis
or by using this estimated rate and not attempting to
directly estimate it from the phylogeny. The likelihood
calculations proposed here would hold in either case.

Many phylogenies appear to show some sort of slow-
down in lineage accumulation toward the present,
which will generate low extinction rate estimates. The
response to this has generally been to alter the model of
diversification. Most commonly, slowdowns have been
interpreted as evidence that speciation rates may be
density dependent (e.g., McPeek 2008; Phillimore and
Price 2008), and various alternative models of clado-
genesis have been proposed and tested based on this
pattern (e.g., McPeek 2008; Rabosky 2009). Because of
its use of the birth–death model, which does not allow
interaction among lineages, it would not be straightfor-
ward to incorporate these types of dynamics directly
into QuaSSE, though it is possible that they may be
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approximated (Rabosky and Lovette 2008, but see
Bokma 2009). Care should be taken to interpret results
from QuaSSE and other birth–death-based models (e.g.,
Nee et al. 1994; Paradis 2005; Rabosky 2006; Maddison
et al. 2007; Freckleton et al. 2008; Alfaro et al. 2009) in
light of these limitations.

An alternative explanation for the observed “slow-
down,” and consequent problems for estimating speci-
ation and extinction rates, is that our methods of tree
construction and ultrametricization creates trees that are
incongruous with the model. Extinction rate estimates
will always be sensitive to the precise lengths of termi-
nal branches, and any consistent bias toward lengthen-
ing the terminal branches will cause problems (Purvis
2008). Furthermore, our delineation of species is gener-
ally retrospective, with lineages counted as species once
both morphological changes and reproductive isolation
have occurred. However, many isolated lineages may
be considered “species” in that they will never again ex-
change genes. Some of these would eventually become
recognized species, but most will go extinct. However,
simple birth–death models do not include this sort of
process; incorporating such lags in species recognition
into tree construction or diversification models, along
with information from the fossil record where available,
may help with efforts to infer meaningful speciation
and extinction rates.

The likelihood equations derived here provide exact
solutions to the forward-time dynamics described by
Paradis (2005) and Freckleton et al. (2008), and also to
the early model of Slatkin (1981), but ignoring charac-
ter evolution at nodes. The key advance of this work
is that it treats character evolution and cladogenesis si-
multaneously. Though the equations cannot be solved
directly, likelihoods computed using this approach will
correspond exactly to those under this model of charac-
ter evolution and cladogenesis. Because the likelihood
method here uses all the available phylogenetic and
character data, it should have higher statistical power
than methods based on approximations, such as first
inferring ancestral states and ignoring the character-
dependent diversification process when doing so. Run
on the same trees, the model of Freckleton et al. (2008)
had approximately 26% of the power of QuaSSE at
detecting differential speciation (data not shown). How-
ever, the factors that affect power were the same as
identified by Freckleton et al. (2008); increased rates of
character evolution, stronger effects of a character on
speciation, and larger trees all increased power (Fig. 3).
QuaSSE does retain some ability to detect differential
extinction in contrast to the method of Freckleton et al.
(2008), but this power appears to be limited and param-
eter dependent (Fig. 3). QuaSSE was also robust to the
levels of background extinction used here (cf. Paradis
2005).

Despite their assumptions, diffusion models of char-
acter evolution and birth–death models of cladogenesis
have given us insights over the last few decades into
correlated character evolution (Felsenstein 1985), evo-
lutionary constraints (Hansen and Martins 1996), and

patterns of diversification (Alfaro et al. 2009). Although
the combination of the birth–death and diffusion meth-
ods used in QuaSSE may inherit the limitations of both
methods, it presents a tractable and powerful method
that will help to answer long standing questions about
the correlates of diversification from phylogenetic data
and current character distributions. As Freckleton et al.
(2008) noted, we have no general expectation of what
the relationship between speciation or extinction and
character states might look like. Because QuaSSE can
use arbitrary speciation and extinction functions, it al-
lows investigation of alternative functions. However,
we should not generally expect to extract more than
general trends from the data, especially where varia-
tion in extinction is important in affecting patterns of
diversification.
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APPENDIX 1

Single Character Derivation

Here, I derive equation (3). This derivation parallels
both that of BiSSE (Maddison et al. 2007) and the Kol-
mogorov backward differential equation (Allen 2003).
Starting with equation (2), subtracting E(x, t) from both
sides and dropping remaining terms that are of order
(Δt)2 gives

E(x, t + Δt)− E(x, t)

= μ(x)Δt + λ(x)Δt

[∫ ∞

−∞
g(z, t|x, t + Δt)E(z, t)dz

]2

− (λ(x) + μ(x))Δt
∫ ∞

−∞
g(z, t|x, t + Δt)E(z, t)dz

+
∫ ∞

−∞
g(z, t|x, t + Δt)E(z, t)dz− E(x, t) + O(Δt2).

(A.1)

Next, note that because g is a probability distribution
function, it must integrate to 1 over all possible future
character states,

∫∞
−∞ g(z, t|x, t + Δt)dz= 1, so that

E(x, t) =
∫ ∞

−∞
g(z, t|x, t + Δt)E(x, t)dz. (A.2)
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Replacing the final E(x, t) term in equation (A.1) with
equation (A.2) and dividing both sides by Δt gives

E(x, t + Δt)− E(x, t)
Δt

= μ(x) + λ(x)

[∫ ∞

−∞
g(z, t|x, t + Δt)E(z, t)dz

]2

− (λ(x) + μ(x))
∫ ∞

−∞
g(z, t|x, t + Δt)E(z, t)dz

+
1
Δt

∫ ∞

−∞
g(z, t|x, t + Δt)(E(z, t)− E(x, t))dz + O(Δt).

(A.3)

We then take the limit Δt→ 0. In this limit, the left-hand
side becomes the partial derivative ∂E(x, t)/∂t. Because
wild jumps are not allowed and we are considering an
infinitesimally small time period, the term E(z, t) can be
expanded as a Taylor series in z around the point z= x:

E(z, t) = E(x, t) + (z− x)
∂E(x, t)
∂x

+
(z− x)2

2
∂2E(x, t)
∂x2

+ O((z− x)3). (A.4)

Using this expansion, the third term on the right-hand
side of equation (A.3) can then be written

lim
Δt→0
(λ(x) + μ(x))

∫ ∞

−∞
g(z, t|x, t + Δt)

×

(

E(x, t) + (z− x)
∂E(x, t)
∂x

+
(z− x)2

2
∂2E(x, t)
∂x2

+ O((z− x)3)

)

dz.

In the limit Δt → 0, transitions any distance away from
x become increasingly unlikely. That is,

lim
Δt→0

g(z, t|x, t + Δt) = δ(z− x),

where δ(x) is the Dirac delta function, concentrating all
probability density on the point z= x. This means that

lim
Δt→0

∫ ∞

−∞
(z− x)kg(z, t|x, t + Δt)dz= 0, k > 0,

and the third term of equation (A.3) can be rewritten as
follows:

lim
Δt→0
(μ(x) + λ(x))

∫ ∞

−∞
g(z, t|x, t + Δt)E(z, t)dz

=(μ(x) + λ(x))E(x, t). (A.5)

The same logic applied to the second term of equation

(A.3) gives

lim
Δt→0

λ(x)

[∫ ∞

−∞
g(z, t|x, t + Δt)E(z, t)dz

]2

= λ(x)E(x, t)2.

(A.6)
After substituting in the Taylor expansion from equa-

tion (A.4), the fourth term of equation (A.3) becomes

lim
Δt→0

1
Δt

∫ ∞

−∞
g(z, t|x, t + Δt)

(

(z− x)
∂E(x, t)
∂x

+
(z− x)2

2
∂2E(x, t)
∂x2

+ O((z− x)3)

)

dz.

This can be simplified using the diffusion conditions
from equation (1) to give

φ(x, t)
∂E(x, t)
∂x

+
σ2(x, t)

2
∂2E(x, t)
∂x2

. (A.7)

Substituting equations (A.5), (A.6), and (A.7) into equa-
tion (A.3) gives the partial differential equation (3).

APPENDIX 2

Multivariate Character Derivation

I start with the two-character case from which the ex-
tension to an arbitrary number of characters immedi-
ately follows. Suppose we have two characters, x and
y. Let g(a, b, t|x, y, t + Δt) be the probability density that
the character changes from x, y at time t + Δt to state a, b
at time t, where t is closer to the present than t + Δt (0 <
t < t +Δt). The functions E and DN are now functions of
both character variables; E(x, y, t) and DN(x, y, t).

Continuing as for the single character case, E(x, y, t +
Δt) can be written

E(x, y, t + Δt)

= μ(x, y)Δt + (1− μ(x, y)Δt)λ(x, y)Δt

×

[∫ ∞

−∞

∫ ∞

−∞
g(a, b, t|x, y, t + Δt)E(a, b, t)da db

]2

+ (1− μ(x, y)Δt)(1− λ(x, y)Δt)

×
∫ ∞

−∞

∫ ∞

−∞
g(a, b, t|x, y, t + Δt)E(a, b, t)da db

+ O(Δt2). (B.1)

Dropping terms of O(Δt2), subtracting E(x, y, t+Δt) from
both sides, dividing by Δt, and rearranging using the
fact that

E(x, y, t) =
∫ ∞

−∞

∫ ∞

−∞
g(a, b, t|x, y, t + Δt)E(x, y, t)da db,
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we have

E(x, y, t + Δt)− E(x, y, t)
Δt

=μ(x, y) + λ(x, y)

×

[∫ ∞

−∞

∫ ∞

−∞
g(a, b, t|x, y, t + Δt)E(a, b, t)da db

]2

− (μ(x, y) + λ(x, y))
∫ ∞

−∞

∫ ∞

−∞
g(a, b, t|x, y, t + Δt)

× E(a, b, t)da db

+
1
Δt

∫ ∞

−∞

∫ ∞

−∞
g(a, b, t|x, y, t + Δt)

× (E(a, b, t)− E(x, y, t))da db
+ O(Δt). (B.2)

To simplify equation (B.2), we need an expression for
E(a, b, t) in terms of the original location (x, y). This can
be expanded as a Taylor series in two variables around
the point (a= x, b= y):

E(a, b, t) = E(x, y, t) + (a− x)
∂E
∂x

+
(a− x)2

2
∂2E
∂x2

+ (b− y)
∂E
∂y

+
(b− y)2

2
∂2E
∂y2

+ (a− x)(b− y)
∂2E
∂x∂y

+ O((Δx,Δy)3),

(B.3)

where O((Δx,Δy)3) includes the terms O((a − x)3),
O((b− y)3), O((a− x)2(b− y)), and O((a− x)(b− y)2).

We take the limit Δt → 0 for equation (B.2) and con-
sider each term in sequence. Using the same logic as the
one character case,

lim
Δt→0

g(a, b, t|x, y, t + Δt) = δ(a− x)δ(b− y),

so

lim
Δt→0

∫ ∞

−∞

∫ ∞

−∞
(a− x)kx(b− y)ky

× g(a, b, t|x, y, t + Δt)da db= 0 for kx, ky > 0.

With this, the second and third terms of equation (B.2)
can be written

lim
Δt→0

λ(x, y)

[∫ ∞

−∞

∫ ∞

−∞
g(a, b, t|x, t + Δt)E(x, y, t)da db

]2

= λ(x, y)E(x, y, t)2, (B.4)

and

lim
Δt→0
(μ(x, y) + λ(x, y))

∫ ∞

−∞

∫ ∞

−∞
g(a, b, t|x, y, t + Δt)

× E(x, y, t)da db= (μ(x, y) + λ(x, y))E(x, y, t)
(B.5)

After substituting in the Taylor expansion (B.3) into
the fourth term of equation (B.2) and taking the limit
Δt→ 0, we have

lim
Δt→0

1
Δt

∫ ∞

−∞

∫ ∞

−∞
g(a, b, t|x, y, t + Δt)

×

(

(a− x)
∂E
∂x

+
(a− x)2

2
∂2E
∂x2

+ (b− y)
∂E
∂y

+
(b− y)2

2
∂2E
∂y2

+(a− x)(b− y)
∂2E
∂x∂y

+ O((Δx,Δy)3)

)

da db.

A similar set of assumptions to those in equation (1) can
be made. Consider first the derivatives involving just
one character. Rearranging the first of these gives

lim
Δt→0

1
Δt

∫ ∞

−∞

∫ ∞

−∞
g(a, b, t|x, y, t + Δt)(a− x)

∂E
∂x

da db

=
∂E
∂x

lim
Δt→0

1
Δt

∫ ∞

−∞
(a− x)

×
∫ ∞

−∞
g(a, b, t|x, y, t + Δt)db da.

Defining
∫ ∞

−∞
g(a, b, t|x, y, t + Δt)db= g(a, t|x, t + Δt),

so that integrating over all transitions in y gives the tran-
sition probability density function for x. The equation
above then becomes

∂E
∂x

lim
Δt→0

1
Δt

∫ ∞

−∞
(a− x)g(a, t|x, t + Δt)da,

where the term within the limit is identical to equation
(1a). With similar manipulation for the other terms, the
diffusion conditions become

φx(x, y, t) = lim
Δt→0

1
Δt

∫ ∞

−∞

∫ ∞

−∞
(a− x)

× g(a, b, t|x, y, t + Δt)da db, (B.6a)

σx,x(x, y, t) = lim
Δt→0

1
Δt

∫ ∞

−∞

∫ ∞

−∞
(a− x)2

× g(a, b, t|x, y, t + Δt)da db, (B.6b)

σx,y(x, y, t) = lim
Δt→0

1
Δt

∫ ∞

−∞

∫ ∞

−∞
(a− x)(b− y)

× g(a, b, t|x, y, t + Δt)da db, (B.6c)

0 = lim
Δt→0

1
Δt

∫ ∞

−∞

∫ ∞

−∞
(a− x)kx(b− y)kx

× g(a, b, t|x, y, t + Δt)da db, kx + ky > 2,

(B.6d)

with analogous expressions forφy(x, y, t) and σy,y(x, y, t).
The term σx,y(x, y, t) represents the instantaneous co-
variance between x and y.
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Substituting equations (B.4), (B.5), and (B.6) into equa-
tion (B.2) and applying the limit to the left-hand side
gives

∂E(x, y, t)
∂t

= μ(x, y) + λ(x, y)E(x, y, t)2

−(λ(x, y) + μ(x, y))E(x, y, t)

+ φx(x, y, t)
∂E(x, y, t)
∂x

+ φy(x, y, t)
∂E(x, y, t)
∂y

+
σx,x(x, y, t)

2
∂2E(x, y, t)
∂x2

+
σy,y(x, y, t)

2
∂2E(x, y, t)
∂y2

+ σx,y(x, y, t)
∂2E(x, y, t)
∂x∂y

, (B.7)

and a similar process leads to the partial differential
equation

∂DN(x, y, t)
∂t

= 2λ(x, y)DN(x, y, t)E(x, y, t)

−(λ(x, y) + μ(x, y))DN(x, y, t)

+ φx(x, y, t)
∂DN(x, y, t)
∂x

+ φy(x, y, t)
∂DN(x, y, t)
∂y

+
σx,x(x, y, t)

2
∂2DN(x, y, t)
∂x2

+
σy,y(x, y, t)

2
∂2DN(x, y, t)
∂y2

+ σx,y(x, y, t)
∂2DN(x, y, t)
∂x∂y

(B.8)

This can be extended to an arbitrary number of charac-
ters to give equations (9) and (10).

Similar logic can also be used to derive equations
when speciation, extinction, and character transition
functions also depend on the state of an additional bi-
nary character; let λi(x) and μi(x) denote the speciation
and extinction function in a continuous character state
x while in the binary state i, where i = 0 or 1, φi(x, t)
and σ2

i (x, t) be the directional and diffusion functions,
while in state i, and qij(x) be the rate of transition from
binary state i to j, which may depend on the continuous
trait. The variables become Ei(x, t) and DiN(x, t), which
are the probability of extinction or of the lineage lead-
ing to node N (respectively) for the lineage in binary
state i and continuous state x at time t. Following logic
similar to above and in Maddison et al. (2007) yields the
equations

∂Ei(x, t)
∂t

= μi(x) + λi(x)Ei(x, t)
2

− (λi(x) + μi(x) + qij(x))Ei(x, t)

+ qij(x)Ej(x, t) + φi(x, t)
∂Ei(x, t)
∂x

+
σ2

i (x, t)
2

∂2Ei(x, t)
∂x2

, (B.9a)

∂DiN(x, t)
∂t

= 2λi(x)DiN(x, t)Ei(x, t)

− (λi(x) + μi(x) + qij(x))DiN(x, t)

+ qij(x)DjN(x, t) + φi(x, t)
∂DiN(x, t)
∂x

+
σ2

i (x, t)
2

∂2DiN(x, t)
∂x2

. (B.9b)
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