-
Views
-
Cite
Cite
Xiaoyan Yu, Cai Li, Xiaokun Li, Lu Cai, Rosiglitazone Prevents Advanced Glycation End Products–Induced Renal Toxicity Likely through Suppression of Plasminogen Activator Inhibitor-1, Toxicological Sciences, Volume 96, Issue 2, April 2007, Pages 346–356, https://doi.org/10.1093/toxsci/kfm010
- Share Icon Share
Abstract
In the development of diabetic nephropathy, advanced glycation end products (AGEs) play a causative role via induction of extracellular matrix (ECM) accumulation. Plasminogen activator inhibitor-1 (PAI-1), as a major inhibitor of plasminogen activator that plays an important role in degrading ECM, was found to significantly increase in renal fibrotic diseases. Activation of peroxisome proliferator-activated receptor (PPAR)-γ prevented diabetic nephropathy. The present study, therefore, was to define whether or not AGE-induced renal ECM accumulation and renal dysfunction are mediated by upregulation of PAI-1 expression and whether or not PPAR-γ agonist can attenuate these AGE effects via suppressing PAI-1 expression. Rats were given AGEs alone by iv injection at 100 mg/kg daily with or without oral supplementation of PPAR-γ agonist rosiglitazone (RGZ) at 2 mg/kg daily for 6 weeks. Results showed that AGEs induced a renal ECM accumulation, as shown by increases in periodic acid-Schiff-positive materials, fibronectin, and type IV collagen (Col IV) contents in glomeruli, and a mild renal dysfunction, as shown by an increase in urinary proteins. AGEs also caused an increase in PAI-1 expression and a decrease in plasminogen activator bioactivity in the kidney. Treatment with RGZ significantly ameliorated AGE-induced renal ECM accumulation, proteinuria, and PAI-1 upregulation. Direct exposure of rat mesangial cells to AGEs in vitro induced increases in fibronectin and Col IV syntheses along with an increase in PAI-1 expression, effects significantly attenuated by RGZ. Preincubation of PAI-1 antibody to AGE-treated mesangial cells completely prevented AGE-induced fibronectin and Col IV production. These results suggest that upregulation of PAI-1 expression plays a critical role in AGE-induced renal ECM accumulation. Renal protection of RGZ from AGEs may be associated with the suppression of PAI-1 expression through PPAR-dependent and independent mechanisms.
Comments