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Big-data and machine learning to revamp
computational toxicology and its use in risk
assessment

Thomas Luechtefeld,a Craig Rowlandsb and Thomas Hartung *a

The creation of large toxicological databases and advances in machine-learning techniques have empow-

ered computational approaches in toxicology. Work with these large databases based on regulatory data

has allowed reproducibility assessment of animal models, which highlight weaknesses in traditional in vivo

methods. This should lower the bars for the introduction of new approaches and represents a benchmark

that is achievable for any alternative method validated against these methods. Quantitative Structure

Activity Relationships (QSAR) models for skin sensitization, eye irritation, and other human health hazards

based on these big databases, however, also have made apparent some of the challenges facing compu-

tational modeling, including validation challenges, model interpretation issues, and model selection

issues. A first implementation of machine learning-based predictions termed REACHacross achieved un-

precedented sensitivities of >80% with specificities >70% in predicting the six most common acute and

topical hazards covering about two thirds of the chemical universe. While this is awaiting formal vali-

dation, it demonstrates the new quality introduced by big data and modern data-mining technologies.

The rapid increase in the diversity and number of computational models, as well as the data they are

based on, create challenges and opportunities for the use of computational methods.

Introduction

The growth of chemical property data and machine learning
advances in the past decade provide opportunities and pitfalls
in the field of cheminformatics. They promise to complement
the current slow, expensive and animal-consuming system
with rapid automated estimates available at low costs.
Machine learning methods can tailor predictions away from
animals to human-relevant results. Successful cheminformatic
applications will transform environmental health and the
chemical industry by increasing our knowledge of chemical
hazards/properties. However, misapplication of chem-
informatic models may result in inappropriate use or regu-
lation of dangerous chemicals. Environmental health must
grapple with these changes by delivering new methods of high
quality to properly validate such cheminformatic models and
apply their predictions only where appropriate. These models
can only little improve on the quality of input data and predic-
tions will often fail where input data are scarce or lacking as

well when the complexity of phenomena, data and our
mechanistic understanding do not match.

An additional challenge for regulatory efforts is the large
number of chemicals and products without robust safety
testing data. Current approaches to health and environmental
hazard identification rely primarily on costly animal testing,
which is insufficient to address the growing number of
untested chemical products.1

Regulatory efforts such as REACH in Europe and the
reauthorized Toxic Substance Control Act (TSCA) in the US
aim to modernize chemical regulation but face an enormous
backlog of testing.2–4 The regulated industries need ways to
reduce the cost and accelerate the discovery of chemical pro-
perties/hazards. Animal tests are simply too expensive and too
slow to address the current excess of untested chemicals.
While cheminformatics models seem like an ideal solution to
this problem, it is not clear exactly how they should be applied
to evaluating untested chemicals.5,6 The methods available are
rather limited with respect to applicability domain and vali-
dation/regulatory acceptance status.7,8 In this article, we
discuss some of the environmental health challenges of
cheminformatics and consider some of the solutions to these
challenges.

Recent public policy changes have increased pressure on
regulatory agencies to control risks associated with chemical
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exposures. Global reporting on health and environmental
dangers associated with air pollution, oil spills, water contami-
nation, and other public health problems has increased aware-
ness of the diverse dangers associated with chemical
exposures. Agencies are faced with public demand for scrutini-
zation of all chemical exposures. This is an international
process with new and emerging policies in the EU, USA,
Canada, Turkey, Korea, Taiwan, China, India, and more to
follow. Due to only most recent advances of cheminformatics,
the foreseen contribution of models to these programs is very
different, but the dimensions of the task, i.e. all together more
than 100 000 chemicals on the market and in products (not
even including natural and degradation products) to be com-
prehensively assessed and more than 1000 added per year (i.e.
the number of pre-marketing notifications in the US) to be
evaluated too, calls for supportive screening tools to focus
testing resources on cases of uncertainty and probable risk.

These programs also generate tremendous amounts of
quality-assured data, which – at least in case of REACH – are
also made public, at least as robust summaries. This creates
for the first time truly “Big Data” sets in toxicology, which can
be mined with machine learning algorithms, often referred to
now as Artificial Intelligence. Fig. 1 depicts the new opportu-
nities this paradigm shift makes possible.

The validity of cheminformatic models must be determined
before integration into regulatory or commercial decision-
making toolboxes. Due to the commercial value of successful
cheminformatic models, developers are incentivized to build
models that appear to perform well. Thus, evaluators are chal-
lenged to build model validation methods that cannot be
spoofed.

Summary of our recent work and its
status relative to real-world
applications

Our recent work has contributed to the development of chem-
informatics first by creating the – at the time – largest toxicity
database, which included about 10 000 chemicals with 800 000
associated toxicological studies.11 This was possible, by down-
loading and making machine-readable by natural language
processing the emerging public database from the European
REACH legislation hosted by the European Chemicals
Agency (ECHA). Addressing some of the especially data-rich
endpoints, i.e. acute oral toxicity, eye irritation and skin sensit-
ization, the value of such data-sets was illustrated. This ranks
from descriptive statistics on its contents, reproducibility ana-
lysis for multiple time tested compounds to QSAR.10,12,13 The
challenge of developing and exploiting such chemical data-
bases has been reviewed recently.14

The availability of large chemical databases often allows
identification of highly similar compounds. This allows infer-
ence of respective properties in a process that is called read-
across.15,16 Parallel to this development, we contributed to the

generation of Good Read-Across Practices.17,18 Large databases
allow even automated types of read-across as explored by Shah
et al. and in Luechtefeld et al.14,19,20 The obvious emerging
opportunities of such QSAR within integrated testing strategies
(ITS), for Thresholds of Toxicological Concern (TTC) and
Green Toxicology will be discussed later.5,21–26

The first publication based on the organized ECHA-REACH
data describes how in December 2014 the European
Chemicals Agency (ECHA) public dataset of in vivo and in vitro
toxicity tests was converted into a structured, machine-read-
able and searchable database using language pattern matching
and many database and web manipulation packages.11 It con-

Fig. 1 Illustration of the novel opportunities resulting from the tran-
sition to Big Data in toxicology. The two graphs are taken from our
earlier work on skin sensitization. The upper one modified from
Luechtefeld et al. (2015) represents a dataset of 145 chemicals, which is
a size typically used in most model developments up to now.9 The lower
one is taken from Luechtefeld et al. (2016) compiling about 3000 chemi-
cals with almost 9000 animal studies.10 ITS = Integrated Testing
Strategies. Computational models can be integrated into broader testing
strategies with access to sufficient training data. TTC = Threshold of
toxicological concern. Large datasets allow for greater confidence in
definition minimum levels of exposure, below which toxicity is not a
concern for entire categories of chemicals.
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tains data for 9801 unique substances, 3609 unique study
descriptions and 816 048 study documents. This allows explor-
ing toxicological data on a scale far larger than previously
possible. Data-extraction by natural language processing has
obvious limitations, i.e. some data will be missed or extracted
with mistakes. The size of the database, however, does not
allow systematic human curation; some snap sampling
suggests overall high quality, but possible impact on individ-
ual analyses cannot be excluded and might warrant specific
checks.

While many positive responses resulted, when the creation
of the database was announced at AAAS in 2016, some con-
cerns about the proprietary nature of REACH dossiers
remained at ECHA.27,28 This has been sorted out and ECHA
published an even larger database of about 15 000 chemicals
in March 2017 and clarified that this data can be used for
other chemicals representing legitimate access for structure–
activity relationships. However, our processed machine-read-
able database cannot be made generally available beyond
select collaborations. This is unfortunate as such a database
should be jointly expanded and curated by the scientific com-
munity. A case is made that REACH should systematically
open regulatory data for research purposes.

Substance similarity analysis was used to determine cluster-
ing of substances for hazards by mapping to PubChem.
Similarity was measured using PubChem 2D conformational
substructure fingerprints, which were compared via the
Tanimoto metric. Tanimoto is the most commonly used but
only one of many similarity metrics as discussed.14 A compari-
son and possible combination of different metrics is a promis-
ing expansion of this work. Following K-Core filtration, the
Blondel et al. clustering algorithm was used to identify chemi-
cal modules. This analysis illustrates that the chemical uni-
verse is not evenly distributed but clustered, which is helpful
for finding similar structures.29

A first rough analysis addressed the prevalence of toxic pro-
perties. The Global Harmonized System of Classification and
Labeling provides a valuable information source for hazard
analysis. The most prevalent hazards are H317 “May cause an
allergic skin reaction” with 20% and H318 “Causes serious eye
damage” with 17% positive substances. These prevalences
appear rather low, which might be biased though by the fact
that mainly high-production volume chemicals were registered
so far. Such prevalences obtained for all hazards here are key
for the design of integrated testing strategies.30 The data
allowed estimation of animal use; it appears that the number
of animals used was lower in the late 2000s relative to the
1990s, but a possible impact of REACH cannot yet be seen as
the registration only foresees testing proposals no testing for
the demanding endpoints at the registrations covered in this
analysis.31

Direct comparison of the ECHA database to existing chemi-
cal databases shows overlap with other databases, which illus-
trates the value to support joint analyses, especially by provid-
ing test guideline study reference data from this database for
those curating new approach method data. The database

covers about 20% of substances in the high-throughput bio-
logical assay database Tox21 (1737 substances) and has a
917-substance overlap with the Comparative Toxicogenomics
Database (∼7% of CTD). The biological data available in these
datasets combined with ECHA in vivo endpoints have enor-
mous modeling potential. Until now, training sets for QSAR
typically comprised maximally a few hundred chemicals.

The extracted ECHA dataset allows us to better understand
the landscape of substances for a given hazard. Though biased
by the production volume triggering the first two registration
deadlines, the low prevalence of hazards in the extracted data-
base challenges the famous notion of Paracelsus that “all
things are poison”. The database represented the largest
machine-readable resource especially for in vivo toxicity data at
the time. The very well-curated EPA database ToxRefDB, com-
monly used animal testing database, covers only 474 sub-
stances with multiple animal endpoints while our extraction
covers over 9800.

The second paper in this series analyzed acute oral toxicity
data, one of the most common tests, as it serves among others
work place safety and transport requirement regulations.12 The
database included a total of 13 832 oral toxicity studies for
8568 substances (up to December 2014). Seventy-five percent
of studies were from the retired OECD Test Guideline 401
(11% TG 420, 11% TG 423, and 1.5% TG 425). This suggests
that most studies were carried out before 2001, which is in line
with the fact that most chemicals are high-production volume
chemicals, for which such data are typically available. It does
not yet allow understanding of the time the adaption of the
new-tiered testing strategies takes. Noteworthy, 76% of chemi-
cals were not orally toxic in rats at the limit of 2 g kg−1.
Concordance across guidelines, evaluated by comparing LD50

values ≥2000 or <2000 mg kg−1 bodyweight from chemicals
tested multiple times between different guidelines, was at least
75% and for their own repetition more than 90%. This is quite
remarkable, as alternative methods to predict acute toxicity
from cytotoxicity data achieved similar predictivities but were
not found to be acceptable as a replacement.32 This is another
example of how we overestimate the reproducibility and con-
cordance of animal tests.33

In 2009, Bulgheroni et al. created a simple model for pre-
dicting acute oral toxicity using no observed adverse effect
levels (NOAEL) from 28-day repeated dose toxicity studies in
rats.34 This was reproduced here for 1625 substances. This
analysis has in the meantime been repeated and expanded by
ECHA and ECHA accepted formally this approach stating that
“Ahead of the last REACH registration deadline, in 2018, ECHA
estimates that registrants of about 550 substances can omit
the in vivo acute oral toxicity study by using this adaptation”.35

Our analysis thus directly contributed to animal saving.
In 2014, Taylor et al. suggested no added value of the

90-day repeated dose oral toxicity test given the availability of a
low 28-day study with some constraints.36 We confirmed that
the 28-day NOAEL is predictive (albeit imperfectly) of 90-day
NOAELs, however, the suggested constraints did not affect pre-
dictivity. This is another example how a large database can
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support the analysis of proposed changes to testing regimens,
though here less satisfying. A lot of this, though, seems to be
owed to the inconsistency of 28-day and 90-day studies in
general (see Fig. 4 of the 2016 publication).12

The large dataset allowed the exploration of data modeling
and prediction exercises. One thousand fifty nine substances
with acute oral toxicity data (268 positives, 791 negatives, all
Klimisch score 1) were used for modeling: first, instance-based
learning was applied, i.e. the k-nearest neighbors (KNN) algor-
ithm, which indicated that similarity-based approaches alone
may be poor predictors of acute oral toxicity: evaluation of KNN
on the global dataset results in a balanced accuracy of 71%
with higher specificity than sensitivity (89% versus 54%) – a
skew that is largely the consequence of the high prevalence of
non-toxicants. Our use of the simplistic PubChem 2D finger-
print is one source for this poor predictive power. To illustrate
the combination of a KNN feature with chemical descriptors,
the Chemical Development Kit was used to generate 27 mole-
cular descriptors and we built a simple decision tree using the
KNN feature and the next most informative feature, as deter-
mined by the Ranker approach to feature importance. This
decision tree illustrates how instance-based learning can be
used in concert with supervised learning methods via feature
generation. Although decision trees are fundamentally limited
in their expressive power (they can only model endpoints via a
conjunction of feature values), this model serves to demonstrate
the possibility to improve sensitivity by fusing supervised and
instance-based learning. This data can also be used in feed-
forward artificial neural networks (multilayer perceptron or
MLP) algorithms, which can build more expressive feature
relationships for toxicity prediction than decision trees.
However, MLP models are more difficult to visualize. Rather
than only capturing conjunctions of feature values, multilayer
perceptrons can model a wide variety of feature relationships.
This “universal approximator” property is important for model-
ing potentially complex relationships of the sort chemical
descriptors may have for predicting toxicological endpoints.
One consequence of the increased expression of multilayer per-
ceptrons is the risk of overfitting. When training and testing
multilayer perceptron on the entire dataset the resulting sensi-
tivity, specificity and balanced accuracy is 94%, 99.6% and
97%, respectively. To account for overfitting, we performed stra-
tified 10-fold cross-validation. Noteworthy, in the multilayer per-
ceptron model, KNN was the feature with highest information
value. The stratified results show 71% sensitivity and 72% speci-
ficity for the multilayer perceptron, which might not sound
exciting, but is at the level of concordance of different OECD
protocols against each other. Obviously, it is difficult to improve
much over such data inconsistencies, i.e. as often stated “trash
in, trash out”. The three modeling approaches demonstrate how
predictions can be carried out. It is quite likely that additional
descriptors – for example, corrosivity or sensitization – as well
as a more detailed analysis of either ADMET or in vitro assays of
biological activity – could substantially improve the models.

Eye irritation hazard, for which the rabbit Draize eye test
still represents the reference method, was analyzed next.13

Dossiers contained 9782 Draize eye studies on 3420 unique
substances, indicating frequent retesting of substances. Two
chemicals were found, which were tested more than 90 times
in rabbit eyes, 69 were tested more than 45 times. This allowed
assessment of the test’s reproducibility based on all sub-
stances tested more than once. There was a 10% chance of a
non-irritant and a 20% chance for mild-irritant evaluation
after a prior severe-irritant result. The most reproducible out-
comes were negative (94% reproducible) and severe eye irritant
(73% reproducible). 34% of the substances were eye irritants,
somewhat higher than suggested in an earlier analysis of the
New Substances Database of the former ECB with 17.4% eye
irritants showing differences in the type of substances regis-
tered between 1981 and 2008 and those under REACH in the
initial phase, i.e., predominantly high-production volume sub-
stances.37 They also confirm the reproducibility issues already
described by Weil and Scala in 1971; very often this problem
has been belittled by stating that these studies were done
before OECD guideline standardization and GLP.26 They also
confirm the assessments by Adriaens et al. about the test’s
reproducibility.37 Their database includes fewer substances,
but had access to the raw data, allowing intra-assay variability
assessment. This demonstrates the extent to which access to
the full REACH datasets could strengthen assessments.

To evaluate whether other GHS categorizations predict eye
irritation, we built a dataset of 5629 substances (1931 “irritant”
and 3698 “non-irritant”). The two best decision trees with up
to three other GHS classifications resulted in balanced accu-
racies of 68% and 73%, i.e., in the rank order of the Draize
rabbit eye test reproducibility itself, but both use inhalation
toxicity data (“May cause respiratory irritation”), which is not
typically available. However, the approach shows that different
toxic properties inform each other and that – as typically done
– staying within data for a single hazard misses an opportunity
to improve predictions.

Next, a dataset of 929 substances with at least one Draize
eye study was mapped to PubChem to compute chemical simi-
larity using 2D conformational fingerprints and Tanimoto
similarity. Using a minimum similarity of 0.7 and simple
classification by the closest chemical neighbor resulted in
balanced accuracy from 73% over 737 substances to 100% at a
threshold of 0.975 over 41 substances. Thus, the more similar
chemical neighbors with data are available, the more precise
the prediction, hinting to the value of big datasets. This rep-
resents a strong support of read-across and (Q)SAR approaches
in this area.

The preliminary analysis and mining of the dataset shows
that there is both considerable predictivity from chemical
structure (our analysis based on the closest chemical neighbor
with data) and biological activity (our analysis based on other
GHS classifications). Neither alone has adequate accuracy to
supplant the Draize eye test, although given the reproducibility
problems of the assay, this statement might be contested.
Here, no attempt was made to use the information from
chemico-physical properties, dedicated in vitro assays for eye
irritation, toxicokinetic information or biological profiling as
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attempted in ToxCast or the Tox21 program, all of which could
likely considerably boost the predictive value of the knowl-
edge-base. Follow-up research should focus on the integration
of external databases with the ECHA data to create stronger
models for eye irritation. The relatively impressive predictive
value of the naïve approaches attempted here, however,
strongly supports read-across and in silico approaches.15

The public data in the database included 19 111 studies on
skin sensitization, making it the largest repository of such
data so far (1470 substances with mouse LLNA, 2787 with
GPMT, 762 with both in vivo and in vitro and 139 with only
in vitro data).10 21% were classified as sensitizers, considerably
lower than expected (about 35% according to earlier sources).
The extracted skin sensitization data was analyzed to identify
relationships in skin sensitization guidelines, visualize struc-
tural relationships of sensitizers, and build models to predict
sensitization. Altogether, reproducibility of and between
different OECD test guidelines in vivo ranged from 77% to
95% with 89% for the LLNA to reproduce itself. This means we
can expect no alternative method to be better than this in
direct comparisons if used on the same sets of substances. It
is important to note that the datasets used to evaluate the
reproducibility between tests do not contain the same sub-
stances and for this reason percentage agreement should not
be considered a direct comparison.

Structural alerts for skin sensitization identify substructures
predictive for substance reactivity and sensitization proclivity.
Distribution of structural alerts in chemical clusters (modules)
revealed wide variation. Approximately 31% of mapped chemi-
cals are Michael’s acceptors but alone this does not imply skin
sensitization. This opens up for more detailed analyses and
e.g. fine-tuning of thresholds of toxicological concern (TTC).22

A chemical with molecular weight >500 Da is generally con-
sidered non-sensitizing owing to low bioavailability, but 49
sensitizing chemicals with a molecular weight >500 Da were
found in line with parallel work by Fitzpatrick et al. (2017).38

Again, this illustrates how big data can identify popular myths
and quality-control rule-based models. A chemical similarity
map was produced using PubChem’s 2D Tanimoto similarity
metric and Gephi force layout visualization. Nine clusters of
chemicals were identified by Blondel’s module recognition
algorithm revealing wide module-dependent variation.29 A
simple sensitization model using molecular weight and five
ToxTree structural alerts showed a balanced accuracy of 66%
(specificity 80%, sensitivity 51%), demonstrating that struc-
tural alerts have information value.

A simple variant of k-nearest neighbors outperformed the
ToxTree approach even at 75% similarity threshold (balanced
accuracy 68%). At higher thresholds, the balanced accuracy
increased (82% balanced accuracy at 0.95 threshold). Lower
similarity thresholds decrease sensitivity faster than speci-
ficity. This analysis scopes the landscape of chemical skin sen-
sitization, demonstrating the value of large public datasets for
health hazard prediction. The prediction of a binary outcome
(sensitizer vs. non-sensitizer) in this article was necessitated by
failing to extract potency information where available in ECHA

dossiers. The available in vitro data in the database have not
been analyzed and exploited yet. The promising predictivity of
rather naïve prediction models from chemical neighbors
suggests that such advanced predictions could actually bring
predictions into the range of in vivo reproducibility.9

Rarely, in silico approaches will satisfy regulatory infor-
mation needs as a stand-alone approach, if not validated for
large datasets. Increasingly, the need for systematic integration
of different information sources as Integrated Testing
Strategies (ITS) is recognized.39,40 Supervised learning
methods promise to improve ITS, but must be adjusted to
handle high dimensionality and dose–response data. ITS
approaches are currently fueled by the increasing mechanistic
understanding of adverse outcome pathways (AOP) and the
development of tests reflecting these mechanisms.41 Simple
approaches to combine skin sensitization data sets, such as
weight of evidence, fail due to problems in information redun-
dancy and high dimensionality.

The problem is further amplified when potency infor-
mation (dose/response) of hazards would be estimated. Skin
sensitization currently serves as the foster child for AOP and
ITS development, as legislative pressures combined with a very
good mechanistic understanding of contact dermatitis have
led to test development and relatively large high-quality data
sets. In work, which preceded the generation of the ECHA
dataset, we curated such a dataset of 145 chemicals with
various in vitro assay data.9

Recursive feature elimination involves first building a
model on a large number of features, then eliminating features
that do not impact model accuracy. Feature importance was
calculated with the scikit-learns implementation of the
Breiman random forest variable importance algorithm. We
used this recursive variable selection algorithm to evaluate the
information available through in silico, in chemico and in vitro
assays. Chemical similarity alone could not cluster chemicals’
potency, and in vitro models consistently ranked high in recur-
sive feature elimination. This allows reducing the number of
tests included in an ITS. Feature elimination can be useful for
determining the mechanistic pathways behind toxicity. We saw
the KeratinoSens and direct peptide reactivity assay (DPRA) as
strong models for skin sensitization as they resulted in the top
three features in all datasets. The chemical descriptors most
heavily represented in variable importance included many
descriptors of electrophilicity, molecular weight and descrip-
tors related to the ability to penetrate skin. These descriptors
make sense in the absence of skin permeability information
provided from in vitro assays.

Next, we analyzed the data with a hidden Markov model,
which allows us to enforce proper prediction series by encod-
ing our knowledge of allowable toxicity transformations. It
takes advantage of an intrinsic inter-relationship among the
local lymph node assay classes, i.e. the monotonic connection
between local lymph node assay and dose. The dose-informed
random forest/hidden Markov model was superior to the dose-
naive random forest model on all data sets. Although balanced
accuracy improvement may seem small, this obscures the
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actual improvement in misclassifications as the dose-informed
hidden Markov model strongly reduced “false-negatives” (i.e.
extreme sensitizers as non-sensitizer) on all data sets. This
dose-informed approach already shows promising improve-
ments in off-by-one accuracy and average class error. It can be
improved by using descriptors with dose–response data and by
accounting for dermal penetration data. Dermal penetration
has the potential to change the proposed dose-informed
model, by adjusting the “effective” dose of a given toxicant to
account for penetration features.42

Some probabilistic models already exist for skin sensitiz-
ation, including the Bayesian ITS.43 The Bayesian ITS shows a
remarkable balanced accuracy (94% on a small external test
set). While this and some other approaches show high accu-
racies on test sets, some failed to use cross-validation. Here,
for the first time, a successful cross-validation was included.
However, the possibility remains that accuracy on test sets is
not representative of the method. The Bayesian ITS method,
while demonstrating strong accuracy and a valuable approach
(Bayesian networks), also used the TIMES QSAR, which may
cause problems due to peeking (i.e. that some chemicals were
in the training set already). Our approach improves over exist-
ing models by incorporating structure/activity relationship
data without using QSARs and by proposing a method to
incorporate the range of dose–response data rather than
summary statistics alone. Combining these approaches with
new data sets will be interesting for future research.

Current computational approaches to support closing data-
gaps

Computational models are primarily in the proposal process
with many new models recently published. Some models have
been applied to chemical regulation for chemical labeling and
many authors suggest their use in integrated testing strategies,
as we discussed earlier in a whitepaper and workshop report,
for prioritization of chemical testing.39,40 Models have long
been in medical use for screening and drug design – practices
that are directly relevant to potential uses in accelerating
untested chemical evaluation.44

A most promising approach to integrated chemical testing
uses Bayesian networks to (1) predict for chemical properties
and (2) estimate the value of information provided by tests in
the network. The second property allows for construction of
testing policies that iteratively select the most informative test
for individual chemicals. In this approach, a chemical with
incomplete testing can be assessed and a probability/confi-
dence of hazard determined. If confidence is too low, the
model can be used to suggest new required testing. This poten-
tial application is far ahead of the traditional ‘weight-of-evi-
dence’ approach.45,46

Future directions

Testing policies define, which test to do given the current state
of chemical testing. Chemical prioritization is a ‘testing
policy’, in which chemicals are tested according to their prob-
ability of hazard (as could be determined by a supervised

learning model). Some proposals of ‘Integrated Approaches to
Testing and Assessment’ (IATA), a term favored by OECD over
Integrated Testing Strategies in recent years, describe para-
digms where computational models can be integrated into
testing requirements even combining them with the emerging
Adverse Outcome Pathway concept of mechanistic toxicological
knowledge.41 These proposals are promising for future inte-
gration of computational models into regulatory decisions.
However, there may be opportunities to use models already
earlier and at a larger scale in regulatory testing.

In an ideal world, there should be a co-evolution of testing
and test method development. Sometimes, testing specific
chemicals improves our knowledge about a certain testing
method more than the testing required of substances because of
legislation. Here, programs such as the US National Toxicology
Program could come into play, though their selection is driven
more by data-gaps and concerns as to these substances.
Validation of test methods is an example – though typically not
for traditional animal tests – where systematic testing to evaluate
a method is undertaken.47 The field of reinforcement learning
and optimal experimental design demonstrate that machine
learning models can be used to construct powerful polices of
much greater complexity than typical approaches. To optimize
policy definitions for chemical testing a state S and an evalu-
ation function F: S → R needs to be defined. The state should
define all the variables of concern in chemical testing (enumer-
ate tested chemicals, aggregate total costs and time, etc.). The
evaluation function merges these variables into a numeric score.
Balancing these variables is difficult, if money and time were
not a concern then a policy may suggest testing all chemical
sequentially but doing so may be prohibitively expensive or slow.
Improved testing policies can direct the considerable growth rate
of chemical databases to improve models faster, increase econ-
omic growth, and reduce harm. This could represent an
example for the strategic development of safety sciences.48

When chemicals are tested, they provide data that can
improve cheminformatic models. Thus an important consider-
ation for testing policies is to maximize the rate of model
improvement. When testing policies are allowed to maximize
model training they can be used to address the causality weak-
ness seen in correlative supervised learning algorithms. One
simple approach to maximize model learning is to select
chemicals with structures that are unlike chemicals in model
training sets. This should be balanced against the economic
benefits of such testing. This problem is very similar to the
multi-armed bandit problem – where a gambler is given a
choice of slot machines and a limited set of tries and must
decide, which machines to play, which illustrates the value of
exploration (trying different machines) versus exploitation
(playing a profitable machine repeatedly).

Evaluating animal models

The potential risks associated with a compound define the
testing requirements for that compound. For example, chemi-
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cal tonnage and production environment are factors that deter-
mine testing requirements for a given compound. Required
tests are selected to identify chemicals, which can be regulated
to minimize the potential economic/public health damage.
These tests must be evaluated to ensure that they can accu-
rately categorize chemicals for regulation. This process is
called validation, which is under constant evolution.47,49,50

Chemical properties are not always known, if they were
then chemical testing would not be necessary. For example,
one of the most tested hazard in humans is skin sensitization
with variants of the patch-test: less than 1000 chemicals have
been deliberately tested in humans to determine skin sensitiz-
ation. Many of the health hazards have extremely little ‘gold
standard’ human data due to the ethical impossibility of per-
forming human tests. Conventional techniques of model vali-
dation are severely handicapped by the lack of target data.

Alternative models such as computational or in vitro
models are frequently validated based on their ability to
predict the results of animal models. When the animal models
are invalid or irreproducible, they fail to act as valid testing
data for alternative models.33,51

Current approaches

In our work, we have evaluated animal model tests via a pair-
wise method. When the same chemical has received the same
animal test multiple times it can be used to determine the
reproducibility of the test. Test outcomes are compared to each
other for specific chemicals and the conditional probability of
one test outcome given another is calculated by counting the
number of pairs with the given outcomes and dividing by the
total number of pairs. This approach gives an estimate of the
reproducibility of an animal test. Our application of this
approach to the Draize Eye Irritation Test demonstrates that
some animal tests are not very reproducible.13 Similar work
expanding the approach to all acute and topic endpoints is
currently in preparation for publication.

Other approaches, like most validation testing, still rely on
manually selected reference data. This can inflate estimates of
test validity via animal tests that are built to perform well on
relatively small well-known reference examples.

Future directions

There are many methods for evaluating the repeatability of
tests. ANOVA tests and mixed effects models try to capture
differences between groups and the impact of random versus
fixed effects. Mixed effects models are particularly interesting
in the context of QSARs.52 Mixed effects models let us define
variables that we think may be affected by the properties of a
chemical.

The pairwise approach used in our publications can be
improved by a latent variable model. In the latent variable
model, every test outcome is conditionally independent and
identically distributed (c.i.i.d.) to every other test outcome
given the chemical. Unlike the pairwise approach, which
assumes that pairs of outcomes are independent of other test
outcomes (a definitely incorrect assumption), this approach

assumes that a given outcome only depends on specific effects
given the same test chemical.

Unfortunately, building outcome distributions for each
chemical requires testing the given chemical and does not
allow to generalize over chemicals. So instead of building a
repeatability model where test outcomes are c.i.i.d. given the
chemical, we can only build a model where outcomes are c.i.i.d.
due to unobservable property of the chemical. One could
argue that this is exactly what a perfect test does; it measures
some property of interest and is independent of all other pro-
perties. A test for skin sensitization should measure, whether a
chemical is a sensitizer, and be independent of chemical solu-
bility, boiling point, etc.

Latent models can account for test confounders by adding
them as observable variables, on which the test outcomes
depend. For example, tests using a solvent can only test chemi-
cals that are soluble, if solubility is added as an observable
variable, test outcomes should be less consistent for chemicals
that are less soluble. These latent models are not new; they
have been used in medical diagnosis, where a disease can be
treated as a latent variable, upon which symptoms or diagnos-
tic measures depend. Some approaches to estimate parameters
for these distributions include expectation maximization and
the concave convex procedure.53–56

QSAR validation sets

The validity of cheminformatic models must be determined
before integration into regulatory or commercial uses.57 The
question of model accuracy is a tricky one but it is almost
always evaluated on some set of test chemicals. Validation sets
are used in model competitions and also to aid validation
studies. Creation of a good validation set for a promising
model selected is critical, as bad validation sets can result in
inaccurate evaluations of models, which can be dangerous to
public health and commercial applications. Validation data-
sets (selections of chemicals with known target values) are
used to evaluate computational models. Model predictions are
compared against known values and models that are correct
more often are given better scores.

A good validation set should accurately represent the event-
ual goal of the evaluated model. If a model has a specific
domain of applicability, then the validation set should be com-
posed of chemicals in that domain. This is not as easy as it
sounds: the first question is how to categorize chemicals?
There are many such methods of categorization (some of
which we reviewed in Luechtefeld and Hartung, 2017).14

Chemicals can be clustered via distance metrics on chemical
descriptors, or via expert defined chemical categories, or via
their usage, or by many other approaches. How do we know
what categories of chemicals to pick? How to handle multiple
memberships? How do we handle model evaluation when cat-
egories do not have balanced representation?

Another major problem with validation sets is combatting
overfitting. When modelers work with a training set, they train
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models on the data set. If the entire validation set is revealed,
models can ‘overfit’ the data. Evaluators must be careful to
handle overfitting at the validation stage.

Size is the greatest challenge for construction of data sets.
To build strong models and test them we need very large data-
sets (>10 000 well spread compounds to cover the entire chemi-
cal universe); until recently such datasets were not available
for toxicology. Concerns over proprietary data is one reason for
the small size of public toxicological test data. The testing for
a validation set can be very expensive; owners of proprietary
data may not be willing to add their data to a validation set
due to the high cost of collection. However, also concerns of
giving insights about products to competitors, liability cases
and advocacy groups contribute here.

Current approaches

Different methods to validate machine learning models (cross
validation, y-scrambling, etc.) all rely on validation sets.58 At a
high level, these methods split datasets into training and vali-
dation sets and/or modify dataset features to measure impacts
on model outcomes. In our work and the work in many other
publications, training and validation sets are created by
random selection from some large data source for chemicals.
This solution is not ideal as it is likely to have large imbal-
ances in chemical categories. In some cases, groups will split
datasets according to broad chemical categories; for toxicologi-
cal testing it can for example be sensible to treat drugs separ-
ately from industrial compounds.

Future directions

The willingness to share data as well as legislative pressures to
do so is increasing, especially as the different agencies world-
wide realize their value. However, in order to foster data-
sharing on a larger scale, some of the concerns associated
with the publication of proprietary data have to be overcome.
Data encryption schemes are a possible solution to problems
with data sharing. New research indicates that some machine
learning algorithms termed ‘privacy preserving classifiers’ can
be built on encrypted data.59 If this approach improves, then
owners of large proprietary datasets will be able to share data
without revealing testing results.

Sampling methods that seek to balance representation of
different chemical groups can widen domains of applicability
and ensure less biased accuracy measurements. These
methods are not commonly used in the literature and rely on
some definition of ‘chemical grouping’.36,60,61

QSAR aspects of experimental design
and causality

Most statistical models are based on observational data. While
causal inference is an area of active research, many QSARs are
difficult to interpret and cannot be used to define causal links.
They represent correlation rather than causation. The lack of
experimental design to test variable-causality leads to models

that become biased due to coincidental variable relationships.
This can be a tough problem for models that rely on large
numbers of variables, particularly those that use variables that
do not have easily explained relationships to the target, i.e.
they are vulnerable to over-fitting. We have earlier proposed a
concept of mechanistic validation;62 this argument was largely
targeted toward the validation of biological models with more
objective tools such as systematic reviews, but it can be simi-
larly used to argue for looking into the mechanistic basis of
QSAR approaches62–64 as attempted also in the discussions by
Tollefsen et al.41

Chemical classification decision trees, for example, split a
set of chemicals into different buckets. At each split a feature
is selected based on data to divide chemicals. This feature
selection rule is meant to divide chemicals into buckets with
other chemicals sharing the same target property, but it has
no means to determine causality. Even large datasets can
result in non-causal but correlated features. This possibility
makes regulators wary of using QSAR models (even when they
perform well in testing challenges).

There is a possible danger of experimental research taking
a back seat to modeling due to the speed and lower costs of
QSAR-based chemical property determination. While this
might be the ultimate goal of modeling efforts (to allow faster
chemical labeling at lower cost), there is the danger that over-
fitted, non-causal models will be trusted prematurely.8 In
reverse, once strong models exist for a given endpoint, the
problem is in costs and animal use associated with unnecess-
ary testing, when delaying transition.

Current approaches

The OECD guidelines for QSARs concede that models may not
have mechanistic interpretations.25 They state that models
should have “a mechanistic interpretation, if possible”. The
current state of software for cheminformatics and machine
learning make it much easier to construct a model than it is to
understand the causal role behind cheminformatic descrip-
tors. For now, models with clear mechanistic descriptions are
more likely to be accepted in regulatory applications. As more
testing data is generated, models that are susceptible to over-
fitting on non-causal relationships will be proven untrustworthy.

Some models are more interpretable than others. Many
QSARs rely on linear regression, some use decision trees. Both
of these methods (particularly decision trees) are relatively
easy to interpret. When decision trees are built from chemical
testing data, they can even be used to optimize testing.
Bayesian networks are particularly strong in their potential to
build ‘integrated testing strategies’ due to their capacity to
handle missing data and the ability to interpret networks built
from relatively small numbers of features. Like decision trees,
Bayesian networks can also be used to optimize testing.

Other models are much less interpretable, these include
random forests, neural networks, and other complex models.
Models built using these methods can be powerful predictors,
but are also more prone to overfitting, especially if they are
built on thousands of features.
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Similarity-based models are an interesting variant.
Similarity of chemicals is the basis for read-across, but can
also be used to build QSAR based on similarity.10,20 Thus, the
principles of read-across and QSAR-type computing are
merged here. Similarity-based models can seem deceptively
interpretable. When two compounds are very ‘similar’, their
chemical structures are likely to look the same to human eyes.
This enables applications where human users evaluate the
computationally identified or generated analogues to a
given target compound. In collaboration with Underwriter
Laboratories (UL), our approaches have been expanded to a
web-based automated rad-across-based QSAR named
REACHacross™ (https://www.ulreachacross.com). By combin-
ing several public databases, the underlying dataset included
in March 2017 70 + million structures, of which 300 000 had
biological data and 20 000 animal data. Table 1 shows the
number of chemicals with data (column 2) ranging from four
thousand (mutagenicity) to fifteen thousand (eye irritation).
The predictive capacity for these acute and topical endpoints
was examined by a leave-one-out cross-validation (un-
published, Table 1). This means that for each and every of the
several thousand chemicals with animal results (column 2) a
prediction based on similar chemicals was made, presuming
that no data were available; then the prediction was compared
with the actual data. The sensitivity (ability to identify a toxi-
cant) and specificity (correctness of these results) show that
more than 80% of toxic chemicals were found with still reason-
able specificities of 54–71%. Such predictions were possible
for 64–83% of the chemicals (labeled coverage). This suggests
that for two thirds of chemicals predictions can be made with
accuracies on par with animal studies.

Still, these promising approaches should be used carefully,
as it is easy to build similarity-based methods that hide much
of the complexity in their underlying features. They require
thus the same rigorous validation approach as other QSAR.65

The respective validation with the US Interagency Coordinating
Committee on the Validation of Alternative Methods (ICCVAM)
and National Toxicology Program’s Interagency Center for the
Evaluation of Alternative Toxicological Methods (NICEATM)
has been initiated by FDA in 2017.

Future directions

As the barriers to model creation lower, researchers will inte-
grate computational models into their experimental work.

Adversarial modeling is the practice of designing competing
models. One model predicts outcomes from input data, and
another model constructs input data that will trick the first
model. In hazard prediction, adversarial models could be used
to physically test computational models and search for causal
links.

New methods for aiding in the interpretability of models
are also emerging. LSTMV (http://lstm.seas.harvard.edu/) is a
visual tool for investigating the hidden variables in recurrent
neural networks. These tools may aid researchers in evaluating
models. They may also aid researchers in discovery of new bio-
chemical relationships.

In the future, the boundary between ‘wet lab’ work and
computational models is likely to reduce. Pharmaceutical
efforts to integrate computational screening into drug design/
testing demonstrate this possibility. There is no reason why
similar approaches cannot be used to predict chemical pro-
perties. If computational models take on greater industrial
and public health roles, it will become more important to con-
struct robust testing methods. An interesting OECD QSAR
guideline could require that computational models be phys-
ically ‘testable’.

The QSAR zoo

There are a huge number of computational models for chemi-
cal properties – casually speaking a zoo of QSAR. The Danish
QSAR database reports ∼300 distinct QSAR authors, many of
which have published multiple QSARs. Even after deciding to
accept/use computational models in a commercial or regulat-
ory workflow, users still need to decide on which specific
models to employ. Selecting models is not as simple as asking,
which model has the best evaluation. Models may have varying
domains of applicability, susceptibility to overfitting, expense
in feature generation, interpretability and other differentiators.
All of these factors must be considered when selecting a
model. An important consideration when deciding on a QSAR
is the ease of use and the development support. QSARs with
supporting computational packages or programming inter-
faces are easier to integrate into new workflows.

Machine learning is an extremely active field with advance-
ments made constantly and large numbers of packages sup-
ported by giant corporations such as Microsoft, Google, and
Amazon. This progress bodes well for the eventual widespread
use of modeling in chemistry, but it causes a selection
problem. Given a thousand models for a given hazard, which
one should be selected?

Current approaches

The simplest approach to model selection is via some form of
model scoring (we and others have outlined several validation
methods). In some cases, high-scoring models are combined
into ensemble models. Ensemble methods combine multiple
classifiers into one. The simplest ensemble method simply
takes a majority vote from a set of models. Much more

Table 1 Sensitivities (Se) and specificities (Sp) for 6 health hazard models
built from thousands of classification and labelling results stored on the
ECHA database

Endpoint Tested Se Sp Coverage

Skin sensitization 5136 83% 55% 83%
Eye Irritation 15 214 83% 54% 79%
Acute oral 12 342 82% 71% 77%
Mutagenicity 4077 80% 58% 81%
Skin irritation/corrosion 14 718 88% 57% 64%
Acute dermal 6732 89% 70% 59%
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complex ensemble models exist that can account for differ-
ences in domain of applicability. These ensembles, however,
can be prone to the causality/overfitting issues mentioned
earlier.

Unfortunately, there is no unifying interface for chem-
informatic models. Many different softwares exist for creating
models, and packages exist for creating new models in every
popular programming language. Opentox.net, for example,
aims to provide an ‘interoperable predictive toxicology frame-
work’ with an application programming interface (API). API
refers in computer programming to a set of subroutine defi-
nitions, protocols, and tools for building application software
allowing remote use of certain computation services. This
would allow accessing many different models remotely. There
are several similar efforts. One hurdle for these efforts is resis-
tance from model developers, who may seek to provide their
own portal for customer use.

Future directions

The use of supervised learning algorithms in QSAR design is a
narrow subset of the possibilities available with new machine
learning and computer science research. We have already dis-
cussed the potential of optimizing experimental design, adver-
sarial models, and aids to model interpretation. These
advances also have the potential to aid in simplifying the
QSAR zoo problem.

Multi-label learning

Recent advances in machine learning have resulted in models
that can handle missing data and model multiple targets at
once (multi-label learning, in case of toxicology for example
multiple-hazard learning). These models can sometimes out-
perform single-label models by increasing the available data
for training and by transferring concepts applicable to one
label to predictions on another label. Multi-label models have
the potential to simplify the QSAR space. Rather than having a
model for every chemical property, a single model can predict
many different chemical properties. In toxicology, many
hazards are interrelated; thus, they can inform each others’
predictions. For example, a skin irritant is likely also an eye
irritant, which means that information on both labels syner-
gizes. So, the prediction of one hazard (label) informs other
labels for the same and similar chemicals can improve
predictions.

Biological features

Biological data created from chemical experiments can provide
valuable features to machine learning models. Chemical simi-
larity or ‘read-across’ can be performed on biological features
for finding chemicals with ‘similar’ biological activity.17,66

Biological features built from high throughput screening
have also proven effective for supervised learning models.

These models have demonstrated strength in hepatotoxicity,
estrogen receptor binding, and broadly in animal toxicant
endpoints.67–70

Unifying interfaces

Proprietary models are resistant to unifying interfaces due to
problems of incentive. When regulatory agencies ‘accept’ a
computational model they inadvertently give the developer a
commercial edge over other developers. The recent explosion
of distributed applications built on blockchain technology
may be an interesting solution to this problem. The iota data
marketplace (https://data.iota.org/) is one such decentralized
market, where users can purchase data directly from data pro-
ducers without paying a fee to any central distributor. Similar
projects are used to share compute power, and even machine
learning predictions in distributed marketplaces.

It may be possible to build such a decentralized market-
place on QSAR models thus providing a unifying interface for
chemical property predictions. Such a marketplace could vali-
date models and provide financial incentives commensurate to
model value without requiring a centralized provider.

Other non-regulatory uses of
cheminformatics

In product development, regulatory toxicology due to its costs
and animal use is usually only initiated at advanced stages,
when marketing is likely. However, toxic properties then come
as a bad surprise challenging enormous investments. Given
the limited reliability of many tools of this safety assessment,
enormous losses of investments or delays (time to market) in
investigating these toxicities are the only options, in order not
to risk consumer health. The solution to this is to consider
toxicological information earlier in the product development
process. This is known as Frontloading of Toxicology in the
pharmaceutical sector and as Green Toxicology in the chemi-
cal one.21,23,24

In silico and in vitro approaches are especially suited here,
as they give typically such information faster and cheaper than
animal studies and have no ethical concerns. In silico
approaches can even be applied before a chemist synthesizes a
new molecule. By excluding upfront, or making less likely,
toxic liabilities in the process, consumer and worker safety are
improved, and animals are exposed to less harmful substances
in the regulatory part of safety testing. The obvious emerging
opportunities of such QSAR within testing strategies and for
Thresholds of Toxicological Concern (TTC) further strengthens
this approach.9,22,26 The possibly lower predictivity of these
methods and lack of validation is less of concern at such early
stages. What is needed, is simply a change in workflows and
decision processes, i.e. to involve toxicological considerations
earlier in product development, not in developing new science.
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Furthermore, many industries do not have the profit
margins allowing safety testing on par with drug or pesticide
companies. In silico methods can help to focus resources on
the more problematic compounds and hazards. Similarly,
within the supply chain, those obtaining many chemicals or
products containing many substances such as retailers or big
consumer product companies, get more control over what they
are using with ease. Also, the regulatory agencies can benefit
from cheminformatics approaches: they can check the plausi-
bility of submitted findings or where the burden of proof of
possible problems is with the regulators, they can employ
cheminformatics to produce evidence of such concerns. This
shows how cheminformatics is possibly transforming the
world of consumer products and their safety control. Reliable
predictions are key – thus better data, better algorithms and
rigorous validation represent the door-openers for this trans-
formative change.

Conclusions

In this article, we explored computational approaches to
chemical hazard assessment and examined real-world data in
four earlier publications examining the REACH registration
public data repository – the world’s largest regulatory toxi-
cology database. Rapid developments in the regulatory and
industrial use of computational models promises transforma-
tive change in chemical synthesis, manufacturing, and
regulation.

A first implementation in UL’s REACHacross tool validated
by cross-validation with thousands of chemicals suggests un-
precedented predictive capacity, but this has to be taken with a
grain of salt until peer-reviewed publication and a formal inde-
pendent validation.

There are many hurdles to the broad use of QSAR for tox-
icity prediction. However, it appears that a critical mass of data
has been reached, which combined with cutting-edge
machine-learning deserves a validation challenge. The avail-
able data are constantly growing – our own data-base included
10 000, ECHA published early 2017 data for 15 000 and their
current website includes about 20 000 chemicals. Within short
time, in May 2018, they might rise to 40–60 000 chemicals with
respective data.

This work has contributed to making data available and
demonstrating their scientific usefulness. This illustrates the
path forward for cheminformatics in toxicology. Their practical
usefulness will have to be shown, but the sector is benefitting
from the fast advances in data warehousing and machine
learning allowing the deployment of artificial intelligence also
in the safety sciences.
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