Abstract

In contrast to most temperate woody species, apple and pear and some other woody species of the Rosaceae family are insensitive to photoperiod, and no alternative environmental seasonal signal is known to control their dormancy. We studied growth and dormancy induction in micropropagated plants of four apple (Malus pumila Mill.) and one pear (Pyrus communis L.) commercial rootstock cultivars in controlled environments. The results confirm that growth cessation and dormancy induction in apple and pear are not influenced by photoperiod, and demonstrate that low temperature (< 12 °C) consistently induces both processes, regardless of photoperiodic conditions. Successive stages of the autumn syndrome (growth cessation, formation of bud scales and winter buds, leaf senescence and abscission, and dormancy induction) occurred in response to low temperature. Long days increased internode length at higher temperatures, but had no significant effect on leaf production in any of the cultivars. Chilling at 6 or 9 °C for at least 6 weeks (about 1000 h) was required for dormancy release and growth resumption, whereas treatment at 12 °C was marginally effective, even after 14 weeks of exposure. We are thus faced with the paradox that the same low temperature conditions that induce dormancy are also required for dormancy release in these species.