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ABSTRACT

The robust transcriptional plasticity of liver mediated through xenobiotic receptors underlies its ability to respond rapidly
and effectively to diverse chemical stressors. Thus, drug-induced gene expression changes in liver serve not only as
biomarkers of liver injury, but also as mechanistic sentinels of adaptation in metabolism, detoxification, and tissue
protection from chemicals. Modern RNA sequencing methods offer an unmatched opportunity to quantitatively monitor
these processes in parallel and to contextualize the spectrum of dose-dependent stress, adaptation, protection, and injury
responses induced in liver by drug treatments. Using this approach, we profiled the transcriptional changes in rat liver
following daily oral administration of 120 different compounds, many of which are known to be associated with clinical risk
for drug-induced liver injury by diverse mechanisms. Clustering, correlation, and linear modeling analyses were used to
identify and optimize coexpressed gene signatures modulated by drug treatment. Here, we specifically focused on
prioritizing 9 key signatures for their pragmatic utility for routine monitoring in initial rat tolerability studies just prior to
entering drug development. These signatures are associated with 5 canonical xenobiotic nuclear receptors (AHR, CAR, PXR,
PPARa, ER), 3 mediators of reactive metabolite-mediated stress responses (NRF2, NRF1, P53), and 1 liver response following
activation of the innate immune response. Comparing paradigm chemical inducers of each receptor to the other
compounds surveyed enabled us to identify sets of optimized gene expression panels and associated scoring algorithms
proposed as quantitative mechanistic biomarkers with high sensitivity, specificity, and quantitative accuracy. These
findings were further qualified using public datasets, Open TG-GATEs and DrugMatrix, and internal development
compounds. With broader collaboration and additional qualification, the quantitative toxicogenomic framework described
here could inform candidate selection prior to committing to drug development, as well as complement and provide a
deeper understanding of the conventional toxicology study endpoints used later in drug development.

Key words: receptor; gene expression/regulation; toxicogenomics; methods; transcription factors; liver; systems; toxicology;
biomarkers; safety evaluation.

A large fraction of pharmaceutical candidates fail during devel-
opment due to safety liabilities uncovered during regulated

preclinical testing or during clinical trials (Stevens and Baker,
2009; Waring et al., 2015). Thus, earlier and more accurate
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predictors of risks destined to surface later, either in preclinical
or even clinical studies, are important for more efficient, suc-
cessful, and safer pharmaceutical development. A particularly
promising and largely untapped opportunity for the develop-
ment of predictive risk assessment assays lays just prior to the
regulated phases of drug discovery, where test animals are first
exposed to repeated high doses of study compound to first as-
sess tolerability and appropriateness for selection to enter de-
velopment. These are typically the first studies where
sufficiently high pharmacologic and metabolic burdens are
achieved in living animals that could unmask signals of molec-
ular initiating events that could lead to preclinical or clinical
toxicities. Although well-recognized toxicological phenotypes
(eg, tumors) may take months, or years to develop, there is op-
portunity to detect evidence for molecular initiating or protec-
tive defensive events during short-term repeated dose studies
that are predictive of high downstream potential for preclinical
or clinical liabilities.

Indeed, the liver undergoes dramatic molecular adaptation
to neutralize and respond to xenobiotic stressors, providing po-
tential sensitive signals for human drug-induced liver injury
(DILI), and rodent carcinogenicity biomarker development.
Much of this adaptation is orchestrated via transcriptional plas-
ticity, making gene expression an attractive platform for bio-
marker development (Igarashi et al., 2015; Qin et al., 2016;
Sutherland et al., 2018) especially as broad transcriptional profil-
ing technologies allow assessment of numerous biological pro-
cesses in a single assay. Importantly, drug-induced gene
expression changes in liver serve not only as biomarkers of liver
injury, but also as sentinels of adaptation in absorption, distri-
bution, metabolism, elimination, and detoxification of chemi-
cals (ADMET), which have the potential to inform toxicologic
and carcinogenic predisposition and mechanisms. Determining
how the combined fingerprint of these diverse biological
responses relates to the presence or absence of long-term toxi-
cological outcomes in both the test species and humans would
position these biomarkers for more routine and practical risk
assessment utility.

To this end, there have been substantial efforts to character-
ize the breadth of drug-induced transcriptional responses in ro-
dent liver, most notably the DrugMatrix and Open TG-GATEs
efforts where genome-wide transcriptional data were collected
on hundreds of compounds at multiple doses and durations
(Afshari et al., 2011; Ganter et al., 2005; Igarashi et al., 2015; Te
et al., 2016). These and other more focused efforts have resulted
in multiple reports demonstrating the promise of transcrip-
tional biomarkers for more accurate and earlier prediction of
liver liabilities in the test species (Qin et al., 2016). For example,
toxicogenomics has been useful for carcinogenicity prediction
(Thomas and Waters, 2016). A recent analysis (Sutherland et al.,
2018) applied gene coexpression approaches to the Open TG-
GATEs dataset proposing gene networks that may change in rat
liver following administration of diverse drugs. The utility of
this coexpression framework was proposed for the hypothe-
sized linkage of the gene expression changes to a spectrum of
toxicities in chronic rat studies, therefore providing mechanistic
insights into later observed toxicities.

There are 2 major hurdles for transitioning transcriptional
biomarkers from investigational and hypothesis generating
tools to decision-making assays that can be relied upon to in-
form the propensity for nonclinical and clinical risk. First, ana-
lytical performance and quantitative thresholds of significant
biomarker responses must be established in the test species un-
der dosing paradigms that match those executed during routine

preclinical testing. Second, those biomarker responses and
assigned thresholds must be capable of discriminating benign
from toxicological outcome at specified target doses either in
the preclinical species or upon relevant exposures in clinical tri-
als. In this study, we focused on optimizing analytical perfor-
mance of multiple biomarkers of liver xenobiotic response with
nonclinical or clinical implications. The application of these bio-
markers for predicting thresholds of toxicologic risk as a func-
tion of dose and exposure relationship, both in the test animal
species and at targeted therapeutic exposures in humans is
addressed elsewhere (Monroe et al., 2020; Qin et al., 2019).

The primary response to xenobiotic stimulus in liver is me-
diated by a number of receptors including AHR, CAR, PXR,
PPARa, ER (Xu et al., 2005). The secondary effects include re-
sponse to reactive metabolites and proteasomal stress through
NRF1, NRF2, and DNA damage through P53, as well as innate
immune response (IIR) (Bugno et al., 2015; Fischer, 2017; Xu et al.,
2005). Traditionally, the discovery of gene expression bio-
markers for each of these mechanisms began from postulating
chemical agents that specifically induce only one of these
mechanisms but not the others. The most commonly utilized
inducers include TCDD and PCB126 for AHR; phenobarbital for
CAR; PCN for PXR; fibrates for PPARa; estrogens for ER; bardoxo-
lone for NRF2; and lipopolysaccharide endotoxins for innate im-
mune-mediated systemic inflammatory response. This
approach was indeed very productive in identifying key signa-
ture genes for each mechanism of action. Nonetheless, the spe-
cificity of gene assignment to each mechanism is limited by
chemical specificity of ligands to those receptors, and gene in-
duction through alternative mechanisms, both direct and indi-
rect, could not be ruled out.

In this work, rather than focusing on a limited number of
compounds, the gene induction was examined in the context of
a large and diverse set of compounds. We sought transcripts
with exceptionally strong coexpression, and, when available,
evidence of direct binding by the respective regulatory tran-
scription factor to distinguish them from all other direct and in-
direct regulatory mechanisms. In this manner, we addressed
the main drawback of prior studies to define transcriptional bio-
markers with optimized specificity for each regulatory factor
along with statistical characteristics of significant and specific
induction. The resulting signatures set the stage for then defin-
ing thresholds of biological and toxicological impact in the con-
text of the magnitude and duration of exposure to harness their
utility for informing decision making for preclinical and clinical
drug development studies (Monroe et al., 2020; Qin et al., 2019).

MATERIALS AND METHODS

Animals and treatments. Male Han-Wistar [Crl:WI(Han)] and
Sprague Dawley [Crl:CD(SD)] rats (Charles River Laboratories,
Raleigh, North Carolina) were socially housed and fed PMI
Certified Rodent Diet No. 5002 with tap water provided ad libi-
tum. Animals were 8 weeks old and 200–275 g at the start of
study. Rats were dosed once daily with compound or vehicle
control as indicated (Supplementary Table 2). The final nec-
ropsy was performed 24 h (640 min) post final dose.
Exsanguination of animals via vena cava was performed under
isoflurane-induced anesthesia. Liver slices were flash frozen on
dry ice and stored at �80�C until used. Specific study dosing reg-
imens are provided in Supplementary Table 2. All studies were
conducted under IACUC approved protocols in AAALAC
International accredited test facilities.
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Administered pharmaceuticals were specified in the text
and figures by either generic names or public development
codes. Some chemical names were abbreviated: N-nitrosodime-
thylamine (NDMA), 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD),
pregnenolone 16a-carbonitrile (PCN), 3-methylcholanthrene (3-
MC), 1-(3-chlorobiphenyl-2-ylmethyl)-1H-imidazole (Cmpd Z).
The rationale for the compound selection and their sourcing is
given elsewhere (Monroe et al., 2020).

RNA extraction and sequencing. Total RNA was purified from fro-
zen liver samples using the MagMAX Express Magnetic Particle
Processor (Applied Biosystems, No. 4400074), and sequenced at
the Covance Genomics Laboratory according to Illumina specifi-
cations. Briefly, total RNA samples were converted into cDNA li-
braries using the TruSeq Stranded mRNA HT Sample
Preparation Kit (Illumina, No. RS-122-2103). Starting with 150 ng
of total RNA, cytoplasmic ribosomal RNA was removed by hy-
bridization to a biotinylated probe selective for ribosomal RNA
species, followed by streptavidin bead binding and sample puri-
fication. The resulting cytoplasmic rRNA-depleted sample was
chemically fragmented and converted into single-stranded
cDNA using reverse transcriptase and random hexamer pri-
mers, with the addition of Actinomycin D to suppress DNA-
dependent synthesis of the second strand. Double-stranded
cDNA was created by removing the RNA template and synthe-
sizing the second strand in the presence of dUTP in place of
dTTP. A single A base was added to the 30 end to facilitate liga-
tion of sequencing adapters, which contain a single T base over-
hang. Adapter-ligated cDNA was amplified by polymerase chain
reaction to increase the amount of sequence-ready library.
During this amplification the polymerase stalls when it encoun-
ters a U base, rendering the second strand a poor template.
Accordingly, amplified material used the first strand as a tem-
plate, thereby preserving the strand information. Final cDNA li-
braries were analyzed for size distribution using the Agilent
Technologies Bioanalyzer 1000 and Agilent DNA 1000 kit
(Agilent, No. 5067-1504), quantitated by qPCR (KAPA SYBR Fast
ABI Prism qPCR reagent kit, KAPA Biosystems, No. KK4835),
then normalized to 2 nM in preparation for sequencing. The li-
brary products were ready for sequencing analysis via Illumina
HiSeq 2000. A minimum of 40 million 50-bp paired-end reads
were generated for each sample. The resulting Rx-TGx sequenc-
ing data have been deposited in NCBI’s Gene Expression
Omnibus (Barrett et al., 2012) and are accessible through GEO
Series accession number GSE144219.

SEQC toxicogenomics data. In addition, we downloaded and
merged the RNA-Seq dataset from SEQC Toxicogenomic Study
(GSE55347) (Gong et al., 2014). The 116 RNA samples for this
dataset were selected from DrugMatrix and include treatments
with 27 compounds with 7 mechanisms of action (AHR, CAR/
PXR, PPAR, DNA Damage, Cytotoxicity, ER, and HMGCOA). These
data complement the internal data, which did not include
many strong PPAR, ER, and P53 inducers. The raw downloaded
data were processed and merged with the internal data using
the same mapping and quantification algorithms.

Data processing and analyses. Genome alignment and gene quan-
titation was performed using OmicSoft Array Studio. Cleaned
reads were aligned to the Rnor_6.0 genome reference using the
OmicSoft Aligner with a maximum of 2 allowed mismatches.
Gene level counts were determined by the RNA-Seq by expecta-
tion maximization algorithm as implemented in OmicSoft
Array Studio and using Ensembl.R94 gene models.

FPKM normalization was applied to RNA-Seq counts fol-
lowed by log-transformation with smoothing, ie, log10

FPKMþ 0:01ð Þ referred to as logFPKM hereafter. The relative log-
ratios were calculated as mean differences between the treated
and the average of the concurrent vehicle groups, each of which
generally contained 4 animals. The group average log-ratios for
each treatment versus corresponding study vehicles were used
in the analysis. Heatmap genes were arranged using agglomera-
tive hierarchical clustering using cosine distance.

We modeled gene expression changes, G, using a 10-factor
linear regression model. All factors Ci (AHR, CAR, PXR, PPARa,
ER, NRF1, NRF2, P53, and IIR) were calculated using an equal-
weighted average of seed genes, with exception of the AHR fac-
tor (see Results section):

G ¼
X

aiCi þ constþ e;

where the loading coefficients, ai were fitted for all well-
expressed genes genome-wide. The NRF1 factor was adjusted 2-
fold to achieve a comparable range of loading coefficients.
Three criteria were used to select genes for inclusion in the re-
spective signatures: (1) the large variance explained R2 (or R-
squared) (usually at least R2 > 0.7) as well as (2) the dominant
(largest) loading coefficients ai among all loadings, and (3)
ai > 0:4. The linear modeling was performed using MATLAB
R2010b (Mathworks, Inc).

A signature score was evaluated as an average log-ratio of all
selected component genes with equal weights, unless noted
otherwise. A z score was also calculated to compare the signa-
ture score to the average variance of its component genes in all
vehicle samples. Our criteria provided that the component
genes were highly correlated and had similar induction range.
Therefore, the z score calculated using an unbiased subset of 10
or more component genes proved to be most stable where pos-
sible (Supplementary Figure 1).

For cross-reference with ChIP-Seq data for AHR, PPARa, and
NRF2 (Tamburino et al., 2020), we required the regulatory poten-
tial score > 0.6 (Tang et al., 2011), which was tighter than the de-
fault vicinity criteria but provided optimal specificity and
sensitivity in the pool of our signatures. Statistical significance
of gene set overlaps was evaluated using MSigDB 7.0 (Liberzon
et al., 2011).

RESULTS

Pathway Overview
The extensive RNA-Seq dataset that we assembled for this work
included liver samples from 850 treated and control samples
covering 120 different compounds. The Rx-TGx studies con-
ducted internally were focused on compounds with a strong
history of the presence or absence of hepatotoxicity. The data
from the SEQC toxicogenomics dataset complemented the in-
ternal studies by adding more PPARa and ER inducers, as well as
known genotoxic and cytotoxic compounds. The overall dataset
covered vast chemical, pharmacological, and toxicological
space.

We first assessed the expression changes in key ADMET
genes and their relationships with canonical chemical inducers
of xenobiotic nuclear receptors (aryl hydrocarbon receptor,
AHR; constitutive androstane receptor, CAR; pregnane X recep-
tor, PXR; peroxisome proliferator-activated receptor a, PPARa;
estrogen receptor a, ER). We also assessed mediators of reactive
metabolite-mediated stress responses (nuclear factor erythroid-
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2-like 1 and 2, NRF1 and NRF2; tumor suppressor P53), and tran-
scriptional changes triggered following toll-like receptor path-
way activation in liver reflecting a liver response to an acute
innate immune system activation (IIR). The genes selected for
these initial analyses were based on the most prominent litera-
ture consensus for each TF and were not intended to be a com-
prehensive set of xenobiotic response genes (Gotoh et al., 2015;
Nakata et al., 2006; Rooney et al., 2018; Xu et al., 2005). Using ag-
glomerative hierarchical clustering with cosine similarity as a
distance measure across the entire 120-compound dataset, we
confirmed that genes assigned to the same mechanisms in the
literature had the highest gene-to-gene correlations and mostly
clustered together (Figure 1), Indeed, the antioxidant response
genes (glutathione metabolism genes, thioredoxin Txn1, sulfire-
doxin Srxn1, etc.), P53 target genes (Aen, Bax, Mdm2, Ccng1,
etc.), PXR/CAR-induced genes (Cyp3a23/3a1, Ces2c, Ces2a,
Ces2j), CAR genes (Cyp2b1, Cyp2b2, and Cyp2c6v1), AHR genes
(Cyp1a1, Cyp1a2), PPARa-induced genes (Acot1, Acot2, Aig1,
Cyp4a1, etc.), ER genes (Pgr, Lsmem2, Plppr3, Slc5a1), and IIR
genes (A2m, Orm1, etc.) all formed separate dendrogram
branches.

This tight clustering by mechanism encouraged us to per-
form multivariate linear modeling to establish the more

comprehensive list of specific rat liver signature genes and their
relationships based on multisignature loading coefficients
rather than binary correlations. In the following sections, genes
were associated with and assigned to specific transcription fac-
tors based on dominant loading coefficients in the linear model.
This modeling was performed genome-wide using the RNA-Seq
data aligned to the current version of the rat genome to build
the most comprehensive sets of highly transcription factor-spe-
cific biomarker genes in male rat liver.

AHR Signature
Cyp1a1, Cyp1a2, Cyp1b1, Ahrr, and Aldh3a1 are frequently refer-
enced as AHR-induced genes (Manikandan and Nagini, 2018;
Watson et al., 2014). Using ChIP-Seq, we confirmed direct AHR
binding at each of these genes except for Aldh3a1 in rat liver fol-
lowing TCDD treatments (Tamburino et al., 2020). However, we
found that only Cyp1a2 is well expressed in vehicle-treated rat
liver samples with an average logFPKM value of 2.77. Cyp1b1,
Aldh3a1, Ahrr had logFPKM values less than �1, which we con-
sidered unreliable for baseline biomarker quantitation and
therefore removed them from further consideration. Although
Cyp1a1 was low-expressed, it was detectable above background
with an average logFPKM ¼ �0.3, and a standard deviation of 0.5
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Figure 1. Regulation of ADMET gene expression. Select canonical response genes for AHR, CAR, PXR, PPARa, NRF2, NRF1, P53, and IIR are clustered using the agglomera-

tive hierarchical method with cosine similarity as the distance measure. The height of the dendrogram branches indicates the distance metric between genes. The

shown induction magnitude is calculated as logFPKM difference of gene expression between treated and the group median of corresponding study vehicle samples, av-

eraged over 4 animals in each group. Only in this figure, low Cyp1a1 logFPKM values were raised to 0.7 before the log-ratio was calculated. The genes are colored accord-

ing to purported mechanism. Treatment along y-axis was profiled internally and borrowed from SEQC toxicogenomics dataset as shown in green and blue colors,

respectively.
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in vehicle samples. Using qPCR data from a larger set of internal
development compounds (Qin et al., 2019), we examined the re-
lationship between the expression levels of Cyp1a1 and Cyp1a2
and determined an orthogonal regression slope of 0.5 when
Cyp1a1 log-ratio > 1 (Supplementary Figure 2), ie, Cyp1a1 was
induced twice as much as Cyp1a2 at the higher end of their in-
duction ranges. Therefore, to equalize contributions of both
genes, we used the weighted average of 1=3Cyp1a1 þ 2=3Cyp1a2
for scoring the AHR factor.

We next performed genome-wide linear modeling against
this AHR factor and, concurrently, the other factors (CAR, PPAR,
etc.; see Materials and Methods section), and did not find any
genes in addition to Cyp1a1 and Cyp1a2 with R2 > 0.7 or with an
AHR loading coefficient > 0.4. Figure 2A shows that the AHR
loadings for Cyp1a1 and Cyp1a2 were much higher than any
other loadings. Ahrr and Aldh3a1 had the next highest AHR
loadings but their R2 was below 0.4. Of note, the Ugt1a family of
genes, which have been proposed previously as AHR-responsive
genes (Nakata et al., 2006), did not exhibit large dominant AHR
loading coefficients making them unacceptable as specific AHR
biomarker genes in male rat liver. We therefore concluded with
reasonable certainty that Cyp1a1 and Cyp1a2 were the most
sensitive, specific, and reliably measurable components of the
AHR response factor in rat liver.

The standard deviation of the AHR score in the baseline ve-
hicle samples was calculated to be 0.28. The AHR score induc-
tion exceeded 2 standard deviations in 23 out of 120 treatments
in the training set (19%). Figure 3A ranks compounds with top
AHR score inductions. Flutamide, leflunomide, and TCDD, well-
known potent AHR inducers, have AHR scores of approximately
2.0 (z¼ 7). We observed many AHR inducers with AHR scores
barely exceeding 0.5. Although such induction tended to be sta-
tistically significant (z¼ 2, p< .05), the biological significance of
these small and often transient inductions has been reasonably
questioned (Hu et al., 2007). We elsewhere address further the
relation of biological thresholds including the importance of
magnitude and duration of AHR induction to carcinogenic out-
comes (Qin et al., 2019).

CAR and PXR Signatures
Several subfamilies of cytochrome P450 enzymes, Cyp2b, Cyp2c,
and Cyp3a, are believed to be induced by CAR and PXR receptors
interchangeably (Manikandan and Nagini, 2018) and some com-
pounds serve as dual CAR and PXR ligands (Moore et al., 2000)
possibly with different affinities. There is considerable debate
in the literature on the possible interaction between these
receptors (Tolson and Wang, 2010), perhaps owning to their
close homology (Evans and Mangelsdorf, 2014). Our preliminary
clustering (Figure 1) showed that these enzymes and certain
carboxylesterase 2’s form 2 distinct branches on the dendro-
gram, indicating that it might be possible to define 2 separate
signatures and gauge relative affinity of compounds toward
CAR or PXR using these signatures.

The 2 separate factors that we used in our multiple regres-
sion analysis were assigned as follows: Cyp2b1, Cyp2b2,
Cyp2c6v1 were used as a CAR factor, Cyp3a23/3a1, Ces2c, Ces2a,
Ces2j were used as a PXRþCAR factor. The plus symbol signifies
that both transcription factors can contribute to the induction
of these genes (see below). The mentioned P450 genes had very
high baseline expression levels, logFPKM> 2. The carboxylester-
ases were slightly lower but still had logFPKM > 0. Thus, all
these genes are expressed at baseline levels in rat liver that are
easily detectable with conventional methods.

We used simple averages of the component genes as factors
in the multiple regression analysis for these receptors.
Figures 2B and 2C show that indeed these component genes ob-
tain uniquely high loading coefficients for their respective fac-
tors. In addition, 2 UDP-glucuronosyltransferases Ugt2b10 and
Ugt2a3 met our criteria of R2 > 0.7 for inclusion in CAR and
PXRþCAR signatures, respectively. Indeed, Ugt2a3 is reported as
PXR-inducible in the literature (Court et al., 2008). No other
genes in this genome-wide analysis had CAR or PXRþCAR load-
ing coefficients above 0.4 with R2 > 0.7. Much like the AHR sig-
nature, the CAR and PXR signatures contain a very small
number of genes with large loading coefficients (see
Supplementary Table 1). This suggests that these receptors
have a unique role and only induce transcription of the afore-
mentioned drug metabolizing enzymes. They also do not di-
rectly impact the stress response genes covered by other
transcription factors (see below).

We further examined the degree of independence of these
signatures. Figures 4A and 4B compare the AHR, CAR, and
PXRþCAR scores calculated as the average induction of the
component genes. TCDD is an example of a compound that
induces only the AHR score but not the PXRþCAR score,
whereas PCN induces the PXRþCAR score but not the AHR score.
Similarly, phenobarbital has high CAR score and no AHR score
(Supplementary Table 2). Therefore, we could conclude that
AHR and PXRþCAR inductions are independent and the respon-
sible transcription factors do not cross-target the signature
genes. Simultaneous inductions are, of course, possible when a
ligand has affinity to multiple xenobiotic receptors as in the
case of flutamide. On the contrary, when we compared CAR and
PXRþCAR scores, we could not find compounds that induce the
CAR score exclusively. Phenobarbital, a purported CAR ligand,
induces both CAR and PXRþCAR scores. However, PCN, a pur-
ported PXR ligand, strongly induces only the PXRþCAR score
with minimal effect on the CAR score. Due to this asymmetry
and the observed dependence between these scores, they were
named to indicate which transcription factors contribute to
their induction. That is, the CAR score is impacted by contribu-
tions from CAR transcription factor activation, whereas the
CARþPXR score represents the additive contributions from both
receptors. The relationship in Figure 4B suggests it is possible to
gain a rough estimate of the individual PXR tone of a compound
using the formula PXR score ¼ PXRþCAR score � 1=2CAR score. For
example, telithromycin had much higher PXRþCAR score than
CAR score and, therefore, is mainly a PXR ligand similar to PCN.

The standard deviation of CAR and PXRþCAR scores in the
vehicle samples was found to be 0.20 and 0.17, respectively.
Statistically significant (p< .05) induction, with these scores
above 2 standard deviations, was observed in 45 (38%) treat-
ments for the CAR signature and 55 (46%) treatments for the
PXRþCAR signature. The top-ranked compounds for both signa-
tures are shown in Figures 3B and 3C. Phenobarbital was the
top-ranked CAR compound with a CAR score of 2.2 (z¼ 10). PCN
was the top ranked PXRþCAR compound with a score of 1.5
(z¼ 8) closely followed by telithromycin and ritonavir.

PPARa and SREBP2 Signatures
The PPARa receptor plays a critical role in fatty acid metabolism
and induces profound gene expression changes following acti-
vation by certain endogenous fatty acids as well as some xeno-
biotics (Kersten, 2014; Rakhshandehroo et al., 2010). Genes
induced by PPARa include the Cyp4a subfamily, Acot family,
Colq peptide among others. PPAR targets tend to be well
expressed in vehicle samples with logFPKM generally > 1, likely
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Figure 2. Loading coefficients from linear modeling. In panels A though H, the loading coefficients for AHR, CAR, PXRþCAR, PPAR, ER, NRF2þNRF1, NRF1, P53 are shown

against another loading coefficient with maximum absolute value. The AHR, CAR, PXRþCAR, NRF2þNRF1, and P53 panels show genes with R2 > 0.7, The PPAR and

NRF1 panels use tighter R2 > 0.8. Genes with highest loading coefficients are also labeled with their gene symbols. Colors indicate the factor with the highest loading

for each gene.
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Figure 3. Signature scoring for top 20 compounds. Each score is calculated as an induction average of all genes selected for a given signature with equal weights, expect

AHR was calculated as 1=3Cyp1a1 þ 2=3Cyp1a2. The error bars show 6 standard deviation among the studied animals. The dashed line represents 2 standard deviations

of the average baseline expression of the signature genes in all available vehicle samples. Each panel shows only the 20 top-scoring compounds.
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representing normal tone from endogenous fatty acid ligands,
and are thus easily detectable with conventional methods. Our
preliminary clustering (Figure 1) showed that they form a dis-
tinct well-defined branch on the dendrogram apart from other
ADMET genes.

The seed for the PPARa factor in our multiple regression
analysis included the following genes: Cyp4a1, Cyp4a2, Cyp4a3,
Acot1, Acot2, Acot3, Acot4, Crat; and the average expression of
these genes was used in the analysis. Genome-wide modeling
identified 22 additional genes that satisfied the standard criteria
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of PPAR loading coefficient > 0.4 and R2 > 0.7, for example,
Chrna1, Aig1, Vnn1, Ehhadh, Ech1, and Colq (Figure 2D). The
large size of this signature is a testament to the broad role
PPARa plays in fatty acid oxidation and CoA recycling. Notably,
ChIP-Seq revealed direct PPARa-binding proximal to all 29 of
these PPARa signature genes (Tamburino et al., 2020). The full
set of identified PPARa signature genes is listed in
Supplementary Table 1.

The standard deviation of PPARa scores in the vehicle sam-
ples was found to be 0.17. The PPARa score in the treated sam-
ples exceeded a statistically significant (p< .05) threshold of 2
standard deviations in only 19 (16%) of treatments tested in the
set of 120 compounds. Figure 3D plots the top ranked PPARa

inducers and is enriched with fibrates and statins. The top-
ranked compound was nafenopin with PPARa induction score
of 1.2 (z¼ 7). Frequently, in 18 (14%) treatments, the PPARa score
also exhibited statistically significant downregulation.

Besides PPARa activation by statins, in treatments of this
drug class we observed strong upregulation of numerous genes
in the mevalonate/cholesterol pathway which is known to be
under tight feedback control by SREBP2 in response to choles-
terol changes (DeBose-Boyd, 2008; Sato, 2010; Ye and DeBose-
Boyd, 2011). To model this effect, which is not considered toxi-
cologic, we seeded an additional SREBP2 factor with a few ca-
nonical cholesterol synthesis genes Cyp51, Msmo1, Sqle, Mvk,
Idi1, and Lss (Mazein et al., 2013). In the genome-wide modeling,
we found 30 genes with SREBP2 loading > 0.4 and R2 > 0.75,
listed in Supplementary Table 1. We confirmed that all but 6
genes in this signature belong to either SREBP targets or choles-
terol metabolism genes from multiple sources collected in
MSigDB. The SREBP2 score exceeded a threshold of 2 standard
deviations, which was 0.16 in the vehicle samples; in 16 (13%)
compounds and only statins had the SREBP2 score above 0.78
(z> 4.5). As a part of this signature, upregulation of Acly and
Acss2, which produce acetyl-CoA from citrate and acetate,
reached more than 10-fold in atorvastatin treatment.

ER Signature
Estrogen effects are rarely studied in nonreproductive organs. A
few ER-induced genes in male rat liver were recently identified
in an analysis of the Open TG-GATEs dataset (Rooney et al.,
2018), where Ctr9, Rgs3, and Lifr were identified among the
most responsive genes. We confirmed the specificity of these
genes and identified additional liver-responsive genes using
data from estrogen-treated male rats from the independent
SEQC toxicogenomics dataset integrated into our analysis. The
specific induction of Pgr, Lifr, and Citr9 by hormonal treatments
is corroborated by literature evidence of the association of these
genes with ER signaling (Ahlbory-Dieker et al., 2009; Zeng and
Xu, 2015). We used the average of these gene inductions as a
seed ER factor, and multiple regression analysis identified some
additional genes that satisfied our criteria of ER loading coeffi-
cient > 0.4 and R2 > 0.7 (Figure 2E). Notably, we identified in-
duced expression of progesterone receptor Pgr in the male liver
samples. A full list of genes with high loading coefficients is in-
cluded in Supplementary Table 1.

Many of the ER-induced genes had very low baseline expres-
sion with logFPKM < �1 and, therefore, very large fold changes.
All estrogens in our dataset, b-estradiol, ethinylestradiol, and
norethindrone, received a very high ER score (Figure 3E).
Fluconazole also obtained a high ER score perhaps reflecting its
proposed indirect effect on altering steroid metabolism and
subsequent systemic exposures of endogenous estrogen and
testosterone (Zarn et al., 2003).

NRF2 and NRF1 Signatures
Oxidative stress responses in liver are managed by the Keap1-
NRF2 system sensing of electrophilic metabolites (Kobayashi
and Yamamoto, 2005) as well as the recently recognized
proteasome-NRF1 system that controls degradation of damaged
proteins (Bugno et al., 2015; Sha and Goldberg, 2014). Figure 1
shows 2 closely correlated dendrogram branches containing
NRF2-associcated glutathione S-transferases, thioredoxin, sul-
firedoxin, and other detoxification genes on one branch, and
several NRF1-associated proteasomal subunits, Vcp, and Adrm1
on the other. The correlation between the genes in both
branches is very strong. Yet, the induction of antioxidant genes
is in general much stronger than that of the proteasomal genes.
We modeled these pathways separately and introduced 2 fac-
tors, NRF2þNRF1 and NRF1 (see below).

The NRF2þNRF1 seed antioxidant factor was initially calcu-
lated as an average of Ephx1, Gsr, Gsta2, Gsta5, Mgst2, Gstm1,
Gstm4, and Txnrd1. The genome-wide linear modeling identi-
fied additional genes with loading coefficients > 0.4 and R2 > 0.7
including Ugdh, Pir, Cryl1, Aox1, Ugt1a6, Ugt1a7c, etc. (Figure 2F
and Supplementary Table 1). Notably, ChIP-Seq revealed direct
NRF2-binding proximal to the majority of the NRF2þNRF1 sig-
nature genes (Tamburino et al., 2020). However, we chose to call
this biomarker NRF2þNRF1 because in NRF2 knockout animals,
whereas the NRF2 activator bardoxolone can no-longer induce
these genes, certain reactive metabolite generating compounds
(eg, ticlopidine) can still induce them. We thus hypothesize that
either NRF2 or NRF1 can activate these genes (Monroe et al.,
2020), despite the lack of ChIP-grade antibodies for NRF1 to test
this directly. The full set of resulting NRF2þNRF1 signature
genes is listed in Supplementary Table 1. The size of this signa-
ture is much larger than those of the above nuclear receptors
and covers a broad spectrum of ROS chemistry.

The baseline expression of antioxidant genes was high with
logFPKM>1. The standard deviation of NRF2þNRF1 signature
scores in vehicle samples was 0.1. The NRF2þNRF1 scores in the
treated samples exceeded a statistically significant (p< .05)
threshold of 2 standard deviations very frequently, in 65 (52%)
treatments. About half of the compounds in this set have well-
documented DILI liabilities and were either withdrawn or received
label warnings (Monroe et al., 2020). Therefore, it was not surpris-
ing that many of them might produce reactive metabolites to in-
duce antioxidant responses as reflected in our signature score.
Figure 3F shows the top-ranking treatments in our dataset with
flutamide and ticlopidine at the top having NRF2þNRF1 scores of
1.2 (z¼ 8). We further determined the relationship of the
NRF2þNRF1 signature score and liver reactive metabolism burden
to daily dose and clinical DILI risk elsewhere (Monroe et al., 2020).

The seed NRF1 factor was calculated as an average of Psmb3,
Psmc1, Psma5, Psmd4, Psmd8, Psmd14, Adrm1, Vcp. Genome-
wide modeling identified 56 additional genes with NRF1 loading
coefficient > 0.4 and R2 > 0.8. This included almost all protea-
some subunits, Usp5, Usp14, Abhd4, and many other genes re-
lated to proteasome function. The full set is listed in
Supplementary Table 1. These genes were not induced by bar-
doxolone (Figure 4E), and their induction by compounds capable
of forming chemically reactive metabolites was retained in
NRF2 knockout studies (Monroe et al., 2020), justifying using
NRF1 (and not NRF2) in the naming of this signature. Despite
the NRF1 and the NRF2þNRF1 signatures representing distinct
biological responses to metabolic stress, there was clear correla-
tion between them (R2 ¼ 0.45, Figure 4C), suggesting that reac-
tive metabolites almost inevitably induce proteasomal stress
via an increase in adducted proteins.
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The baseline expression of all proteasome subunits, Vcp,
and Adrm1 was high, logFPKM> 1, but their low (about 2-fold)
dynamic range make them challenging for biomarker assess-
ment. The standard deviation of the NRF1 signature score was
0.06. The NRF1 scores in the treated samples exceeded a statisti-
cally significant (p< .05) threshold of 2 standard deviations fre-
quently, in 64 (52%) treatments. Again, frequent induction of
proteasome activity is not surprising within this compound set
as it was enriched in drugs suspected or shown to be associated
with human DILI and many shown or suspected to form protein
adducts in liver. Figure 3G shows the top ranking of the treat-
ments in our dataset with almorexant and ritonavir at the top
with a NRF1 score of 1.2 (z¼ 8).

With these signatures defined, we were able to study their
interactions with the nuclear receptor signatures. As shown in
Figure 4C, high induction of PXRþCAR genes resulted in some
consistent low level of a NRF2þNRF1 signature response. We
reasoned that at low levels of PXRþCAR induction, oxygen free
radical generation was not sufficient to a trigger NRF2 activa-
tion, but with strong PXR inducers, excessive generation of oxy-
gen free radicals known to result from “leaky microsomes”
(Dostalek et al., 2007) might contribute significantly to
NRF2þNRF1 response. An even more striking interaction could
be seen between the PPAR and NRF1 signatures (Figure 4D).
Strong PPAR inducing compounds seemed to inevitably induce
a low level of proteasomal-NRF1 stress as presented by the
NRF1 signature score. An explanation could be that the in-
creased PPAR activity led to excessive protein transacylation
and glycation by fatty acid acyl-CoA thioesters and acyl-
glucuronides (Skonberg et al., 2008). Interestingly however, a
high PPAR score was not associated with significant
NRF2þNRF1 score increases, quite likely because of Keap1-NRF2
not sensing this form of reactive chemistry.

P53 Signature
The P53 driven transcriptional DNA damage response is of con-
siderable interest within the toxicogenomic community, and sev-
eral P53-responsive gene signatures have been reported and
reviewed recently (Auerbach, 2016; Fischer, 2017). The comple-
mentary SEQC toxicogenomics dataset integrated in our analysis
contained several classic genotoxic and carcinogenic compounds
such as aflatoxin B1, NDMA, and thioacetamide. Based on previ-
ously published signatures, the seed P53 factor included Mdm2,
Ccng1, Aen, Bax, Nhej1, Apex1. In addition (Figure 2H and
Supplementary Table 1), the genome-wide linear modeling iden-
tified Apt6v1d, Rps27l, and several other genes that serve as good
DNA damage biomarkers and are known to be direct P53 targets
(Auerbach, 2016; Fischer, 2017). The signature score based on
these genes demonstrated high sensitivity in identifying known
genotoxic compounds in our dataset, ranking aflatoxin B1, thioa-
cetamide, and NDMA at the top of the list (Figure 3H).

The P53 signature genes had moderate logFPKM> 0.5 and
low standard deviations in base line samples, making them
good biomarker genes. Induction of the P53 signature above 2
standard deviations was observed in 30 (25%) treatments, but
only 6 compounds reached a z score of 4, including all the
known genotoxicants. As shown in Figure 4F, P53 score was
largely independent of NRF2þNRF1 score. In fact, the genotoxic
compounds appeared to escape NRF2þNRF1 detection with very
unremarkable scores, indicating the importance of establishing
a distinct P53 signature threshold for harder electrophiles that
could be expected to be more relevant to carcinogenicity risk
prediction in future studies relative to the softer electrophiles
detected by the Keap1-NRF2 system.

IIR and HNF4a Suppression
Inflammatory responses both protect from and contribute to
drug-induced damage of liver function. Liver can robustly in-
duce the tissue expression and excretion into plasma of the rat
acute phase plasma proteins, A2m and Orm1 (Tugendreich
et al., 2006) and indeed these proteins in plasma and their tran-
scripts in liver tissue can serve as biomarkers of the liver re-
sponse to systemic inflammatory stress. We noticed that these
genes were induced by some treatments in our dataset, particu-
larly the NSAIDs. This induction may be indirect, and for
NSAIDs it could result from their known gastrointestinal toxic-
ity in rodents and the release of endotoxin into the blood
stream (Tugendreich et al., 2006). Local liver cytotoxicity can
also induce universal tissue injury signatures reflecting a com-
ponent consisting of innate inflammation (Glaab et al., 2018). In
this study, we observed induction of genes related to interferon
signaling and antigen processing, as well as neutrophil and
lymphocyte infiltration to some compounds. Although our cur-
rent dataset was not sufficient to train a comprehensive and
mechanistic inflammation model covering these various fac-
tors, we included a single IIR factor in our linear model to ex-
clude nonspecific association of immune-related genes to the
other gene signatures.

This abridged IIR factor seed was calculated as an average
expression of A2m and Orm1. The Orm1 gene induction value
was doubled to compensate for much stronger dynamic range
induction capacity in A2m. The genes that satisfied the regres-
sion criteria of inflammation loading above 0.4 and R2 > 0.7
were, for example, neutrophil-expressed Lcn2 and Nos2 as well
as fibrinogen subunits (Supplementary Table 1). Thus, in addi-
tion to acute phase response genes, the IIR factor in our model
accounted for correlated neutrophil infiltration as evidenced by
Lcn2 upregulation.

The baseline standard deviation for the IIR signature was
very low 0.06 and the induction above 2 standard deviations
was observed in 25 (20%) of treatments, with NSAID treat-
ments ranking at the top with remarkable z scores above 10
(Figure 5A). Importantly, we observed that the IIR signal was
associated with uncharacteristic downregulation of CAR,
PXRþCAR, PPAR, and NRF2þNRF1 responses, but not AHR,
ER, NRF1, or P53 (Supplementary Table 2, Figure 1). For ex-
ample, the NSAIDs and some other treatments had espe-
cially large negative PXRþCAR and NRF2þNRF1 scores
(Figs. 5B and 5C).

Besides these signatures, we found that several other
important ADMET genes, including Cyp2d2, Cyp2d3,
Slc10a1, Slco1b2, and Baat, were strongly downregulated by
the NSAIDs and several other treatments. Our experimental
observations match the gene expression changes in HNF4a

knockout and knockdown studies (Kamiyama et al., 2007; Lu
et al., 2010) or deletions of HNF4a-binding sites (Geier et al.,
2008). Using these genes as a seed for an additional factor
in our linear model we defined a signature with loading >

0.4 and R2 > 0.7 (Supplementary Table 1) and confirmed its
significant overlap with curated HNF4a targets in MSigDB
(9/29 genes, FDR ¼ 5� 10�12) (Ohguchi et al., 2008). Figure 5D
summarizes the strong association of negative HNF4a score
with NSAID treatments without comparable upregulation in
any other treatments. Therefore, we hypothesize that dis-
ruption of the HNF4a function, which maintains high basal
expression of each of these genes (Gotoh et al., 2015), could
be responsible for the observed effects. Possible mecha-
nisms of HNF4a regulation have been reviewed recently (Lu,
2016).
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Preclinical Development Experience
The compounds tested in the internal and external datasets
that were used for signature identification, as described above,
were intentionally selected and enriched in chemistry with con-
fidence for affecting or not affecting relevant liver biology and
toxicology of targeted interest. To obtain a more “real world”
perspective on the frequency and behavior of these signatures
across a more diverse and less biased representation of typical
small molecules proposed as candidates for entry to drug devel-
opment, signature scores were calculated from historical rat
liver transcriptional data collected among internal discovery
compounds just prior to candidate selection for over 10 years
between 2008 and 2018. A total of 664 different compounds
were assessed in samples collected 24 h after 4 or 7 days of q.d.
dosing at multiple dose levels relevant to efficacy and to toxicity
assessment. As these data were collected with various low- to
mid-density qPCR array platforms over this 10-year timeframe,
not all genes from all signatures were measured in all studies.
In these cases, scores were calculated using the subset of signa-
ture genes measured in the highest number of studies, and only
those studies where the complete subset was measured were
included in the analyses. Specifically, for AHR, 663 of the 664
compounds had data for both Cyp1a1 and Cyp1a2 and were
considered. For CAR, 658 compounds had data for Cyp2b1 and
Cyp2b2, and signature scores were calculated for these

compounds using these 2 genes. Similarly, PXRþCAR scores
were calculated for 661 compounds using Ces2 and Cyp3a23/
3a1; PPAR scores for 648 compounds using Acox1, Cyp4a3, and
Cyp4a1; NRF2þNRF1 scores for 267 compounds using Akr7a3,
Entpd5, Ephx1, Gclc, Gclm, Gsr, Gsta2, Gsta3, Gsta5, Gstm1,
Gstm4, Htatip2, and Txnrd1; NRF1 for 376 compounds using
Blvrb, Ran, and Zwint; ER for 109 compounds using only Slc5a1;
P53 for 33 compounds using Bax, Mgmt, Ccng1, Atp6v1d, Mdm2,
and Nhej1; and IIR for 379 compounds using Lcn2, A2m, Orm1,
Hpx, Kng1, and Lbp. The qPCR data were normalized using an
extended set of resistant endogenous control genes, including
Hnrnpul1, Inpp5a, Ddx47, Pum1, Srrm1, Tlk2, Gusb, Rab35,
Tmem183a, Rchy1, Tmed4, and 18S, for increased measurement
accuracy (see Discussion below on minimal recommended sig-
nature sizes).

A statistically positive signature response was considered at
2-fold the mean of the standard deviation across the vehicle
control samples from all corresponding studies (z> 2). Using
this statistical significance threshold as a metric, 23% (153/663)
of compounds exhibited some level of an AHR signature re-
sponse, 29% (193/658) a CAR response, 44% (291/661) a PXRþCAR
response, 10% (68/648) a PPARa response, 57% (153/267) a
NRF2þNRF1 response, 48% (181/376) a NRF1 response, 2% (2/109)
an ER response, 21% (7/33) a P53 response, and 35% (133/379) an
IIR in liver (Supplementary Figure 3). Thus, the prevalence over
these signatures among preclinical development compounds
was overall quite similar to the set of commercial compounds
used for training. For example, the NRF2þNRF1 response was
the most commonly observed in both sets with some response
seen in the majority of compounds. The largest difference be-
tween the compound sets was a higher incidence of the IIR sig-
nature among the preclinical development compounds
compared with the training set, likely as we intentionally ex-
cluded known rat liver toxicants from the training set.
Conversely, ER induction was also rarely observed among the
preclinical candidates. Although these metrics represent the
point of departure (z> 2) at 1 or more tested doses/days, the bio-
logical implications and any associated liabilities would depend
on the magnitude and duration of induction above the point of
departure at relevant test doses as compared with the doses
and tissue exposures that will be achieved in the target predic-
tion species.

This 664-compound set was also used to confirm the rela-
tionships between the signatures (Supplementary Figure 4). As
noted in the Rx-TGx data (Figures 1 and 5), some negative asso-
ciation was observed between the IIR signature and CAR,
PXRþCAR, PPARa, and the NRF2þNRF1 signatures. In addition,
there is some degree of correlation between the NRF2þNRF1 sig-
natures with the CAR and PXRþCAR, signatures likely repre-
senting the indirect biological associations expected when drug
metabolism enzymes induced by nuclear receptors may amplify
the generation of reactive metabolites to trigger NRF2 and NRF1
pathways as discussed above.

Other Datasets
The biomarker signatures developed in this work were applied
and tested in the other large toxicogenomic datasets:
DrugMatrix and Open TG-GATEs. We confirmed that the signa-
ture component genes maintained strong mutual correlation
and reliably identified strong nuclear receptor ligands and
known toxicants (Supplementary Table 2). Indeed, a few coex-
pression modules reported recently (Sutherland et al., 2018) con-
tain 50%–80% of genes used in our signatures: specifically
modules 26m � PPARa, 43 � ER, 42m � NRF2þNRF1, 7m � NRF1,

hydroxyzine
leflunomide

ximelagatran
mibefradil

nabumetone
diclofenac
fluoxetine

lumiracoxib
sudoxicam

naproxen

0 0.5 1 1.5 2

IIR score

naproxen
sudoxicam
lumiracoxib

trimethobenzamide
leflunomide
cerivastatin

diclofenac
3-MC

fluoxetine
co-amoxiclav

-0.8 -0.6 -0.4 -0.2 0

PXR+CAR score

naproxen
sudoxicam
lumiracoxib

diclofenac
cerivastatin

nabumetone
metformin

pirinixic acid
cefuroxime

levofloxacin

-0.8 -0.6 -0.4 -0.2 0

NRF2+NRF1 score

sudoxicam
naproxen

miconazole
lumiracoxib

diclofenac
fluoxetine

almorexant
leflunomide

nabumetone
telcagepant

-1.2 -0.8 -0.4 0

HNF4A score

A

B

C

D

Figure 5. Suppression of signature scores by NSAID and some other treatment.

Each score is calculated as an induction or suppression average of all genes se-

lected for a given signature with equal weights. The 10 lowest negative scores in

PXRþCAR, NRF2þNRF1, and HNF4a signatures are shown.
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205 � P53, 50 � IIR, 46m � SREBP2, 6m � HNF4A. Importantly,
this demonstrates the cross-platform robustness of our tran-
scriptional signature biomarker strategy in the context of being
able to leverage older microarray data. However, the Rat230_2
microarray platform (GPL1355) was poorly suited for monitoring
CAR and PXRþCAR signatures because it lacked critical genes
from these signatures.

DISCUSSION

For biomarker gene expression panel (signature) identification
and optimization we leveraged RNA-Seq data from male rat liv-
ers following q.d. oral administration of 120 different com-
pounds with or without associated DILI risk in the clinic. We
studied diverse but hepatocyte-specific transcriptional
responses in relatively homogeneous liver samples, which min-
imized confounding effects of cell composition and morphol-
ogy. The signatures were trained via multifactor linear
regression modeling and coexpression with canonical targets
and paradigm activating compounds for the specific regulatory
receptors and mediators. These signatures were refined based
on specificity of response across the dataset, magnitude of re-
sponse to paradigm compounds, fitness as an analytical bio-
marker including sufficient baseline expression and stability. In
addition, for AHR, PPARa, and NRF2, signature genes demon-
strated proximal and specific TF binding at their promoters
(Tamburino et al., 2020). Although we have derived and pre-
sented the comprehensive gene sets meeting the inclusion cri-
teria for each signature presented here, we recognize that all
genes may not be necessary for accurate measurement.
Pragmatically, when deploying routine qPCR platforms, we in-
vestigated robustness of the z score calculation using random-
ized subsets of genes from the large signatures. We determined
that vehicle standard deviation, average induction and, conse-
quently, z score become sufficiently stable as long as 10 or more
genes from a large signature are selected for scoring
(Supplementary Figure 1). This is not surprising because our sig-
nature genes were selected with extremely high mutual correla-
tion (due to R2 > 0.7) and comparable induction magnitude (due
to loading > 0.4). For signatures containing < 10 regulated
genes, the complete signature set should be used for best
accuracy.

Critically, we were able to discern the signatures of xenobi-
otic sensors (AHR, CAR, PXR, PPARa, and ER) from the signatures
of the stress mediators (NRF1, NRF2, P53). These sensor signa-
tures contained very small numbers of specific genes dedicated
to induction of metabolic enzymes, with the exception of PPARa

which regulates a larger set of genes involved in fatty acid biol-
ogy. However, the stress mediators generally induce larger
numbers of detoxification and damage repair genes. With the
optimized set of core signature sets we did not see evidence of
direct cross-targeting between these broad categories. We hy-
pothesized that any interaction between these signatures is due
to alterations of endogenous biochemical metabolites and other
indirect effects. For example, we observed SREBP2-mediated
upregulation of Acly and Acss2 in cholesterol-lowering statin
treatments. This should presumably increase cytosolic acetyl-
CoA and stimulate de novo fatty acid synthesis (Kain et al., 2015;
Pietrocola et al., 2015), which would, in turn, explain activation
of PPARa by statins. An opposite decrease in endogenous fatty
acids would manifest itself as the frequently observed suppres-
sion of the PPARa score.

The precise mechanisms underlying the associations of the
xenobiotic sensor induction signatures following AHR, CAR,

PXR, PPARa, and ER activation with liver toxicity and/or carcino-
genicity are unclear and remain topics of active research. These
are concluded however to be triggered by downstream effects
following receptor activation as models engineered with defec-
tive receptors are more resistant. For the stress mediators NRF1,
NRF2, and P53, on the other hand, phenotypic outcomes are
explained by upstream biochemical insult. Engineered models
with defective stress mediators that fail to trigger protective
mechanisms are more susceptible.

IIR signals inform on insults activating one or more of a
number of confounding toxicologic mechanisms ranging from
vascular injury, multiorgan inflammation, GI perforation, which
exert pressure to generally suppress a broad range of liver gene
expression (Nguyen et al., 2015). Future experiments will be
needed to better understand mechanistically how these signals
suppress gene expression in liver samples. We hypothesize this
might be due to disruption of HNF4a activity, although changes
to the cellular makeup of liver in response to immune signals
might also contribute to a general decrease in hepatocyte gene
levels in the bulk tissue samples profiled.

It is crucial to discern toxicological biomarker responses that
are directly mechanistically informative of triggered preclinical
or clinical phenotypic outcomes from those that may be
intended to be biologically benign or beneficial adaptations.
Either may be specific to the preclinical study species and irrele-
vant to humans. It is plausible that certain molecular responses
intrinsic to the compound or its metabolites will protect and re-
sult in no toxicologic phenotype in the test species, but rather
are indicative of toxicologic propensity that may manifest in
less adaptive species such as humans, as we posit for NRF1 and
NRF2 (Monroe et al., 2020). Through accurate interpretation of
mechanistic biomarker signals, and the establishment of
thresholds of meaningful biomarker alterations, confident con-
clusions can be made. Such well-benchmarked tools will help to
confidently dissociate levels of higher risks from benign levels
of biomarker signals. These would be particularly impactful for
liver as DILI is the most common adverse event resulting in de-
nial, withdrawal or restriction of new pharmaceuticals (Stevens
and Baker, 2009; Waring et al., 2015).

Furthermore, the liver has been shown to be the most fre-
quent site of tumor formation for human pharmaceuticals in 2-
year rat carcinogenicity studies (Sistare et al., 2011), the longest
and most resource intensive toxicology study conducted in drug
development. Just 6 months of chronic dosing could be inform-
ing future tumor risk potential in rat liver or distant sites via
multistep mechanisms beginning with molecular initiating
events in the liver (Rooney et al., 2018; Sistare et al., 2011).
Improved identification and understanding of the molecular
mechanisms triggering such predictive histologic risk factor
alterations in liver is expected to enhance prediction of rat car-
cinogenicity study outcomes and inform human relevance.
Among the human pharmaceuticals presenting with tumors in
such 2-year rat studies, the overwhelming majority receive
labels indicating that the rat tumors occur through mechanisms
that are of questionable human relevance, or may likely be con-
sidered human irrelevant (Alden et al., 2011; Friedrich and
Olejniczak, 2011).

Here, we have specifically focused on establishing and opti-
mizing a core set of mechanistic transcriptional signature bio-
markers and initiating an assessment of the performance of
these signatures. The signatures we chose are associated with
canonical xenobiotic nuclear receptors (AHR, CAR, PXR, PPARa,
ER), mediators of a reactive metabolite-mediated stress re-
sponse (NRF1, NRF2, P53), and activation of a systemic IIR.
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Sustained induction of AHR is associated with human risk for
carcinogenicity, immune toxicity, developmental, cardiometa-
bolic, dermatologic, and pulmonary toxicity (Linden et al., 2010).
CAR, PXR, PPARa inductions are associated with carcinogenicity
risk in rodents generally not considered relevant to humans
(Misra et al., 2013; Yoshinari, 2019). Sustained ER activation is as-
sociated with human relevant tumorigenesis and developmen-
tal toxicities (Baldissera et al., 2016). NRF1 and NRF2 are
associated with proteasomal and electrophilic oxidative stress
that can derive from chemically reactive metabolites associated
with DILI (Monroe et al., 2020) , and P53 activation can be associ-
ated with a DNA damage response to hard electrophilic metabo-
lites of procarcinogens (Auerbach, 2016; Fischer, 2017). Because
repetitive exposures of cytotoxic doses of nongenotoxic agents
may also activate P53 resulting in cell cycle arrest to allow for
tissue repair, it may be challenging to discriminate direct DNA
damage at toxic drug doses. We have assessed the dose and
time relationship of the P53 DNA damage response gene signa-
ture with a gene signature that we have identified as a universal
biomarker of drug-induced tissue injury (Glaab et al., 2018) and
have indeed noted, for example, that such evidence for P53 acti-
vation can be seen concurrent with tissue injury even with
short-term treatment at doses with agents such as carbon tetra-
chloride, monocrotaline, and methapyrilene that are not con-
sidered genotoxic but are believed to be carcinogenic secondary
to chronic tissue toxicity (unpublished data). However, signifi-
cant P53 DNA damage response is more frequently independent
of drug-induced tissue injury, for example, with acetamido-
fluorene, cisplatin, and nitrosodiethylamine.

The quantitative toxicogenomic framework described here
has evolved over time and has been used in our company at in-
creasing stages of breadth over the past 10 years for internal de-
cision making during early preclinical development. Signatures
are used to identify dose-response relationships informing on
human relevance potential, including for example, certain
mechanisms of carcinogenicity, liver injury, and systemic in-
nate immune activation. With broader collaboration and addi-
tional qualification, this initial mechanistic molecular
biomarker framework could serve as an aligned reference for
the wider pharmaceutical industry and regulatory agencies to
account for commonly observed benign and potentially detri-
mental adaptations in response to drug exposure.
Implementing such an approach early in preclinical develop-
ment would complement and enhance the value of conven-
tional toxicology study endpoints used later in drug
development and would also provide a deeper mechanistic un-
derstanding of toxicological outcomes.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.
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