Phylogenetic trees depict the evolutionary relationships between groups of organisms. In the context of infectious diseases, pathogen genetic data can be used to infer such trees. By assuming a substitution model and including independent information about time, one can calibrate the molecular clock to obtain the timing of divergence events. For rapidly evolving viruses and bacteria it is possible to use the sampling times to calibrate the molecular clock to obtain time-calibrations (Drummond et al. 2003; Drummond and Rambaut 2012). In these organisms, genetic information about epidemiological dynamics can bias the estimate of this key parameter (Baele et al. 2014; Alkhamis et al. 2016; Ratmann et al. 2016). A Bayesian approach to selecting a phylo-dynamic model is to estimate marginal likelihoods for a pool of models and selecting that with the highest marginal likelihood (Baele et al. 2012, 2016), but it is also possible to obtain weighted averages of parameter estimates based on the support for each model (e.g., Huelsenbeck et al. 2004; Li and Drummond 2012; Baele et al. 2013; Bouckaert et al. 2013), which is defined as the average number of new cases that a single case will generate over the course of its infection in a fully susceptible population (Anderson and May 1979, 1992). Failing to account for complex epidemiological dynamics can bias the estimate of this key parameter (Stadler et al. 2014; Alkhamis et al. 2016; Ratmann et al. 2016). A Bayesian approach to selecting a phylo-dynamic model is to estimate marginal likelihoods for a pool of models and selecting that with the highest marginal likelihood (Baele et al. 2012, 2016), but it is also possible to obtain weighted averages of parameter estimates based on the support for each model (e.g., Huelsenbeck et al. 2004; Li and Drummond 2012; Baele et al. 2013; Bouckaert and Drummond 2017).

Phylo-dynamic models describe the distribution of node times, branch lengths, and sampling times. In full Bayesian phylogenetic analyses, the tree, parameters for the molecular clock, the substitution model, and the phylo-dynamic model can be estimated simultaneously using molecular data. In this Bayesian framework, the phylo-dynamic model is effectively a 'tree prior' (e.g., du Plessis and Slatkin 2015). The simplest phylo-dynamic models are the coalescent exponential-growth (CE) and the coalescent constant-size (CC). These two models have very different expectations about the shape of phylogenetic trees, with exponentially growing populations tending to produce trees with longer external branches than those evolving under constant population sizes (O’Meara 2012; Volz et al. 2013). Alternative phylo-dynamic models are the birth–death (BD) models, which include a parameter to describe the sampling rate, so they have an expectation on the number of taxa and their distribution over time (Stadler 2010; Stadler et al. 2012).

Choosing an appropriate model is important to draw reliable inferences from parameters of interest. For instance, the CE and the constant BD models can estimate the basic reproductive number, R0 (Frost and Volz 2010; Stadler et al. 2012; Volz et al. 2013), which is defined as the average number of new cases that a single case will generate over the course of its infection in a fully susceptible population (Anderson and May 1979, 1992). Failing to account for complex epidemiological dynamics can bias the estimate of this key parameter (Stadler et al. 2014; Alkhamis et al. 2016; Ratmann et al. 2016). A Bayesian approach to selecting a phylo-dynamic model is to estimate marginal likelihoods for a pool of models and selecting that with the highest marginal likelihood (Baele et al. 2012, 2016), but it is also possible to obtain weighted averages of parameter estimates based on the support for each model (e.g., Huelsenbeck et al. 2004; Li and Drummond 2012; Baele et al. 2013; Bouckaert and Drummond 2017).
MODEL ADEQUACY IN PHYLOGENETICS

Model selection methods only allow a relative comparison of a set of models, but they cannot determine whether any of the models in question could have generated key features of the data at hand (i.e., absolute model fit). Such information, however, is key to avoid unreliable inferences from a model and to improve our understanding of the biological processes that produced the data. Absolute model fit can be assessed via model adequacy methods, where a model is considered “adequate” if it is capable of generating the main features of the empirical data. Consequently, model adequacy allows the user to formally reject a model or to identify aspects of the data that are poorly described, instead of ranking it with respect to other models, as is the case with model comparison methods (e.g., Goldman 1993; Bollback 2002; Ripplinger and Sullivan 2010; Brown 2014b).

Model adequacy is typically conducted by fitting a model to the empirical data, and generating synthetic data from the model in question, a procedure that is similar to a parametric bootstrap (Goldman 1993). The adequacy of the model is determined depending on whether the synthetic data are similar to the empirical data, according to a descriptive test statistic (Gelman and Shalizi 2013; Gelman et al. 2014). The test statistics should summarize key aspects of the data or a combination of the data and parameter estimates (Gelman et al. 1996). Examples of test statistics that have been used to assess the substitution model include the multinomial likelihood or a measure of compositional homogeneity (Goldman 1993; Huelsenbeck et al. 2001; Foster 2004). The joint clock model and tree prior key can be assessed with model testing (Robert et al. 2011). In contrast, in Bayesian model test statistics developed for ABC can be useful to assess model adequacy. Bayesian Computation (ABC) techniques in that both methods use test statistics from simulated data. The aim of ABC is to approximate the posterior by comparing test statistics from simulations with the empirical data (Csilléry et al. 2010; Ratmann et al. 2012; Poon 2015), which sometimes leads to biases for model testing (Robert et al. 2011). In contrast, in model adequacy the simulations are generated from the posterior distribution and they are not used to approximate the posterior. In spite of these differences, test statistics developed for ABC can be useful to assess model adequacy.

BAYESIAN MODEL ADEQUACY

Bayesian model adequacy consists of a posterior predictive framework (Rubin 1981, 1984; Bollback 2002; Lewis et al. 2014b; Höhna et al. 2017). The posterior distribution of the model in question is approximated given the empirical data, for example using Markov chain Monte Carlo (MCMC). Samples from the MCMC are drawn to simulate data sets under the model used for the empirical analysis. For example, the posterior distribution of the growth rate and population size parameters of the CE model can be sampled to simulate phylogenetic trees. Such simulations are known as posterior predictive simulations. Test statistics are then calculated for every posterior predictive simulation (i.e., for every simulated tree) to generate a distribution of values according to the model. A posterior predictive probability, similar to the frequentist P-value, can be calculated by determining where the value of the test statistic for the empirical data (i.e., the empirical phylogenetic tree) falls with respect to the posterior predictive distribution (Gelman et al. 2014). Following Gelman et al. (2014), we refer to the posterior predictive probability as P_{ABC} to differentiate it from the frequentist P-value. A useful guideline to determine whether the model is adequate is to determine whether a test statistic is within the 95% credible interval (CI) (Bollback 2002; Brown 2014a). This approach is sometimes conservative, particularly when test statistics do not follow a Gaussian distribution, and other methods of calculating posterior predictive probabilities are also possible (Gelman et al. 2014; Höhna et al. 2017). Combining multiple test statistics leads to multiple testing, which can be addressed by using a multivariate P_B values (Drummond and Suchard 2008). However, Gelman et al. (2014) suggest considering each test statistically separately to assess individual aspects of the model and the data, which is the approach taken here.

Bayesian model adequacy is similar to Approximate Bayesian Computation (ABC) techniques in that both methods use test statistics from simulated data. The aim of ABC is to approximate the posterior by comparing test statistics from simulations with the empirical data (Csilléry et al. 2010; Ratmann et al. 2012; Poon 2015), which sometimes leads to biases for model testing (Robert et al. 2011). In contrast, in model adequacy the simulations are generated from the posterior distribution and they are not used to approximate the posterior. In spite of these differences, test statistics developed for ABC can be useful to assess model adequacy.

“TREE MODEL ADEQUACY” PACKAGE IN BEAST2

We implemented a computational framework to assess the adequacy of phyldynamic models as a package for BEAST2 (Bouckaert et al. 2014). Analyses as outlined in Figure 1 are easy to set up through BEAUti, the graphical user interface for BEAST, to generate an xml file with the tree, the model, and test statistics. Our package, TreeModelAdequacy (TMA), takes a tree with branch lengths proportional to time. The tree can be a summary tree from BEAST2, or estimated using a different method.

We fit phyldynamic models available in BEAST2 by approximating the posterior distribution of the parameters of the model using MCMC. To generate the posterior predictive simulations, we draw random
Figure 1. Posterior predictive simulation framework implemented in the TreeModelAdequacy package. Step (1) consists in Bayesian analysis in BEAST under model M to estimate the posterior distribution of parameters θ, shown with the arrow and posterior density in orange. In step (2), samples from the posterior are drawn to simulate phylogenetic trees, known as posterior predictive simulations, using MASTER as shown by the green arrow. In step (3), the posterior predictive simulations are analyzed in TreeStat to generate the posterior predictive distribution of test statistic T_a, shown by the blue arrow and probability density. Finally, T_a is also computed for the tree from the empirical data using TreeStat, shown by the red arrow, to calculate a posterior predictive probability (P_B). Test statistics and P_B values can also be computed for trees generated in other programs using TreeModelAdequacyAnalyser, given that the tree from the empirical data and the posterior predictive simulations are provided.

samples from the posterior for the parameters from the MCMC after removing the burn-in phase, and we simulate phylogenetic trees using stochastic simulations and master equations using MASTER (Vaughan and Drummond 2013) or the coalescent simulator in BEAST2. The last step consists in calculating test statistics for the empirical data and for the posterior predictive simulations, which depends on the TreeStat2 package (available at http://github.com/alexeid/TreeStat2). The user can select a large number of test statistics (Supplementary Material available on Dryad) at http://dx.doi.org/10.5061/dryad.65p331m. At the end of the analysis, P_B values and quantiles for the posterior predictive distribution are shown, but they can also be visualized in Tracer (available at: http://beast.bio.ed.ac.uk/tracer) or using an R script included in the package. At present, the range of phylodynamic models that can be assessed includes the CC and CE coalescent models, the constant BD with serial sampling (Stadler et al. 2012), and the BD susceptible-infected-recovered model (BDSIR; Kühnert et al. 2014).

Our implementation allows parallelization of the tree simulation step, which can increase computational speed when the simulation conditions require extensive calculations. This step can also be conducted independently on a computer cluster. Our standalone application TreeModelAdequacyAnalyser can also compute test statistics and P_B values, even for trees generated in a different program than BEAST2, given that the posterior predictive trees are provided. TMA is open source and freely available under a LGPL license. It can be downloaded from BEAUTi2 (part of BEAST2), and the documentation and example files are available at: http://github.com/sebastianduchene/tree_model_adequacy.

To verify our implementation, we conducted a simple simulation experiment. We simulated 100 trees under each of the four phylodynamic models (CC, CE, BD, and BDSIR) using BEAST2 and MASTER and analyzed them with the matching model. We assessed their adequacy according to nine test statistics (Supplementary Material available on Dryad). The parameters for our simulations were based on analyses of 72 whole genome sequences of Ebola virus (Gire et al. 2014). We found that the P_B values for all test statistics were between 0.025 and 0.975 for about 95% of each set of simulations, indicating that our implementation is correct (Supplementary Material available on Dryad).

Phylodynamic Model Adequacy in Empirical Virus Data

West African Ebola Virus

We obtained a phylogenetic tree inferred in a previous study from 72 Ebola virus whole genome samples...
collected during the 2013–2016 epidemic (Gire et al. 2014). The samples were collected from May to July 2014 in Sierra Leone. These data have been used in previous studies to estimate epidemiological parameters, with estimates of R_0 ranging from 1.5 to 2.5, depending on the phylodynamic model (Stadler et al. 2014; Volz and Pond 2014). An important consideration about our analysis is that we assume that the tree topology and divergence time estimates are sufficiently accurate, and that the data are informative.

We inferred phylodynamic parameters for the Ebola virus tree using four models; CC, CE, the BD, and the BDSIR (Kühnert et al. 2014). The CE, BD, and BDSIR models can estimate R_0 if information about the sampling process (for the BD models) or present number of infected individuals (for the coalescent) is available. In this case, we assumed that the sampling proportion was 0.7 (Gire et al. 2014) by fixing this parameter in the BD and BDSIR models. For the remaining parameters of these two models, we used the same prior distributions as in a previous analysis of these data (Stadler et al. 2014). For the CE model, we used a Laplace distribution and a $1/x$ distribution as priors for the growth rate and for the effective population size, respectively. We ran an MCMC of 10^6 steps and generated 1000 posterior predictive simulations, and we computed four test statistics.

To compare the different models, we calculated P_B for the test statistics; the tree height, 2.5, the slope ratio of a lineages-through-time (LTT) plot, the ratio of external to internal branch lengths, and the Colless index of phylogenetic imbalance (Fig. 2; Supplementary Material available on Dryad). Importantly, the slope ratio of the LTT plot has been found to be informative for inferring epidemiological parameters using ABC (Saumier et al. 2017).

In the CC model, the $P_B < 0.05$ for all test statistics, with the exception of the tree height at 0.06 (Fig. 2 and Supplementary Fig. S1 available on Dryad). The CE and BD models described these data better, with most P_B values between 0.11 and 0.56. The P_B value for the Colless index in the CE model was the lowest for both of these models, at 0.04. The BDSIR model had overall low P_B values, from 0.01 to 0.18, with the lowest values found for the ratio of external to internal branch lengths (0.03) and for the slope ratio of the LTT plot (0.01). The fact that most P_B values for the CE and BD models frequently fall near the center of the posterior predictive distributions is consistent with the rapid spread that Ebola virus was undergoing at the time the sequences were collected.

For the CE, BD, and BDSIR models we can estimate R_0 and the infectious period, $1/\beta$. The R_0 median estimates were: 1.6 (95% CI: 1.12–2.2) for the BD, 1.21 (95% CI: 1.11–1.5) for the CE, and 1.59 (95% CI: 1.22–1.94) for the BDSIR. Estimates for the infectious period in calendar days were: 5.46 (95% CI: 4.14–7.24) for the BD, 2.90 (95% CI: 1.75–3.50) for the CE, and 5.21 (95% CI: 4.24–7.02) for the BDSIR. The estimates from these models were very similar and overlapped with those from previous studies (Stadler et al. 2014). Although the BDSIR did not capture some of the main features of these data, this model is similar to the BD when the number of susceptible individuals is very large, which probably explains the overlap in R_0 estimates between these models.

2009 H1N1 Influenza

We obtained a phylogenetic tree from a previous study (Hedge et al. 2013), which was estimated from 328 whole genome samples from the 2009 H1N1 Influenza pandemic. The samples were collected from April to December 2009, such that they encompass a large portion of the duration of the pandemic. We used a similar method as for the Ebola virus phylogenetic tree to fit the four phylodynamic models (CC, CE, BD, and BDSIR). However, instead of fixing the sampling proportion we used an informative prior distribution of the infectious period via the $\text{becomeInfectiousRate}$ parameter, with a normal distribution of mean 85 and standard deviation of 15 (corresponding to an infectious period of about 4.45 days).

The CC and CE models had P_B values of 0.00 for all four test statistics, such that they did not adequately describe any of these aspects of the tree. The BD model had P_B values of 0.53 and 0.09 for the tree height and the slope ratio of the LTT plot, and of 0.00 for the ratio of external to internal branch lengths (Fig. 2 and Supplementary Fig. S2 available on Dryad). In contrast, the BDSIR model overall described the H1N1 tree better overall than the other three models, with P_B values of between 0.07 and 0.44. This result is consistent with the sampling time of the data, which includes the start of the pandemic and the decline in the number of infections toward the end of the year. We calculated an R_0 of mean 3.01 (95% CI: 2.5–3.7) at the start of the pandemic in January that declined to $R_0 < 1$ around June, when infectious spread was lower. This estimate is similar to those made in previous studies based on census data (Forsberg White et al. 2009), but in the higher range of those based on the CE model for samples collected in early stages of the pandemic (e.g., Hedge et al. 2013). For comparison, the R_0 estimate from the BD model, which appeared inadequate, was substantially lower, with a mean of 1.02 (95% CI: 1.00–1.03).

Conclusion

Model adequacy methods are useful to understand the biological processes that generate the data, such as the evolutionary branching process. For example, our approach reveals that in July of 2014 the West African Ebola outbreak was still growing exponentially and that the 2009 H1N1 influenza virus pandemic had evidence of a depletion of susceptible individuals in December. In some cases, identifying models that inadequately describe key aspects of the data may improve estimates of parameters of interest, such as R_0 in our H1N1 influenza analyses. One consideration of our approach
FIGURE 2. Model adequacy results for the two empirical data sets, West African Ebola, and 2009 H1N1 influenza. The histograms show the distribution of two test statistics, the tree height and the slope ratio of the LTT plot, for the posterior predictive simulations. The black points also show the distribution of the test statistics, and they have been jittered along the y-axis to improve visualization. The red lines denote the value for the tree estimated from the empirical data. The posterior predictive P-value, P_B, is shown for each test statistic. A feature of the empirical phylogenetic tree described by a test statistic, such as the tree height, is considered adequately described by the model if the empirical value falls within the 95% quantile range of the posterior predictive distribution, such that the $P_B > 0.05$. Two more test statistics were computed, the ratio of external to internal branch lengths and the Colless index, which are shown in Supplementary Fig. S1 available on Dryad. Note that for the H1N1 influenza analyses, the values are shown in a log10 scale.

is that it requires an accurate estimate of a single phylogenetic tree. Clearly, the phylogenetic tree should be inferred using informative sequence data and the sensitivity to the prior should be carefully examined (Ritchie et al. 2016; Boskova et al. 2018; Möller et al. 2018), which is also the case for any Bayesian analysis. For example, a tree estimated from uninformative sequence data will be driven by the prior and will necessarily appear to be adequately described by the matching model, potentially leading to increased rates of Type 2 errors. A limitation of our method is that it does not account for phylogenetic uncertainty, which can be addressed by comparing sets of trees from the posterior with those from the posterior predictive distribution. However, this approach will require the development of new test statistics and model assessment criteria. Model adequacy in phylogenetics will benefit from further development of methods to assess more sophisticated phylodynamic models, such as those that account for population structure (Kühnert et al. 2016; Müller et al. 2017a,b; Volz and Siveroni 2018), and techniques to improve the interpretation of P_B values for test statistics that are not normally distributed, such as the Colless index. Model adequacy software, such as TMA, will be key to address these questions.

SUPPLEMENTARY MATERIAL
Data available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.65p331m.
ACKNOWLEDGMENTS

The authors thank Timothy Vaughan for valuable discussions.

AUTHOR CONTRIBUTIONS

S.D., R.B., and A.J.D. wrote the computer code. S.D. analyzed the data. T.S., S.D., and A.J.D. designed the experiments. S.D. wrote the manuscript with input from all the authors.

REFERENCES

