-
Views
-
Cite
Cite
Yong Zhao, Ying S. Tan, Sandra Z. Haslam, Chengfeng Yang, Perfluorooctanoic Acid Effects on Steroid Hormone and Growth Factor Levels Mediate Stimulation of Peripubertal Mammary Gland Development in C57Bl/6 Mice, Toxicological Sciences, Volume 115, Issue 1, May 2010, Pages 214–224, https://doi.org/10.1093/toxsci/kfq030
- Share Icon Share
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic, widely used perfluorinated carboxylic acid and a persistent environmental pollutant. It is an agonist of peroxisome proliferator–activated receptor α (PPARα). Studies have shown that PFOA causes hepatocellular hypertrophy, tumorigenesis, and developmental toxicity in rodents, and some of its toxicity depends on the expression of PPARα. Our recent study revealed a stimulatory effect of peripubertal PFOA treatment (5 mg/kg) on mammary gland development in C57Bl/6 mice. The present study was designed to examine the underlying mechanism(s). It was found that mammary gland stimulation by PFOA was similarly observed in PPARα knockout and wild-type C57Bl/6 mice. The presence of ovaries was required for PFOA treatment (5 mg/kg) to stimulate mammary gland development with significant increases in the levels of enzymes involved in steroid hormone synthesis in both PFOA-treated wild-type and PPARα knockout mouse ovaries. PFOA treatment significantly increased serum progesterone (P) levels in ovary-intact mice and also enhanced mouse mammary gland responses to exogenous estradiol (E), P, and E + P. In addition, PFOA treatment resulted in elevated mammary gland levels of epidermal growth factor receptor (EGFR), estrogen receptor α, amphiregulin (Areg, a ligand of EGFR), hepatocyte growth factor, cyclin D1, and proliferating cell nuclear antigen (PCNA) in both wild-type and PPARα knockout mouse mammary glands. These results indicate that PFOA stimulates mammary gland development in C57Bl/6 mice by promoting steroid hormone production in ovaries and increasing the levels of a number of growth factors in mammary glands, which is independent of the expression of PPARα.
Comments