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The application of gene expression profiling technology to examine
multiple genes and signaling pathways simultaneously promises a
significant advance in understanding toxic mechanisms to ultimately
aid in protection of public health. Public and private efforts in the
new field of toxicogenomics are focused on populating databases with
gene expression profiles of compounds where toxicological and
pathological endpoints are well characterized. The validity and utility
of a toxicogenomics is dependent on whether gene expression profiles
that correspond to different chemicals can be distinguished. The
principal hypothesis underlying a toxicogenomic or pharmacog-
enomic strategy is that chemical-specific patterns of altered gene
expression will be revealed using high-density microarray analysis of
tissues from exposed organisms. Analyses of these patterns should
allow classification of toxicants and provide important mechanistic
insights. This report provides a verification of this hypothesis. Pat-
terns of gene expression corresponding to liver tissue derived from
chemically exposed rats revealed similarity in gene expression profiles
between animals treated with different agents from a common class
of compounds, peroxisome proliferators [clofibrate (ethyl-p-chloro-
phenoxyisobutyrate), Wyeth 14,643 ([4-chloro-6(2,3-xylidino)-2-
pyrimidinylthio]acetic acid), and gemfibrozil (5-2[2,5-dimethyl-
phenoxy]2-2-dimethylpentanoic acid)], but a very distinct gene
expression profile was produced using a compound from another
class, enzyme inducers (phenobarbital).
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sification; rat liver; pattern recognition.

Numerous approaches are used to investigate the relation-
ship between chemical exposure, toxicity, and disease states.
One approach is to study the modulation of gene expression in
a biological model in response to chemical exposure. This
modulation represents a signature of the cellular response to
the effect of the studied compound. These possible signatures
cannot be defined using classical methods where genes are
investigated individually for potential association to chemical
exposure. This is because the most highly characterized chem-
ical-responsive genes, such as genes encoding proteins or

enzymes that regulate metabolism, tend to be frequently mod-
ulated by many compounds, and therefore do not provide a
solid footing for providing specificity for distinguishing mul-
tiple classes. Given the universe of compounds available, sig-
natures may only be attained using a higher number of vari-
ables (i.e., number of genes), where the collective state
(expression) of these genes would define the profile associated
with exposure to that compound. The field of toxicogenomics,
through the use of DNA microarrays, has the potential to
advance our understanding of how multiple genes are involved
in responses of biological models to chemical exposure
(Burchiel 2001; Fielden and Zacharewski 2001; Hamadehet
al., 2001; Nuwaysiret al., 1999; Thomaset al., 2001; Waring
et al., 2001a,b). Instead of monitoring the expression of a few
genes in response to chemical exposure, DNA microarrays
enable the study of levels of expression of thousands of genes
at the mRNA level. The concerted expression pattern across
those genes constitutes the expression profile of a compound at
a certain dose and time.

Structurally unrelated compounds may belong to the same
class of chemicals because of similarity in the pharmacological
or toxicological endpoints they elicit. For example, at doses of
diethylhexylphthalate (DEHP) and Wyeth 14,643 that produce
similar levels of peroxisome proliferation in rat liver, Wyeth
14,643 produces an earlier and much greater liver tumor re-
sponse than does DEHP (Biegelet al., 1992; Melnicket al.,
1987).

In this study, we tested the hypothesis that structurally
unrelated compounds from the same chemical class produce
similar, yet distinguishable, gene expression profiles. We also
hypothesized that intraclass profiles are more similar to each
other than to profiles corresponding to agents from different
chemical classes. In order to test whether specific patterns of
gene expression can be defined for a class of compounds and
whether distinguishable patterns can be discerned within that
class, we studied the expression profiles of 3 well-studied
agents belonging to the peroxisome proliferator class of com-
pounds [clofibrate (ethyl-p-chlorophenoxyisobutyrate), Wyeth
14,643 (4-chloro-6[2,3-xylidino)-2-pyrimidinylthio]acetic
acid) and gemfibrozil (5–2[2,5-dimethylphenoxy]2-2-dimeth-
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ylpentanoic acid)]. We also studied the expression profile of a
well-studied enzyme inducer, phenobarbital, in order to deter-
mine whether a distinction could be made between it and the
peroxisome proliferators. Microarray analyses were performed
using liver RNA derived from chemically exposed Sprague-
Dawley rats at multiple time points of exposure.

This work highlights several important points for the utility
of toxicogenomics studies. First, the data confirm that com-
pound classification based on gene expression profiles is fea-
sible. In addition, the data illustrate the differences in the gene
expression elicited by chemicals that may be related in many
aspects but differ with respect to toxicological effects. Further
investigation of these differences might offer an explanation of
the dissimilarity in adverse effects associated with various
peroxisome proliferators. In addition, our report also addresses
the influence of the time of exposure on gene expression by
highlighting transient and delayed gene expression events in
response to the 2 classes of compounds studied. As toxicog-
enomics databases evolve, these distinctions will be important
for understanding mechanisms and developing signatures of
toxicity or adaptation. Finally, the data in this paper provides
important information on gene expression changes, including
time-independent changes that may be used to develop signa-
tures of the compound classes of peroxisome proliferators.
Underlying the analyses of these signature genes is the poten-
tial to develop hypotheses about the potential mechanism of
action of these agents.

MATERIALS AND METHODS

Animal treatment and sample collection.Male Sprague-Dawley VAF1

albino rats (CRL:CD(SD) BR; Charles River, Kingston, NY) approximately
5–7 weeks old were maintained on certified rodent chow (PMI Feeds, Inc.,
Brentwood, MO)ad libitum in individual stainless steel wire bottom cages
suspended on racks. The animals were kept under controlled lighting (12-h
light-dark cycle), temperature (72°6 5°F), and humidity (506 20%) and were
acclimated to this environment for 4–7 days prior to the start of the study.
Healthy rats were randomly assigned to dose groups (3 rats/group) by a
computerized method. For the 2-week studies, a 1-week pretest involved
dosing of all animals via oral gavage with 10 ml/kg vehicle. The 24-h studies
did not have any pretest period. Clofibrate (CAS # 637–07–0), gemfibrozil
(CAS # 25812–30–0), and phenobarbital (CAS # 57–30–7) were obtained
from Sigma (St. Louis, MO); Wyeth 14,643 (CAS # 50892–23–4) was
obtained from ChemSyn Laboratories (Lenexa, KS). Dosing suspensions of all
compounds were prepared using a high speed homogenizer, and all dose
suspensions were continuously stirred until completion of dosing. The perox-
isome proliferators (clofibrate, gemfibrozil, and Wyeth 14,643) were prepared
using 1% carboxymethylcellulose/0.2% Tween 80 as vehicle and phenobarbi-
tal was prepared using water as vehicle. Drug concentration and identity were
verified via HPLC, as per United States Pharmacopeia (USP) methods for
clofibrate, gemfibrozil, and phenobarbital. For Wyeth 14,643, a Waters 600E
HPLC was equipped with a variable wavelength detector set at 235 nm, and a
Symmetry Cs 4.63 250 mm column. Equal portions (approximately 10 ml) of
standard and test solutions were injected separately into the column. Parame-
ters of the run were as follows: mobile phase, 0.0738 M sodium acetate:
acetonitrile (55:45 v/v); flow rate, 1 ml/min; column temperature, ambient; and
run time, 6 min. The HPLC retention time of Wyeth 14,643 under these
parameters was 3.46 0.1 min. Body weights and food consumption were

measured weekly. Based on the most recently recorded body weights, the
volume of drug administered was adjusted. Animals were observed 2–3 times
daily for signs of overt toxicity. Experiments were performed according to the
guidelines established in theNIH Guide for the Care and Use of Laboratory
Animals. At the end of the drug phase of the study, each animal was fasted
overnight before necropsy. Animals were taken to a deep plain of anesthesia
with CO2, sacrificed by axillary vessel incision; exsanguination and necropsy
immediately followed. A cross section of the left lateral lobe of the liver was
collected in 10% neutral buffered formalin for histopathology. The remaining
portions of liver were collected in RNase-free tubes and snap frozen in liquid
nitrogen. Frozen tissues were stored at –70°C until processed for RNA extrac-
tion. A control sample was generated by pooling livers of 9 vehicle-treated
rats.

Histopathological analysis. The liver tissues collected in formalin at nec-
ropsy were processed, embedded in paraffin, sectioned at 5 microns, and
stained with hematoxylin and eosin (H&E). Histopathologic examinations of
the liver sections were conducted by a pathologist and peer-reviewed.

RNA isolation. Total RNA was isolated using QIAGEN (Qiagen, Valen-
cia, CA) RNeasy kits. Liver sections of 130–250 mg were used for midipreps
and liver sections of approximately 800 mg were used for maxipreps. Homog-
enization buffer was added to frozen liver sections, and the tissue was imme-
diately homogenized on ice (tissue did not thaw prior to homogenization) using
a Cyclone homogenizer equipped with a rotor/stator shaft (VirTis Company,
Gardiner, NY). Homogenates were processed as per the standard QIAGEN
3/99 protocol. Final product yielded 260 nm/280 nm ratios of 1.6–2.0, purity
was confirmed via gels, and concentration was determined based on 260 nm
absorbances.

cDNA microarray hybridization and analysis. A cDNA NIEHS Rat Chip,
v1.0, developed in-house at NIEHS, was used for gene expression profiling
experiments. A complete listing of the genes on this chip is available at the
following Web site: http://dir.niehs.nih.gov/microarray/chips.htm. cDNA mi-
croarray chips were prepared according to DeRisiet al., 1996. The spotted
cDNAs were derived from a collection of sequence-verified clones that cov-
ered the 39 end of the gene and ranged in size from 500 to 2000 base pairs
(Research Genetics). M13 primers were used to amplify insert cDNAs from
purified plasmid DNA in a 100ml polymerase chain reaction (PCR) mixture.
A sample of the PCR products (10ml) was separated on 2% agarose gels to
ensure quality of the amplifications. The remaining PCR products were puri-
fied by ethanol precipitation, resuspended in ArrayIt buffer (Telechem, San
Jose CA) and spotted onto poly-L-lysine-coated glass slides using a modified,
robotic DNA arrayer (Beecher Instruments, Bethesda MD).

For microarray hybridizations, each total RNA sample (35–75mg) was
labeled with Cyanine 3 (Cy3)- or Cyanine 5 (Cy5)-conjugated dUTP (Amer-
sham, Piscataway, NJ) by a reverse transcription reaction using reverse tran-
scriptase, SuperScript (Invitrogen, Carlsbad, California), and the primer, Oligo
dT (Amersham, Piscataway, NJ). Control samples were labeled with Cy3 while
samples derived from chemically exposed animals were labeled with Cy5. The
fluorescently labeled cDNAs were mixed and hybridized simultaneously to the
cDNA microarray chip. Each RNA pair was labeled and hybridized indepen-
dently in triplicate to a total of 3 arrays. The cDNA chips were scanned with
an Axon Scanner (Axon Instruments, Foster City CA) using independent laser
excitation of the 2 fluors at 532 and 635 nm wavelengths for the Cy3 and Cy5
labels, respectively.

The raw pixel intensity images were analyzed using the ArraySuite v1.3
extensions of the IPLab image processing software package (Scanalytics,
Fairfax, VA). This program uses methods that were developed and previously
described by Chenet al. (1997) to locate targets on the array, measure local
background for each target, and subtract it from the target intensity value, and
to identify differentially expressed genes using a probability-based method.
After pixel intensity determination and background subtraction, the ratio of the
intensity of the treated cells to the intensity of the control was calculated. We
have previously determined that significant autofluorescence of the gene fea-
tures on the array, attributed to spotting solution, occurs at high scanning
power (Tuckeret al., unpublished). We measured the pixel intensity level of
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“blank” spots comprised of spotting solution. The data was then filtered to
provide a cut off at the intensity level just above the blank measurement values
in order to remove from further analyses those genes having one or more
intensity values in the background range. The ratio intensity data from all of
the 1700 spots printed on the NIEHS Rat Chip v1.0 was used to fit a probability
distribution to the ratio intensity values and estimate the normalization con-
stants (mandc) that this distribution provides. The constantm, which provides
a measure of the intensity gain between the two channels, was approximately
equal to 1 for all arrays, indicating that the channels were approximately
balanced. For each array, the ratio intensity values were normalized to account
for the imbalance between the 2 fluorescent dyes by multiplying the ratio
intensity value bym. A probability distribution was fit to the data and used to
calculate a 95% confidence interval for the ratio intensity values. Genes having
normalized ratio intensity values outside of this interval were considered
significantly differentially expressed.

For each of the 3 replicate arrays for each sample, lists of differentially
expressed genes at the 95% confidence level were created and deposited into
the NIEHS MAPS database (Bushelet al., 2001). For each time point and each
animal, a query of the database yielded a list of genes that were differentially
expressed in at least 2 of the 3 replicate hybridizations. A calculation using the
binomial probability distribution indicated that the probability of a single gene
appearing on this list when there was no real differential expression is approx-
imately 0.0006. Hierarchical cluster analysis was carried out with the Cluster/
TreeView package (Eisenet al., 1998). The entire data set is available at
http://dir.niehs.nih.gov/microarray/datasets.

Real-time quantitative PCR. RNA samples representing single animals
treated with a peroxisome proliferator or phenobarbital for 24 h or 2 weeks
(1852 [clofibrate, 24 hr], 1868 [Wyeth 14,643, 24 hr], 1878 [gemfibrozil, 24
hr], 1890 [phenobarbital, 24 h], 888 [clofibrate, 2 weeks], 898 [Wyeth 14,643,
2 weeks], 912 [gemfibrozil, 2 weeks], and 926 [phenobarbital, 2 weeks]) were
used to validate the expression profile of 10 genes obtained using cDNA
microarray data [AA818412p450 2B2; AA996791carnitine palmitoyl trans-
ferase 1; AI111901 tripeptidylpeptidase II; AA923966 Aflatoxin aldehyde
reductase; AA957359p55cdc; AA957519stathmin cytosolic phosphoprotein
p19; AA965078 enoyl CoA isomerase; AA818188 ketoacyl thiolase;
AA963928Ah receptor; AI070587carboxylesterase precursor].

The primers for the aforementioned genes were designed using Primer
Expresst software (Applied Biosystems, Foster City, CA) and custom made
(Research Genetics, Huntsville, AL). Primers that resulted in a single product
which could be visualized on a 2% agarose gel were as follows:p450 2B2
[forward primer AGTGCATCACAGCCAACATCA, reverse primer GAGG-
GAAAAGGTCCGGTAGAA]; carboxylesterase precursor[forward primer
AGTACTGGGCCAATTTTGCAA, reverse primer TGGGTGTCCAACTG-
CAGGTA]; Ah receptor[forward primer CATCCTGGAAATTCGAACCAA,
reverse primer TGCAAGAAGCCGGAAAACT];carnitine palmitoyl trans-
ferase 1[forward primer CGGTTCAAGAATGGCATCATC, reverse primer
ATCACACCCACCACCACGATA]; ketoacyl thiolase [forward primer
ACGTGAGTGGAGGTGCCATAG, reverse primer CTCGACGCCTTA-
ACTCGTGAAC]; stathmin p19 [forward primer CACAATCCACTG-
GCAAGGAA, reverse primer TGCCATGTTGGACAGAAGACA].

Real-time PCR targeting the message corresponding to these 10 genes was
performed using the ABI prism 7700 Sequence Detection System (Applied
Biosystems, Foster City, CA) according to the manufacturer’s instructions. The
SYBRt Green I labeling kit (Applied Biosystems, Foster City, CA), was used
to detect double-stranded DNA generated during PCR amplification, used
according to the manufacturer’s instructions. Reverse transcription and PCR
reactions were performed at the same time in a 50ml reaction containing 4 mM
MgCl2, 0.8 mM of each dNTP, 100 ng total RNA, 0.4mM reverse primer and
0.4 mM forward primer, 0.4 units/ml RNasin, 0.025 units/ml AmpliTaq Gold
DNA polymerase (Roche, Basel, Switzerland) and 0.25 units/ml MulV Reverse
Transcriptase (Roche, Basel, Switzerland). Amplification reactions were car-
ried out using the following temperature profile: 48°C, 30 min; 95°C, 10 min;
95°C, 15 s; 60°C, 1 min) for 40 cycles. Fluorescence emission was detected for
each PCR cycle and the threshold cycle (CT) values were determined. The CT

value was defined as the actual PCR cycle when the fluorescence signal
increased above the background threshold. Induction or repression of a gene in
a treated sample relative to control was calculated as follows: Fold increase/
decrease5 e – (CT(exposed) – CT(control)). Values were reported as an average of
triplicate analyses.

RESULTS

Histopathology. To investigate whether different chemical
agents produce distinguishable gene expression profiles in bi-
ological systems, compounds belonging to 2 classes of rodent
liver toxicants were chosen for study (IARC 1977, 1987).
Sprague-Dawley rats were exposed to 1 of 3 peroxisome pro-
liferators (clofibrate, Wyeth 14,643, or gemfibrozil), or to an
enzyme inducer (phenobarbital), as described in Materials and
Methods. Animals were dosed orally via gavage with 250
mg/kg/day of clofibrate, 250 mg/kg/day of Wyeth 14,643, 100
mg/kg/day of gemfibrozil, or 120 mg/kg/day of phenobarbital
in a volume of 10 ml/kg. The administered doses targeted the
maximum tolerated dose (MTD) for each of the chemicals
(Butterworthet al., 1995). Histopathological examinations of
liver sections were conducted as described in the methods
section to score the gross tissue and organ effect of the admin-
istered doses at each time. No drug-related microscopic obser-
vations were apparent in animals sacrificed 24 h after a single
treatment with any of the compounds, whereas drug-related
microscopic hepatocellular hypertrophy was observed in livers
of all the 2-week treated animals. For the 3 peroxisome pro-
liferators, hypertrophic hepatocytes were characterized by
large cells with abundant microvesiculated eosinophilic cyto-
plasm. Large cells with abundant pale-staining eosinophilic
cytoplasm with basophilic stippling characterized hypertrophic
hepatocytes, in animals treated with phenobarbital.

Gene expression.In order to determine gene expression
changes associated with chemical exposure, liver mRNA was
collected 24 h following a single exposure or after 2 weeks of
daily exposures to the compound. Competitive hybridizations
of fluorescently labeled cDNA (Dugganet al., 1999) derived
from control vs. treated livers were used to measure relative
abundance of each mRNA on the custom NIEHS cDNA mi-
croarray Rat Chip v1.0, which contained;1700 sequence-
verified rat genes. We conducted statistical analyses of the
microarray data and determined significantly changed genes
using a ratio distribution model at the 95% confidence level, as
mentioned in the Materials and Methods section. We were able
to reduce the probability of false positives in our data set by
performing triplicate hybridizations on each of at least 3 inde-
pendent biological samples and by including only genes ex-
hibiting a binomial distribution probability# 0.0006 (Bushel
et al., 2001). These genes were utilized for further higher-level
comparative analyses (e.g., clustering).

Exploratory interpretation. The results obtained from the
collective microarray analysis of the peroxisome proliferator-
treated rat livers revealed significant gene expression changes
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in approximately 25% of the genes on the rat chip and eluci-
dated interesting molecular changes and pathway relationships
associated with peroxisome proliferator exposure (Table 1).
These pathways include stimulation of triglyceride hydrolysis,
fatty acid uptake and conversion to acyl CoA derivatives, and
stimulation of theb-oxidation pathway. Observation of alter-
ation of these pathways corroborates past data (Amacheret al.,
1997; Schoonjanset al., 1996) and serves as a validation of the
use of microarrays to rapidly interrogate effector pathways of
toxicants.

The mechanism of action of phenobarbital, a compound that
has been studied for over 40 years, is only partially understood.
Similar to the peroxisome proliferator data, our phenobarbital
microarray data corroborates previously described metabolic,
pharmacologic, and toxicologic effects of phenobarbital and
offers new clues that might be further investigated to better
define its mechanism of action (Table 2). For example, we

observed the upregulation of previously reported cytochrome
P450 genes, such asCYP 2B2, 2C6, 3A9,and other genes such
asepoxide hydrolase, diaphorase, and severalGSTs(Furukawa
et al., 1985; Griffinet al., 1984; Tavoloniet al., 1983; Whysner
et al., 1996) as well as the induction of several novel genes,
such ascarboxylesterase precursor. In addition, our novel
observation of the downregulation ofcarnitine palmitoyl trans-
ferase 1(CPT 1)in phenobarbital-treated rats may explain the
significant reduction (30–60%) of 4 carnitine constituents (to-
tal and free carnitine and short- and long-chain fatty acid
carnitine esters) observed in serum from 471 patients treated
for convulsions with phenobarbital (Huget al., 1991). The
combination of decreasedCPT 1levels and downregulation of
Acyl CoA synthetase, a gene involved in the catalysis of fatty
acid esterification, suggests an inhibition of fatty acid peroxi-
dation. Major metabolic pathways such as gluconeogenesis,
glycolysis, b-oxidation, and fatty acid peroxidation were de-

TABLE 1
Peroxisome Proliferator Effects on a Sampling of Genes

Biochemical pathway Gene name Description

Wyeth 14,643 Gemfibrozil Clofibrate

24-h 2-week 24-h 2-week 24-h 2-week

Hydrolysis of triglycerides
LPL Hydrolysis of glyceride- rich particles 1.29 4.65 1.03 1.69 0.67 1.29
Lipid-binding protein 1.57 12.40 1.62 8.17 0.95 2.96

Effects on HDL
Apo A-1 Protein component of HDL 0.46 0.08 0.57 0.46 0.57 0.59

Fatty-acid transport/metabolism
FABP Fatty acid binding protein 2.05 1.37 2.28 2.09 1.11 2.42
CPT1 Mitochondrial shuttling of FA 9.57 55.13 3.02 4.12 5.82 1.71
ALDH 2.63 1.73 1.56 1.80 2.06 0.66

b-Oxidation
ACO First step in fatty acidb-oxidation 1.06 3.41 1.93 5.85 0.73 5.05
Thiolase b-Oxidation enzyme 1.66 1.39 1.20 1.09 1.78 0.75
Enoyl CoA isomerase b-Oxidation enzyme 1.68 2.07 1.31 1.00 1.75 0.54

Glycolysis/gluconeogenesis
G-6-P Glucose-6-phosphatase 0.45 0.35 0.69 0.41 0.68 0.37
Glucose transporter Transport of glucose 0.20 0.15 0.72 0.83 0.68 1.02
Lactate dehydrogenase 1.32 0.94 0.81 0.80 0.89 0.44
Pyruvate carboxylase Gluconeogenesis enzyme 0.67 0.44 0.69 0.75 0.56 0.61
GSDP type 1 Glycogen storage disease protein 0.27 0.48 0.61 0.94 0.64 1.19

Fatty acid synthesis
Stearoyl CoA desaturase Fatty-acid synthesis 6.20 18.31 2.58 12.37 7.11 3.42
FAS Fatty-acid synthase 1.52 6.51 1.26 5.91 0.79 3.75

Structural a-Tubulin Structural protein 8.52 13.01 2.22 2.42 2.72 1.46

Cell cycle/proliferation
Cyclin B 4.46 8.05 1.44 1.83 1.87 1.62
Cyclin G 0.59 0.77 0.79 0.61 0.70 0.64
Histidine decarboxylase Converts histidine to histamine 17.16 70.39 6.22 7.66 4.44 4.82

Acute phase proteins
SAP Serum amyloid P 0.44 0.27 0.54 0.54 0.54 0.61
Retinol binding protein 0.37 0.27 0.64 0.63 0.64 0.67
Transthyretin 0.48 0.16 0.52 0.70 0.63 0.68

Note. Examples of genes whose levels were altered in a statistically significant manner after peroxisome proliferator exposure; genes were grouped by
biochemical categories. The complete data set can be accessed at the NIEHS microarray Web site at http://dir.niehs.nih.gov/microarray/datasets.
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TABLE 2
Phenobarbital Effects on a Sampling of Genes

Biochemical pathway Gene name Description

Induction/repression

24-h 2-week

Hydrolysis of triglycerides LPL Hydrolysis of glyceride rich particles 0.90 3.39
Effects on HDL Apo A-1 Protein component of HDL 0.63 0.39
Fatty acid transport/metabolism

Acyl CoA synthetase Peroxidation of FFA 0.57 0.53
CPT1 Mitochondrial shuttling of FFA 1.17 1.61

b-Oxidation
Acyl CoA oxidase First step in fatty acidb-oxidation 3.87 7.92
Ketoacyl thiolase b-oxidation enzyme 1.62 1.36
Enoyl CoA isomerase b-oxidation enzyme 0.57 0.37

Glycolysis/gluconeogenesis
G-6-P Glucose-6-phosphatase 0.47 0.38
Monocarboxylate transporter Trans-mitochondrial membrane shuttling 0.29 0.2
Lactate dehydrogenase Conversion of pyruvate to lactate 0.51 0.49
Pyruvate carboxylase Gluconeogenesis enzyme 0.38 0.41
Alcohol dehydrogenase Conversion of acetaldehyde to ethanol 0.65 0.46

Fatty acid synthesis
Stearoyl CoA desaturase Fatty acid synthesis 0.63 1.19
FAS Fatty acid synthase 1.70 4.95
ALDH Converts acetaldehyde to acetyl CoA 3.49 6.12

Structural
Rho-associated protein kinase Rearrangement of actin 1.86 2.80
Fetuin Involved in cirrhosis 0.74 0.47

Cell cycle/proliferation
Cyclin B Cell cycle 4.34 1.85
Cdc2 Cell cycle 3.04 1.37
P55cdc Cell cycle 0.57 0.38
ARL5 DNA synthesis 2.04 1.81
DNA polymerase b DNA synthesis/repair 2.08 3.55
ADP-ribosyl transferase DNA synthesis 2.25 1.31
AIRC-SAICAR synthase DNA synthesis 6.90 2.48

Acute phase proteins
Retinol-binding protein 0.67 0.48
Transthyretin 0.67 0.59

Microsomal and related enzymes
CYP2B1 Microsomal metabolizing enzyme 12.04 11.5
CYP3A9 Microsomal metabolizing enzyme 1.81 3.80
CYP2C6 Microsomal metabolizing enzyme 2.19 2.87
Epoxide hydrolase Microsomal metabolizing enzyme 5.30 8.52
Carboxylesterase precursor Microsomal metabolizing enzyme 6.66 16.21
5-Aminolevulinae synthase Heme biosynthesis 3.57 2.30
C kinase substrate Role in induction of P450 enzymes 1.05 2.24
Adducin Role in induction of P450 enzymes 1.59 1.67
Dopa decarboxylase Role in induction of P450 enzymes 3.67 5.07

GST Ya, Yb, Yc GlutathioneS-transferases 4.03 4.89
Detoxification enzymes Aflatoxin aldehyde reductase Detoxification of aflatoxin B1 3.45 6.30

Syndecan 1 Multitude of tumors 2.00 1.86
Biomarkers of carcinogenesis Hydroxysteroid sulfotransferase Liver pre-neoplastic foci 0.66 0.25

TSC-22 Salivary gland tumorigenesis 0.52 0.58

Ah receptor Aromatic hydrocarbon receptor 2.67 3.43
Other 17b Hydroxysteroid dehydrogenase 1.32 1.45

3-a-Hydroxysteroid dehydrogenase 2.30 0.78

Note.Examples of genes whose levels were altered in a statistically significant manner after phenobarbital exposure; genes were grouped by biochemical
categories. The complete data set can be accessed at the NIEHS microarray Web site at http://dir.niehs.nih.gov/microarray/datasets.
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creased by phenobarbital treatment, while fatty acid synthesis
was stimulated (Argaudet al., 1991; Thurman and Marazzo,
1975). Although some of these gene inductions were previ-
ously reported, there has been little effort to integrate the
observations in the context of phenobarbital’s mechanism of
action. Our results offer a more comprehensive overview of
molecular responses to toxicant exposure by revealing the
coordinate expression of multiple genes in homeostasis and
metabolic pathways. The agreement of the expression profiles
for phenobarbital and peroxisome proliferators with past, tra-
ditional studies lends confidence in the use of these gene
expression profiles in further pattern recognition applications.

Gene expression validation.Our gene expression data is
validated in 3 ways. The first is by replicate analysis. We used
3 animals for each compound and measured the gene expres-
sion for each animal on 3 chips. This approach generated 9
measurements for each gene. The combined use of a confi-
dence interval and the binomial probability aided in eliminat-
ing genes with high biological or technical variability from
further analyses (i.e., clustering). Secondly, we routinely con-
duct resequencing of the clones we find significantly changed.
Currently, our clone set shows an accuracy of approximately
90%. Identification of clones is updated on our Web site,
http://dir.niehs.nih.gov/microarray/chips.htm. Finally, we vali-
dated the expression profile of 10 genes across samples derived
from individual animals exposed to peroxisome proliferators or
phenobarbital at the 24-h and 2-week time points. Sample PCR
products were run on a 2% agarose gel and visualized by
ethidium bromide staining. A representative gel indicating the
quality of the reactions is shown in Figure 1. Comparison of
data from cDNA microarray and real-time polymerase chain
reaction (RT-PCR) evaluations demonstrated a high level of
correlation between the 2 approaches (Table 3), where the
induction or repression of each gene was confirmed across
multiple samples. Microarray measurements are typically only
semiquantitative, with compression of values occurring at
high-fold changes. The RT-PCR measurements are likely to
provide better quantitation for genes such asp4502B2(pheno-
barbital 12.42 fold on microarray, 32-fold by RT-PCR), but
generally the quantitative measurements with the 2 approaches
are well correlated (Table 3).

Pattern recognition. A critical question in toxicogenomics
is whether gene expression information may be used to reveal
chemical-specific signature patterns. We used several compu-
tational analyses to determine whether different toxicants result
in distinguishable gene expression patterns. Application of
hierarchical cluster analysis (Eisenet al., 1998) confirmed that
individual animals could be distinguished by the class of tox-
icants to which they were exposed (Fig. 2) and revealed 2
distinct nodes containing animals treated with either of the 2
classes of chemicals. Across experiments, one node represents
the 3 animals that were exposed to phenobarbital, while the
other node includes animals treated with Wyeth 14,643, gem-

fibrozil, or clofibrate. Furthermore, in the latter node, individ-
ual animals were clustered in separate subnodes denoting the
specific peroxisome proliferator to which they were exposed.

We used principal components analysis (PCA), which is a
pattern recognition technique that represents a multivariate
statistical method that is useful for reducing multidimensional
data (such as high-density gene expression data) down to 2 or
3 dimensions that can be readily comprehended. The principal
components were new variables created from linear combina-
tions of the starting variables (genes), where each principal
component is orthogonal or not correlated with all others. The
first principal component contained the largest part of the
variance of the data set (37.5%) with the subsequent principal
components containing correspondingly smaller amounts of
variance (18.7 and 12.1% for 2nd and 3rd, respectively). This
analysis allowed the visualization, in 3-dimensional space for
simplicity, of the discrimination between the gene expression
responses elicited by these 2 classes of compounds (Fig. 3).
PCA demonstrated close proximity in the gene expression
pattern between clofibrate-, Wyeth 14,643-, and gemfibrozil-
exposed animals, but indicated a distinct partition (separation)
between these compounds and phenobarbital-exposed animals.

Finally, pairwise comparisons (Fig. 4) of gene expression
profiles of individual animals exposed to chemicals showed
confirmation of the discerning potential of microarray data.
Comparison of gene expression profiles of two different ani-
mals exposed to the same compound resulted in a relatively
high correlation (e.g.,r . 10.8 for Wyeth 14,643 vs. Wyeth

FIG. 1. Assessment of amplification of the RT-PCR specificity validation
experiment using agarose gel electrophoresis: 60ml of PCR reaction product
corresponding to each gene were concentrated, then separated on a 2% agarose
gel. Marker ladders (1 kb and 100 bp; Invitrogen, Carlsbad, CA) were run on
either side of the samples. Each lane shows a representative product for the
gene indicated.
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14,643) as compared to animals exposed to different com-
pounds belonging to the same class (e.g.,r ; 10.6 for Wyeth
14,643 vs. gemfibrozil or clofibrate). However, comparisons of
animals treated with toxicants belonging to different classes of
compounds resulted in a relatively low correlation (e.g.,r , 1
0.4 for Wyeth 14,643 vs. phenobarbital). In summary, the data
in Figures 2, 3, and 4 indicate that through multiple approaches
and bioinformatics tools, it is possible to discriminate gene
expression profiles generated as a response to distinct liver
toxicants. Proof of this concept aids in validation of the future
potential of a predictive toxicogenomic strategy.

Time dependency of gene expression.One potential appli-
cation of microarrays in toxicology is their use in predicting
toxicity of undefined chemicals prior to the appearance of
pathological or disease outcomes. Gene expression profiles
from animals treated with a compound of unknown toxicity
may be compared with a database of DNA microarray-gener-
ated gene expression data corresponding to known compounds.
However, toxicological effects are confounded by time and
dose dependency of lesions that lead to differences in gene
expression signatures. Therefore, we evaluated whether time-
independent gene expression responses that represent signa-
tures of chemical-specific alterations occur. Application of
clustering methods to the data from phenobarbital and the
peroxisome proliferators at 2 time points allowed the identifi-
cation of time-independent regulation (up or down) of genes in
response to compound treatment (Fig. 5). Those genes that are
regulated in the same fashion upon compound exposure at
multiple time points may potentially serve as reliable biomar-
kers of effect when establishing time-independent gene expres-
sion profiles.

RNA based gene expression analysis may be regarded as a
snapshot of molecular occurrences in time/space. Analysis of
expression at one time point can be misleading due to transient
and delayed gene expression events. We studied transient and
delayed alterations in gene expression in response to the daily

exposure to the chemicals used in this study. Figure 6 illus-
trates the value of studying multiple time points, and the cluster
indicates genes that are altered at the delayed time point. These
genes may be further investigated or corroborated in future
studies for their association with chronic toxicity or adaptation
(Fig. 6).

DISCUSSION

The goal of this study was to determine whether generation
of chemically associated gene expression profiles, using mi-
croarray technology, would permit classification of compound
associated signatures. We generated gene expression profiles
corresponding to 3 peroxisome proliferators, clofibrate, Wyeth
14,643, and gemfibrozil, and an enzyme inducer, phenobarbi-
tal, and demonstrated that gene expression profiling is indeed a
powerful tool for distinguishing gene expression generated by
structurally unrelated toxicants in anin vivo model. Those
distinctions were made even when compounds shared some
endpoints such as peroxisome proliferation. A greater similar-
ity was found among peroxisome proliferators than among the
peroxisome proliferators and phenobarbital. Clustering of
genes that were significantly affected by the 24-h exposures,
where no histopathological abnormalities were detected, dem-
onstrated that gene expression profiles might be successfully
used for compound classification.

Whether animals should be grouped together as a pool or
examined individually represents one issue in the design of
toxicogenomics studies. Some investigators advocate pooling
for the costly microarray analysis and using individual animals
for the follow-up verification steps. However, pooling may
cause misinterpretation of data if one animal shows a remark-
ably distinct response, or lack of response. In this study we
analyzed individual chemically exposed animals against a pool
of control animals. The generation of gene expression profiles
corresponding to 3 animals exposed to the same compound, as

TABLE 3
Validation of cDNA Microarray Data by Real-Time PCR

Accession no. Gene name

24-h 2-week

C (Rat 1852) W (Rat 1868) G (Rat 1878) P (Rat 1890) C (Rat 888) W (Rat 898) G (Rat 912) P (Rat 926)

RT-PCR cDNA RT-PCR cDNA RT-PCR cDNA RT-PCR cDNA RT-PCR cDNA RT-PCR cDNA RT-PCR cDNA RT-PCR cDNA

AA818412 p450 2B1 1.11 1.45 1.84 1.23 1.45 0.99 32.00 12.42 1.18 1.08 1.33 1.24 1.63 0.93 19.38 11.49
AA996791 Carnitine Palmitoyl Transferase 1 6.41 5.51 7.46 5.76 4.54 2.77 0.91 0.99 1.84 3.79 3.16 1.84 1.91 1.11 1.34 1.04
AI111901 Tripeptidylpeptidase II 1.70 2.33 4.02 3.02 1.38 1.15 0.41 0.36 1.23 1.17 3.90 3.43 1.01 1.26 0.09 0.18
AA923966 Aflatoxin aldehyde reductase 1.48 1.20 1.61 0.70 1.90 1.19 2.37 3.46 1.39 1.57 1.00 0.79 0.90 0.48 5.79 2.96
AA957359 P55cdc 1.78 2.07 1.56 1.86 0.47 1.05 2.23 0.45 0.62 0.56 1.91 1.74 1.10 0.83 0.46 0.37
AA957519 Cytosolic phosphoprotein (p19) 1.07 0.86 1.51 1.48 1.70 1.37 3.38 2.70 1.40 1.46 1.69 1.97 0.95 1.12 4.28 3.55
AA965078 Enoyl CoA isomerase 1.96 1.69 1.43 1.64 1.44 1.21 0.65 0.53 0.85 0.69 2.53 2.09 0.88 0.92 0.27 0.39
AA964573 Thiolase 2.26 1.99 2.02 1.76 1.53 1.24 0.36 0.56 1.30 0.80 1.79 1.50 0.91 0.86 0.38 0.52
A859478 Ah receptor 1.02 1.08 1.31 0.94 1.21 0.82 3.51 3.00 1.39 1.24 1.04 0.70 1.12 1.27 4.32 3.50
AI070587 Carboxylesterase precursor 2.13 1.53 3.61 3.44 3.25 2.45 8.51 6.27 7.06 7.14 7.67 6.49 2.58 1.70 26.60 26.69

Note.Values are fold induction/repression over control. C, clofibrate; W, Wyeth 14,643; G, gemfibrozil; P, phenobarbital; RT-PCR, real-time polymerase chain
reaction-derived data (average of 3 measurements); cDNA, cDNA microarray-derived data (average of 3 measurements).
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opposed to pooling, allowed for the detection of interanimal
differences. This facilitated the testing of the robustness of
DNA microarray technology and pattern recognition algo-
rithms to generate distinguishable gene expression profiles,
despite the existence of differences in response across similarly
treated animals. Although we have observed similarities as
high as about 90% between animals exposed to the same
agents, this similarity showed chemical dependence, reaching
about 80% with some of the compounds. The best interanimal
correlation was observed among Wyeth 14,643-treated ani-
mals, where we saw the greatest number of statistically signif-
icant gene expression modulations, suggesting that compound
potency may be positively related to decreased variation in
gene expression response.

There is high concordance of the expression changes found
in the microarray analyses in phenobarbital-exposed rats with
the results obtained by scientists using other methodologies
over many years of study. This concordance is illustrated in a
display for gene expression changes in the form of an “effector
pathway map” (EPM) for chemical action. The phenobarbital
gene expression profile data set was mapped into previously
defined cellular response pathways to demonstrate the infor-
mational power of this type of data presentation (Fig. 7).
Organization of data in this integrated diagram facilitates clear
visualization of regulatory and molecular events occurring as a
response to chemical exposure and visualization of pathways
that were affected by phenobarbital. At a glance, this diagram
illustrates how the gene expression profile data has corrobo-

FIG. 2. Different class compound toxicants generate discrete gene expression profiles. Genes whose expression profile was significantly altered in any
toxicant-exposed animal at the 24-h time point were clustered according to their expression levels across animals. Samples were also clustered based on the
pattern of expression of the studied genes. A node is highlighted showing the expression pattern of a subset of genes representative of the overall grouping of
samples derived from the livers of chemically exposed rats.
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rated past findings (Fig. 7, yellow targets) and may contribute
new mechanistic insights (Fig. 7, blue targets).

Chronic cell proliferation is proposed as a major mechanism
for tumor promotion by phenobarbital (Barbasonet al., 1983;
Feldmanet al., 1981; Whysneret al., 1996). Histopathological
analysis indicated liver enlargement at 2 weeks in phenobar-
bital-treated animals. Several studies have demonstrated that
phenobarbital induced increases in DNA synthesis in rats and
mice of various strains (Busser and Lutz, 1987). Our data
corroborates phenobarbital-induced increase in cell prolifera-
tion. Transcript levels forDNA polymerase b, AIRC-SAICAR
synthase, cyclin B1, and ARF-like factor (ARL5)were in-
creased at the 24-h and 2-week time points, relative to controls,
by phenobarbital exposure, indicating increased DNA synthe-
sis and liver proliferation. This observation is further supported
by the modulation in cytoskeleton rearrangement-related
genes, such asrho-associated protein kinase,which is essential
for the rearrangement of actin cytoskeleton (Ohashiet al.,
2000; Watanabeet al., 1999), suggesting a role for these
alterations in the hypertrophy observed in the livers of the
exposed animals. We also observed the upregulation ofphos-
phoprotein stathmin(p19) at the 2 time points in response to
phenobarbital exposure.Phosphoprotein stathmin (p19), which
is abundant in neuroendocrine tumor cells, showed a 15-fold
greater abundance in newborn than in adult brain and its levels
increased after two-thirds partial rat hepatectomy (Koppelet
al., 1993), suggesting a role in regeneration and growth of
various tissues. These data support the observation that phe-
nobarbital produces liver enlargement due to proliferation of
liver cells and offers new insights on its molecular basis.

Analysis of transient, delayed, and time-independent alterations
suggested a relationship between the pattern of expression and

gene function. The majority of genes that were expressed in a
time-independent fashion in response to phenobarbital or peroxi-
some proliferator treatment corresponded to enzymes that func-
tion in compound metabolism (Fig. 5A;p450 2B2, epoxide hy-
drolase 1, GST, aflatoxin B1 aldehyde reductase) or cell
biochemical processes (Figs. 5A–5C;Acyl CoA oxidase, Carni-
tine palmitoyltransferase 1, histidine decarboxylase, stearyl-CoA
desaturase). This makes sense when one considers that animals
were treated with the studied chemicals on a daily basis, furnish-
ing recurring surges in blood levels of the compounds in the
exposed animals, and thus affecting compound metabolism genes
or downstream effects.

Metabolism-related genes were notably absent from the tran-
siently altered transcripts, the majority of which represented
signaling related genes (Fig. 6A). This is consistent with the
transient nature of the response and these genes probably
constituted an initial response in the liver upon exposure to the
specific toxicants for the first time. Alterations in gene expres-
sion that were present at 2 weeks of exposure but not at the
24-h time point (Fig. 6B) constituted delayed responses to
toxicant exposure. These responses could be associated with
adaptation events or with the relation to the histopathological
observation of hypertrophy noted in all animals treated by
chemicals for 2 weeks. These changes could also be due to
overt toxicity that may be manifested in gene expression re-
sponses but not necessarily detected by histopathological ex-
amination until a much longer period of exposure.

FIG. 4. The ratios of exposed to control animals corresponding to tran-
script levels of genes whose expression was significantly altered in any
toxicant-exposed animal at the 24-h time point, were compared via set pairwise
correlation analysis using Spotfire software (Spotfire, Inc., Cambridge, MA).
Comparison of rats treated with the sample compound showed the highest
correlation (Wyeth 14,643-treated animals). Comparison of Wyeth 14,643 with
either clofibrate- or gemfibrozil-treated animals yielded appreciable correla-
tion, which was in agreement with the fact that both of those compounds
belonged to the same peroxisome proliferator class of toxicants. The correla-
tion dropped sharply when Wyeth 14,643- and phenobarbital-treated animals
were compared, and indicated poor correlation.

FIG. 3. The Partek Pro 2000 software package was used for visual PCA
of the data for genes that were altered in a statistically significant manner with
any of the treatments used. The first principal component for this data set
accounted for 37.4% of the variation present, the second component for an
additional 18.7%, and the third for 12.1%. Each colored point represents data
from an individual animal treated with the respective agent for 24 h.
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We have successfully generated gene expression profiles
for 3 peroxisome proliferators and an enzyme inducer, and
we were able to show, through the application of pattern
recognition algorithms and computational analyses, that
these patterns were distinct. We demonstrated that chemi-

cals from the same class of compounds give rise to discern-
able gene expression profiles that bear more similarity to
each other than to patterns corresponding to exposure to
compounds from a different class. Systematic development
of an expanded database for gene expression responses to

FIG. 5. Two-dimensional, hierarchical clustering analysis of genes that were altered in a statistically significant manner at 95% confidence level in at least 2 of the
replicate hybridizations performed on each sample. Data from 9 hybridizations, representing 3 replicates of 3 independent biological samples derived from rats treated
with the same compound at each time point, were averaged, and those values were used for clustering analysis. Clustering analysis was performed across genes but not
animals. Genes are represented on the vertical axis while animals are on the horizontal axis. (A) Highlighted nodes from a hierarchical clustering tree, showing a suite
of genes whose transcripts were increased in phenobarbital-exposed animals over controls in a time-independent fashion. (B) Genes modulated by gemfibrozil treatment
in a similar fashion at 24 h and 2 weeks of exposure. (C) Nodes showing different genes that were modulated by peroxisome proliferators collectively ina
time-independent fashion. Red, gene induction; green, gene repression in the treated samples, relative to control.
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drugs and environmental pollutants may yield compound-
specific signature patterns that would also provide insights
into affected regulatory and proliferative and repair/adap-
tive pathways. We demonstrated the validity of our expres-
sion data by corroborating published reports on the chemi-

cals that we utilized. In addition, our data revealed gene
expression that has not been previously associated with the
compounds we used and suggest that such results will
provide valuable targets for further investigations of the
mechanism of action of chemical hazards.

FIG. 6. Illustration of transient ver-
sus delayed responses in gene expres-
sion. Nodes from 4 hierarchical cluster-
ing trees corresponding to the chemicals
used in this study were highlighted to
show examples of (A) transiently altered
transcripts or (B) genes that required a
delayed period of time for up- or down-
regulation, implicating those genes as
possible biomarkers of toxicant-associ-
ated delayed toxicity or adaptation to ex-
posure. Red, gene induction; green, gene
repression in the treated samples, relative
to control.
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FIG. 7. Genes modulated with phe-
nobarbital exposure, displayed as a map
of effector pathways of toxicant (MEPT),
a schematic diagram of phenobarbital-
modulated gene expression events. En-
zymes enclosed in yellow boxes were
altered in this study and were previously
reported in the literature to be modulated
by phenobarbital treatment, while those
in blue were not previously associated
with phenobarbital exposure and are
novel observations. The colored circles
indicate the type of modulation. The cir-
cle before the slash in each grouping
denotes the 24-h time point; the circle
after the slash, the 2-week time point.
Red, upregulation; green, downregula-
tion; black, no change.
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