
Summary Plant tissues shrink and swell in response to
changes in water pressure. These strains can be easily mea-
sured, e.g., at the surface of tree stems, to obtain indirect infor-
mation about plant water status and other physiological param-
eters. We developed a mechanical model to clarify how water
pressure is transmitted to cell walls and causes shrinkage of
plant tissues, particularly in the case of thick-walled cells such
as wood fibers. Our analysis shows that the stress inside the fi-
ber cell walls is lower than the water tension. The difference is
accounted for by a stress transmission factor that depends on
two main effects. The first effect is the dilution of the stress
through the cell wall, because water acts at the lumen border
and is transmitted to the outer border of the cell, which has a
larger circumference. The second effect is the partial conver-
sion of radial stress into tangential stress. Both effects are quan-
tified as functions of parameters of the cell wall structure and
its mechanical properties.

Keywords: biomechanics, cell mechanics, diurnal strains, me-
chanical model, multilayer cylinder, stress transmission factor.

Introduction

Water inside terrestrial plants is generally in a state of tension,
i.e., negative pressure (Tyree and Zimmerman 2002). The on-
set of this negative pressure is related to evaporation at the leaf
surface. Evaporation induces a drop in leaf water potential,
and thus a suction force that propagates down to the roots, fa-
cilitating soil water uptake. Water tension transports water
from the soil to the leaves and undergoes large diurnal and sea-
sonal variations in response to physiological regulation and
environmental fluctuations. The propagation of this negative
pressure is made possible because of the high tensile strength
of water (Tyree and Zimmerman 2002), i.e., the bonding of
water molecules to each other. Water is also closely bonded to
plant cell walls, so that the water tension is, at least partly,
transmitted to the solid medium in which it is contained. This
is the basis of turgor pressure in living cells, where the osmotic
pressure is balanced by the mechanical action of the cell wall

on water. The transmission of pressure from a fluid through
solid cell walls is the principle underlying the measurement of
plant water potential with a pressure chamber (Scholander et
al. 1964, Cochard et al. 2001).

The transmission of pressure from a fluid through solid cell
walls also causes shrinkage and swelling of plant tissues in re-
sponse to changes in water status. This phenomenon has long
been recognized in trees, because diurnal variation in stem di-
ameter (hereafter termed diurnal strain) in response to physio-
logical activity is easily detected (Klepper et al. 1971, Ueda
and Shibata 2001). Diurnal strain measurements are poten-
tially a powerful tool for studying tree physiology, because
they are nondestructive and can be monitored continuously
with strain gages (Okuyama et al. 1995, Yoshida et al. 2000a)
or linear transducers (Klepper et al. 1971, Daudet et al. 2005)
to obtain spatial and temporal patterns of physiological activ-
ity (Sevanto et al. 2002). Diurnal strains have been considered,
in terms of their effects on wood morphogenesis (Okuyama et
al. 1995, Abe and Nakai 1999, Yoshida et al. 2000b, 2000c,
Abe et al. 2001), relationships with phloem sugar transport
(Sevanto et al. 2003, Daudet et al. 2005) and reduced wood
conductivity (Ueda and Shibata 2002, Hölttä et al. 2002), as
well as practical applications, such as correcting dendrometric
data (Kozlowsky and Winget 1964, Downes et al. 1999,
Deslauriers et al. 2003), and irrigation scheduling (Gold-
hammer and Fereres 2001, Remorini and Massai 2003).

The relationship between changes in stem water potential
and strains measured at the surface of a tissue can be quantified
empirically (So et al. 1979, Irvine and Grace 1997, Cochard et
al. 2001, Alméras et al. 2006). However, because of the vari-
ability in plant materials and the time courses of their develop-
ment, this relationship is not constant, making multiple,
time-consuming calibrations necessary. It has been suggested
that the resulting calibration factor is related to the elastic
properties of the swelling tissues (So et al. 1979, Neher 1993,
Irvine and Grace 1997); however, the relationship between
water potential and strain at the stem surface is not straightfor-
ward, and no explicit formulation of the related mechanical
problem has yet been provided. In this paper, we present a rig-
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orous formulation and resolution of the mechanical problem
of calculating the state of equilibrium of a structure subjected
to internal stress and to external constraints at its borders. We
formulated the mechanical problem in a general way, so that it
can be applied to other biomechanical problems involving a
cylindrical porous structure made of orthotropic material sub-
jected to variation in pressure in its liquid phase. The simpli-
fied formula, derived from this model by taking into account
the morphological and mechanical properties of plant stems,
should allow independent estimation of the calibration factor
linking strains and stem water potential.

Mechanical behavior of a cylinder submitted to internal
stress

Mechanical problems associated with the effect of water
pressure in trees

Our reference material is the woody stem of a dicotyledonous
plant. A portion of the woody stem can be idealized as a cylin-
der, having a uniform structure in the longitudinal direction
and radial symmetry. However, the structure is not uniform in
the radial direction because it bears a succession of tissues of
different ages, structures, functions and mechanical properties
(pith, heartwood, sapwood, phloem and other extra-cambial
tissues). Therefore, we modeled a stem portion as a
multi-layered cylinder, assuming longitudinal and tangential
homogeneity but accounting for radial heterogeneity.

A typical feature of plant materials is their anisotropy. They
are organized along specific directions (longitudinal, radial
and tangential). Their mechanical properties strongly depend
on the direction considered. For example, wood is typically 10
to 20 times stiffer in the longitudinal direction than in the ra-
dial direction and 1.5 to 2 times stiffer in the radial direction
than in the tangential direction. Therefore, woody stems must
be considered orthotropic. In addition, couplings exist be-
tween the various directions, both at the material level (Pois-
son’s ratio) and at the structural level (dependence between ra-
dial displacement and tangential strain inside a cylinder).
These coupling effects may have important consequences for
the distribution of stresses and strains.

Another characteristic of plant vascular tissues is porosity.
A macroscopic volume of material essentially contains cell
walls and lumens. Lumens are filled with sap and connected to
each other. Because of tension forces, water adheres to the in-
ternal surfaces of the lumens so that any force applied to the
liquid phase (water) is transmitted to the solid phase (cell
walls). From a macroscopic standpoint, the plant tissue ap-
pears as a two-phase system subjected to internal forces. To ac-
count for internal forces, a specific formulation is required
where some inelastic “induced” stress is considered in the
macroscopic material.

To solve the complete problem, a two-level approach is nec-
essary. At the stem level, one can predict the strains and resid-
ual stress in the structure caused by a known induced stress for
given boundary conditions. Computation of the field of inter-
nally induced stress is a prerequisite. This internally induced

stress is not exactly equal to the change in water pressure, be-
cause the solid phase (cell walls) must also be accounted for.
The stress induced in the material at the macroscopic level can
be computed by considering, at the cell level, the transmission
of stress from the liquid to the solid phase.

Fortunately, the problem at the cell level is closely analo-
gous to that at the stem level because most vascular elements
can be regarded as cylindrical structures made of multiple lay-
ers of anisotropic material. Therefore, the mechanical equa-
tions at both the stem and cell levels can be solved with the
same basic model. The model is first used at the cell level to
compute the stress induced in the material, and then at the stem
level to compute the resulting field of strains inside the whole
structure. In this paper, the model formulation and resolution
and its application at the cell level are presented. The formula-
tions and results provide a rational basis for understanding cell
mechanics and may stimulate efforts to model related prob-
lems in plant physiology, such as the collapse of cells under
large tensions, and the mechanisms underlying water potential
measurements made with pressure chambers (Scholander et
al. 1964). Application of the model to diurnal strains at the
stem level will be presented elsewhere (Alméras 2008). The
mechanical problem is analogous to those developed at the fi-
ber or stem level in wood mechanics for modeling wood dry-
ing or maturation strains (Barber 1968, Archer 1987,
Yamamoto 1998, Yamamoto et al. 2001, Alméras et al. 2005).
Many elements of the formulation proposed in this paper are
derived from those given by Archer (1987).

A rigorous mathematical formulation of the model is pro-
vided to allow identification of the main assumptions on which
it is based and derive general solutions. The model is then used
to simulate the effects of various parameters based on data
from the literature. When possible, simplified models are de-
rived and validated from this general formulation to provide
useful, tractable analytical tools.

Formulation of the mechanical problem

The mechanical problem consists in computing the state of
equilibrium of a structure subjected to internal stress and to ex-
ternal constraints at its borders. We first aim to solve the me-
chanical problem for a single homogeneous layer and then
present solutions for a multilayer structure.

Under the action of internal and external stresses, any ele-
mentary volume of material tends to be displaced to a new
equilibrium position. Spatial distribution of the displacements
is described by the displacement field and the strain field de-
rived from it. Because all displacements are not geometrically
compatible, some residual stress appears. The objective of the
mechanical problem is to compute these fields of displace-
ment, strain and stress.

Let us consider a cylinder made of orthotropic material. The
reference system associated with the cylindrical structure is
noted (R, T, L), where R is the radial direction, T the tangential
direction and L the longitudinal direction. Because no shear
stress is induced, no shear stress or strain occurs so all expres-
sions will be reduced to their normal components along direc-
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tions R, T and L . Because only small strains are involved, we
also assume linear elastic behavior of the material.

Displacements, strains, stresses and material properties

At mechanical equilibrium, the displacement of the material at
a given position is represented by the vector (uR, uT, uL ), the
strain by (εR, εT, εL ) and the residual stress by (σR, σT, σL )
(symbols and their definitions are listed in Table A1). The
stress initially induced in the material at a given position is
noted (βR, βT, βL ). Elastic properties of the material quantify
linear relationships between stress, strain and induced stress at
a given position. They define the behavior law of the material
as:

σ ε ε ε β
σ ε ε ε β
σ

R RR R RT T LR L R

T RT R TT T TL L T

L

C C C

C C C

C

= + + +
= + + +
= LR R TL T LL L LC Cε ε ε β+ + +






(1)

where CXY are the stiffness terms characterizing the material
properties. Diagonal terms CXX express the linear relationship
between stress and strain along a given direction. Cross-terms
CXY express the material coupling between directions X and Y,
i.e., the amount of stress generated in direction Y when the ma-
terial is strained in direction X. They are related to the usual
engineering constants (moduli of elasticity and Poisson’s ra-
tios) by classical formulas (Bodig and Jaine 1982, Guitard
1987).

Strain, stress and stiffness terms are three-dimensional
fields, i.e., they are defined at any position (r, t, l ) inside the
structure. However, because of cylindrical symmetries, they
are assumed uniform along directions T and L so that they de-
pend only on r. For a single homogeneous layer, we addition-
ally assume that stiffness and induced stress are uniform along
the R direction, and are therefore defined as constant values.

Field of displacement, strains and kinematic compatibility

The basic parameter on which the resolution is based is the dis-
placement vector (uR, uT, uL ). Fields of strain and stress will be
derived from it. Because no shear stress is considered, it is ap-
parent that no torsion occurs, so that the tangential displace-
ment uT is null at any position inside the cylinder. We also as-
sume that the longitudinal displacement uL is uniform in the
RT plane, meaning that a section remains planal during the de-
formation. This statement, referred to as the plane strain as-
sumption, is generally verified inside a slender cylindrical
structure except at its extremities, provided constitutive ele-
ments are mechanically connected in the transverse plane. For
the same reason, the longitudinal strain εL is uniform along R.
Because of the cylindrical symmetries, the radial displacement
uR does not depend on the tangential or longitudinal positions.
The problem is then reduced to the determination of the con-
stant longitudinal strain εL and the radial displacement at any
radial position, uR(r).

The radial strain derives from the radial displacement as:

ε R
Rr

du

dr
( ) = (2)

Inside a cylinder, radial and tangential strains are not inde-
pendent of each other (see Appendix), but are linked by:

ε T
Rr

u

r
( ) = (3)

Expression of static equilibrium

The condition for static equilibrium inside a cylinder implies
that (see Appendix):

d

dr r
R R Tσ σ σ+ =–

0 (4)

By inserting the behavior law (Equation 1) and replacing
transverse deformations by their expressions given in Equa-
tions 2 and 3, the condition for static equilibrium (Equation 4)
is reduced to:

r
d u

dr

du

dr

u

r
K KR R R

L L

2

2
2+ = +– γ εβ (5)

where γ, Kβ, and KL are constants defined in the Appendix.
Equation 5 is a second-order differential equation, defining the
field of radial displacement uR(r) at equilibrium. A general so-
lution for this equation, assuming γ ≠ 1 (Archer 1987) is:

u r Ar Br
r K K

R
L L( )

–
–= + +

+γ γ β ε
γ1 2

(6)

where A and B are integration constants. The values of A, B
and εL are determined using the boundary conditions of the
problem. This point will be clarified in the multi-layer formu-
lation. The field of strain can be directly derived from the ex-
pression of uR(r) with Equations 2 and 3, and the field of stress
can be derived with Equation 1.

Mechanical behavior of a multilayer cylindrical structure

Static equilibrium inside each layer

Let us consider a cylindrical structure made of n embedded
layers, with external radii r1, .., rn. The inner radius of the in-
nermost layer is noted ro (it is 0 if the cylinder is full). Each
layer is assumed to have homogeneous material properties and
is subjected to a homogeneous field of induced stress. Equa-
tion 6 gives the field of radial displacement for a given layer
i ∈{1...n}. Writing this equation for each layer results in a set
of expressions containing 2n unknown integration constants
(Ai and Bi ) and the unknown longitudinal strain εL. These
2n + 1 unknown parameters are determined by interface and
boundary conditions. The radial displacement and stress fields
can be written, for r ∈ [ri-1, ri]:
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u r A a r B b r c r d rR i i i i L i i( ) ( ) ( ) ( ) ( )= + + +ε (7)

σ εR i i i i L i ir A e r B f r g r h r( ) ( ) ( ) ( ) ( )= + + + (8)

where a i, bi, ci, di, ei, fi, gi and hi are known functions of r de-
fined in the Appendix.

Conditions at the interfaces between layers

At the interface between consecutive layers, the kinematic
compatibility implies the continuity of radial displacement
(meaning that the layers do not overlap and that no gap appears
between layers), so that at ri, for i ∈ [1, n – 1]:

u r A a r B b r c r d r

A a
R i i i i i i i L i i i i

i i

( ) ( ) ( ) ( ) ( )

(

= + + +
= + +

ε

1 1 r B b r c r d ri i i i L i i i i) ( ) ( ) ( )+ + ++ + + +1 1 1 1ε
(9)

Static equilibrium at the interface implies the continuity of ra-
dial stress, at ri, for i ∈ [1, n – 1]:

σ εR i i i i i i i L i i i i

i i

r A e r B f r g r h r

A e

( ) ( ) ( ) ( ) ( )

(

= + + +
= + +1 1 r B f r g r h ri i i i L i i i i) ( ) ( ) ( )+ + ++ + + +1 1 1 1ε

(10)

These relationships define 2n – 2 continuity conditions at the
interfaces.

Boundary conditions

Radial boundary conditions of the whole structure are defined
at the internal bound of the innermost layer (r = r0 ) and at the
external bound of the outermost layer (r = rn ). Depending on
the particular problem considered, these conditions can be ei-
ther imposed radial stresses σo and σn or imposed radial dis-
placements u0 and un. The “imposed stress” condition is used
if the border is submitted to known external forces (e.g., the lu-
men water pressure) or if it is free of stress (the external border
of a stem or the internal border of a hollow stem). If full kine-
matic restraint exists (as at the center of a full cylinder), the
“imposed null displacement” condition is used.

The condition at the internal radial bound is:

u r A a r B b r c r d r uR L( ) ( ) ( ) ( ) ( )0 0 0 0 0 0= + + + =1 1 1 1 1 1ε (11)

or

σ ε σR Lr A e r B f r g r h r( ) ( ) ( ) ( ) ( )0 0 0 0 0 0= + + + =1 1 1 1 1 1 (12)

The condition at the external radial bound is:

u r A a r B b r c r d r uR n n n n n n n L n n n n n( ) ( ) ( ) ( ) ( )= + + + =ε (13)

or

σ ε σR n n n n n n n L n n n n nr A e r B f r g r h r( ) ( ) ( ) ( ) ( )= + + + = (14)

A last condition is given by the static equilibrium in the lon-
gitudinal direction. Again, two kinds of boundary conditions
can be considered, either an imposed load or an imposed

strain. In the case of an imposed strain, the value of L is di-
rectly given as input data. In the case of an imposed load, static
equilibrium implies that the sum of all longitudinal stress over
a section is equal to the variation of axial load N. We define ji,
ki, li and mi, known functions of r (see Appendix), so that static
equilibrium in the longitudinal direction is given by:

( ) ( )j r j r A k r k r B

l r l

i i i i i i i i i i
i

n

i i i

( ) – ( ) ( ) – ( )

( ) –

– –1 1
1

+

+
=
∑

( ) ( )( ) ( ) – ( )– –r m r m r Ni L i i i i1 1ε + =

(15)

Complete resolution

After choosing the relevant radial boundary conditions, Equa-
tions 9–15 define 2n + 1 interface and boundary conditions.
They form a linear system with 2n + 1 equations and 2n + 1 un-
known parameters (εL and the integrations constants Ai and
Bi ). These can be deduced by inversion of the linear system.
All fields of stress, strain and displacement can be deduced
from these quantities with Equations 1, 2, 3, 7 and 8. Input pa-
rameters of the model are the three boundary conditions (N, uo

or σo, un or σn ) and, for each layer, its radius, stiffness terms
and induced stresses.

Numerical study of the stress induced in a standard wood
fiber

Application of the model at the cell level

The cell wall is multilayered. The relationship between the
water pressure in a cell lumen and stress induced in a material
comprising many cells can be computed with the multi-layer
cylinder model and appropriate sets of input parameters and
boundary conditions. The equilibrium of the lumen–cell wall
interface implies that radial stress at the internal radial bound
of the cell is equal to the imposed water pressure P. The sign of
the pressure is usually expressed using the conventions of hy-
draulics (where a compression is a positive pressure), so that,
to be consistent with the conventions of mechanics of solids
(where a tension is a positive stress), the boundary condition at
the cell–lumen interface is given by Equation 12 with σ0 = –P.

Next, we quantify the induced stress at the material level.
For this, we assume that the cell is an elementary representa-
tive volume of the plant tissue and use the principle of homog-
enization. Macroscopic induced stress is an inelastic stress,
i.e., a stress that appears without macroscopic strain in the ma-
terial. It is equivalent to the stress generated at the external
boundary of the cell, assuming it is completely restrained in
displacement. Therefore, boundary conditions used for this
problem are an imposed null displacement at the external ra-
dial bound (Equation 13 with un = 0) and an imposed null lon-
gitudinal strain (εL = 0).

Parameter set for a standard wood fiber

For a material made of identical cylindrical cells, the density d
is related to the cell wall thickness through the ratio of lumen
radius to cell radius ρ and the density of the cell wall material
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do. Neglecting the gaps at the junctions of round cells, this
relationship is:

ρ = 1 –
d

d0

(16)

In wood, most of the volume generally comprises fibers (or
tracheids in gymnosperms). Our reference set of parameters
describes the typical fiber of a hardwood as having a basic den-
sity d = 650 kg m– 3. Because the dry density of the wall mate-
rial of wood fibers is close to d0 = 1500 kg m– 3, the equivalent
radius ratio is ρ = 0.75. The cell wall of a typical wood fiber is
made of four layers (Figure 1). The outermost layer is made of
the middle lamella and the primary wall and is referred to as
the MP layer. Internal secondary layers are named, from out-
side to inside, S1, S2 and S3. Each layer comprises a composite
material with stiff cellulose microfibrils embedded in a matrix
of lignin and hemicellulose. Cellulose microfibrils have a spe-
cific orientation relative to the cell axis, referred to as the
microfibril angle (MFA). The microfibril content and angle of
each layer used in this simulation are indicated in Table 1.
Stiffness of the water-saturated cell wall material can be com-
puted from these parameters with a cell-wall micro-mechani-
cal model (Alméras et al. 2005). This model incorporates the
shear restraint effect resulting from the juxtaposition of cells
with anti-symmetric structure. The computed values used in
the simulations are indicated in Table 1.

Fields of transverse stress and strain inside the wall

Fields of radial and tangential stress and strain inside the fiber
wall (Figure 2) were computed in response to an arbitrary wa-
ter tension of 1 MPa (P = –1 MPa). Because the formulation is
linear, the magnitude of the computed fields of strain and
stress is proportional to the value of the imposed tension.
These results correspond to the virtual situation where the
cell’s outer border would be prevented from straining, because
the aim in this section is to compute the macroscopically in-
duced stress. From Figure 2, it is apparent that the radial stress
and tangential strain are continuous functions of the radius,
whereas tangential stress and radial strain exhibit discontinu-
ities between layers. The radial stress at the lumen interface is
equal to that of the water and decreases in a nonlinear fashion
toward the middle lamella (Figure 3). The tangential stress is
negative inside the inner S3 layer and positive inside other lay-

ers. Its magnitude is lower inside the S1 layer than inside other
outer layers (Figure 2).

Because the order of magnitude of water tension occurring
in plant stems is at most only several MPa, it is apparent that
the generated strains are small, which explains why a linear
formulation is sufficient for this problem. Tangential strain is
negative at the lumen interface (i.e., the lumen is smaller than
before the onset of tension) and increases up to 0 toward the
middle lamella.

The value of radial stress at the external border is equal to
75.5% of the water tension. This ratio is a parameter of interest
because it allows conversion between the water tension and the
stress induced in the material. Hereafter, we refer to it as the
“stress transmission factor”:

k
P

n= –
σ

(17)

Sensitivity of the stress transmission factor to fiber wall
structure

Figure 3 shows that the stress transmission factor depends on
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Figure 1. Schematic representation of a multilayer cylindrical wood
fiber. Successive layers are the middle lamella and primary wall
(MP), and three secondary layers (S1, S2, S3 ) with different micro-
fibril angle (MFA). The reference associated with the fiber is R = ra-
dial, T = tangential and L = longitudinal direction.

Table 1. Parameters defining the structure of the reference fiber and the stiffness of its layers. Abbreviations: MP = middle lamella + primary wall;
S1, S2, S3 = secondary layers; CRR = radial stiffness; CTT = tangential stiffness; CLL = longitudinal stiffness; and CRT, CTL, CLR = coupling terms.

Thickness (% wall) Microfibrils Stiffness terms (GPa)

Content (%) Angle (°) CRR CTT CLL CTL CLR CRT

MP 10 10 uniform 3.5 8.1 8.1 2.7 1.3 1.3
S1 10 20 70 4.4 22.8 5.2 3.9 1.5 1.2
S2 70 35 15 5.6 5.8 42.9 4.0 1.2 1.9
S3 10 20 80 4.4 26.9 4.4 2.2 1.6 1.2
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fiber wall thickness, because radial stress always decreases in-
side the wall. Wall thickness is related to density through
Equation 16. The effect of basic density on k is shown in Fig-
ure 4. The stress transmission factor tends to 1 when the den-
sity tends to 0, decreases nonlinearly with basic density and
tends to 0 when the density tends to do (i.e., when the lumen is
reduced to a null radius).

The microfibril angle (MFA) of the S2 layer varies among
wood cell types and controls the tangential stiffness of the cell
wall. Its effect was tested for a fixed basic density of 650 kg
m– 3. As illustrated by Figure 5, k tends to decrease slowly with
increasing MFA and consequent increasing tangential stiff-
ness.

Fields of tangential stress presented in Figure 2 show that
the S3 layer is strongly compressed. Also, the radial stress de-
creases more steeply inside the S3 than inside other layers
(Figure 3). Because this layer is adjacent to the lumen and has
the highest MFA and consequently the highest tangential stiff-

ness, it was suspected to be a sensitive parameter. The effect of
its thickness on k was tested for a standard density and
MFA. As shown in Figure 6, the sensitivity of this parameter is
low. Only a slight decrease in k was observed with increasing
thickness of the S3 layer.

To summarize, k in wood fibers is always less than 1, and it
is decreased by a high density (i.e., large wall thickness) and a
high MFA (i.e., high tangential/radial stiffness ratio). A
straightforward quantification of these effects with a simpli-
fied analytic model is described in the next section.

Simplified analytic model

Explicit model for a single layer

The simplified analytic model is based on the representation of
the cell wall as a single layer. The external radial stress σ1, due
to a tension P at the lumen interface, can be made explicit by
using Equations 12 and 13 for boundary conditions and
solving Equation 8:

( ) ( )
σ ργ

ρ γ ρ γγ −γ1
2=

+
C P

C C C C
RR

RT RR RT RR– –
(18)

If we neglect Poisson’s ratio of the material (i.e., assuming CRT

= 0), the stress transmission factor can be simplified as (com-
bining Equations 1 and 18):

k =
+
2ρ

ρ ργ γ–
(19)
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Figure 2. Fields of radial stress (σR), tangential stress (σT ), radial
strain (εR ) and tangential strain (εT ) inside the fiber wall, induced by
a water tension of 1 MPa in the lumen, assuming the outer border of
the cell is restrained. The radial position is standardized by the fiber
radius. Abbreviations: MP = middle lamella + primary wall; and S1,
S2, S3 = secondary layers.

Figure 3. Enlargement of Figure 2 showing the field of radial stress
(σR) inside the fiber wall, induced by a water tension of 1 MPa in the
lumen, assuming the outer border of the cell is restrained. The radial
position is standardized by the fiber radius. Abbreviations: MP = mid-
dle lamella + primary wall; and S1, S2, S3 = secondary layers.

Figure 4. Variations in stress transmission factor (k) as a function of
bulk density.

Figure 5. Variations in stress transmission factor (k) as a function of
the microfibril angle (MFA) of the S2 layer.
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where ρ denotes the effect of cell wall thickness and γ denotes
the effect of cell wall anisotropy.

Effects of cell wall thickness and anisotropy on the radial
stress transmission factor

Figure 7 illustrates the effects of cell wall thickness and aniso-
tropy on the radial stress transmission factor. It is apparent
that, when the radial stiffness is larger than the tangential stiff-
ness (CRR/CTT > 1), k tends to a maximal value. However, if the
tangential stiffness is larger than the radial stiffness (as it is
usually the case for cell walls), k is reduced, and this reduction
is larger if the cell wall is thicker. For the standard hardwood
fiber, the CRR /CTT ratio of the wall ranges between 0.2 and 0.5,
depending on the MFA, so that the reduction in stress trans-
mission is negligible if the wall is thin, but becomes more sub-
stantial for a dense wood (Figure 7).

These effects can be interpreted by considering that radial
stress is transmitted through radial connections between solid
particles. If stiff tangential reinforcements are present, radial
stress is partly converted into tangential stress, and is therefore
not fully transmitted in the radial direction. This can be easily
visualized when considering the two limiting cases illustrated
by Figures 8A and 8B. These figures illustrate a virtual cell
wall made only of tangential or radial reinforcements, with
voids between them. In the case of the tangential reinforce-
ments, no radial transmission of the lumen stress is possible,
because reinforcements are mechanically isolated from each

other in the radial direction. In the case of the radial reinforce-
ments, each reinforcement transmits all the stress from the
internal to the external border of the wall.

Moreover, if each radial reinforcement transmits all the ra-
dial stress from the internal to the external border, then the
mean stress at the external border is lower than on the internal
border, because it acts on a larger circumference. The radial
stress transmission factor is then the ratio of lumen circumfer-
ence to cell circumference, which is equal to ρ. This geometric
consideration is consistent with the results of Equation 19 for
the case where γ = 0.

The accuracy of this simplified analytic model can be appre-
ciated in Figure 9 by comparison with the effect of density
computed by the multi-layer model. The small discrepancy be-
tween the models results from the effect of the tangential stiff-
ness previously mentioned, and from other complex mechani-
cal effects caused by material couplings (cross stiffness terms)
and 3D effects, which are neglected in the geometric model.

Anisotropy of stress transmission

We have considered a stress transmission factor based on ra-
dial stress. The computation of longitudinal stress is straight-
forward, because the water column and the cell wall act in par-
allel, so that their stresses can be added. The longitudinal
stress inside the lumen is P. If ρ denotes the relative radius of
the lumen, its relative area is ρ2, and a good approximation of
the mean stress in the longitudinal direction is given by:

σ ρL P= 2 (20)

The longitudinal stress transmission factor is then:

kL = ρ2 (21)

Comparison with Equation 19 shows that k is not equal in the
longitudinal direction or in the transverse plane, and is there-
fore not isotropic. Because we assumed cylindrical symmetry
at the cell level, it was implicitly computed as transversely iso-
tropic. However, the real field may also be macroscopically
anisotropic in the transverse plane, because cell elements are
not always cylindrical. Their real shape is generally polygonal
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Figure 6. Variations in stress transmission factor (k) as a function of
the relative thickness of the S3 layer.

Figure 7. Variations of the stress transmission factor (k) as a function
of the anisotropy ratio CRR /CTT for various values of the radius ra-
tio ρ.

Figure 8. Simple models of fiber walls. (A) Wall made mainly of tan-
gential reinforcements. Radial stress at the lumen interface is con-
verted to tangential stress and is not efficiently transmitted through the
fiber wall. (B) Wall made mainly of radial reinforcements. Radial
stress at the lumen interface is fully transmitted through the fiber wall.
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with rounded corners. The thickness or stiffness of the wall
oriented in the macroscopic tangential direction may differ
from that of the radial walls, as may the transmission factor.

The effect of cell geometry on the transmission factor can be
evaluated with a simple rectangular model. Neglecting the ef-
fect of the cell corners, the external stress can be approximated
by considering a parallel association between water and cell
walls (Figure 10). Anisotropic transverse stress transmission
factors are then:

kR T= ρ (22)

kT R= ρ (23)

where ρR and ρT are the respective ratios of radial and tangen-
tial lumen dimensions to fiber dimension. These results are
consistent with the geometric effect for a circular cell, i.e.,
Equation 19 in the case where γ = 0.

Discussion

Multilayer cylinder model

Several models for computing the stress in a cell wall caused
by lumen water tension have been developed in the context of
wood technology to study the onset of collapse in drying
wood. Innes (1995) developed a multilayer cylinder model
that has many similar features to our model. The resolution of
the problem was performed numerically by considering a se-
ries of thin cylindrical elements. This numerical resolution al-
lowed the model to take into account the nonlinear behavior of
the wood substance under large stress leading to failure (Innes
1995). A complementary approach was provided by Hunter
(2001), who made the simplifying assumption that the wood
substance was transversely isotropic, but accounted for the
non-circular shape of the cell section. This option may bring
interesting information about the effect of a departure from cy-
lindrical symmetry; however, the assumption of an isotropic
wall material is not suitable for the problem we studied be-
cause, as we demonstrated, wall anisotropy was an important
parameter determining stress transmission across the cell wall.

Effects of tissue anisotropy and osmotic pressure

Our mechanical model was illustrated by application to a fiber
cell of a standard hardwood, but it can also be used to model
the effect of water pressure on any type of cell, provided its
shape can be approximated by a cylinder. We realize that a cy-
lindrical element is an elementary representation of the vol-
ume of the material, and implicitly neglects the effect of the
cell corners. An anisotropic description of the cell shape was
briefly taken into account. In addition, the distribution of cell
types in wood material is strongly anisotropic. For example,
rays may be arranged as radial bands, and vessels as tangential
bands. The difference in the stress transmission ratio of these
elements results in an additional stress anisotropy at the wood
level. This source of anisotropy may be quantified by simple
mechanical models accounting for a series/parallel associa-
tion of the tissues (Guitard and Gachet 2004). However, we
consider that these are second-order effects and that transverse
isotropy of macroscopic induced stress is a sufficient approxi-
mation. The main source of anisotropy of the actual strains in
the plant material was caused not by anisotropy of the induced
stress, which is low, but by the anisotropy of stiffness of the
material. Stiffness anisotropy is large and cannot be neglected
when computing the strains inside the material at a macro-
scopic level, but it does not need to be accounted for when
computing the induced stress. This is the reason we chose to
compute the stress induced inside a virtually restrained cell,
instead of directly computing the strain induced inside a virtu-
ally isolated cell: these options are mathematically equivalent,
but our approach allowed clear separation of the parameters in-
volved at the microscopic and macroscopic levels.

When modeling living cells or phloem, the effect of osmotic
pressure cannot be neglected because its magnitude is large
and undergoes temporal and spatial variations (Sevanto et al.
2003). The effect of osmotic pressure is that, once the diffu-
sion equilibrium is achieved, the hydrostatic pressure in the
cell differs from that of the water outside the cell. If P is the
change in pressure inside the xylem water and π the change in
osmotic potential inside the living cells, then the change in hy-
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Figure 9. Comparison of the relationship between stress transmission
factor and basic wood density for the simple geometric and multilayer
model.

Figure 10. Model of an anisotropic rectangular cell. Neglecting the ef-
fect of cell corners, the external stress in each direction (σR, σT )
caused by variation in pressure (P) inside the lumen can be roughly
evaluated by a parallel model. Abbreviations: RR = half radial dimen-
sion; RT = half tangential dimension; ρR = relative thickness of a ra-
dial wall; and ρT = relative thickness of a tangential wall.
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drostatic pressure inside the cell is P + π (Tyree and
Zimmerman 2002). This kind of cell can be treated in the same
way as the fiber cell, provided the cell membrane is semi-per-
meable and diffusion equilibrium has been reached.

Stress transmission between the liquid and the solid phase

The behavior of a cell wall undergoing a change in lumen wa-
ter pressure was simulated with a multilayer cylinder model of
orthotropic material. Our main goal was to compute k, to simu-
late the strains occurring at the plant stem level. The stress
transmission factor depends mainly on two effects: a geomet-
ric effect and an effect of cell wall anisotropy. The geometric
effect depends on cell wall thickness and then on tissue den-
sity. The geometric effect “dilutes” the radial stress at a rate
equal to the ratio of lumen circumference to cell circumfer-
ence. The effect of cell wall anisotropy reduces the radial
stress transmission as a result of the conversion of radial stress
into tangential stress. It can be non-negligible if the radial stiff-
ness of the cell wall is much lower than its tangential stiffness
(for example in the case of large microfibril angle) and the cell
wall is thick.

A simple model was proposed to quantify these effects and
compute k. At the macroscopic level, k can be viewed as a me-
chanical property of a set of fibers, linking the pressure of lu-
men water to the stress induced in the material. This property
depends on the same micro-structural parameter as the trans-
verse stiffness of the material (namely the density and MFA),
but not in the same way, so that it is a distinct property. In a
standard wood fiber, the transverse k was determined to be
0.75. Realistic values of this parameter for wood range from
0.5 for a dense wood with large microfibril angle to 0.9 for
wood with low density.

Heterogeneity of macroscopic stress and strain

The model allows computation of the field of macroscopic
stress induced in the whole stem, provided that the field of hy-
drostatic pressure (including the effect of osmotic potential) is
known, as well as the properties of cell elements of each tissue.
In a living tree, variations in hydrostatic and osmotic pressures
are both heterogeneously distributed (Panterne et al. 1998,
Sevanto et al. 2003). The heterogeneity of the field of induced
stress depends on these heterogeneities and also on the hetero-
geneity of k. The resulting field of strain in the stem depends
on this field of induced stress and on the stiffness of the tissues
at the macroscopic level. In previous models of the relation-
ship between diurnal strains and water pressure, it was as-
sumed that water pressure and strains were directly related by
the mechanical properties of the material at the macroscopic
level (Neher 1993, Irvine and Grace 1997, Offenthaler et al.
2001, Perämäki et al. 2001, Hölttä et al. 2002); however, this
approach neglects the effect of stress transmission through the
cell wall (i.e., it was implicitly assumed that k is uniformly
equal to 1). We have now shown that the stress induced in the
material is significantly lower (by 10 to 50%) than the water
pressure, so that the material appears stiffer than if it were sub-
mitted to external forces.

In conclusion, our mechanical model is the first specifically
developed for modeling diurnal strains in living trees. There-
fore, the boundary conditions we used differ from those used
by Innes (1995) and Hunter (2001) for a piece of drying wood.
Also, because diurnal strains are small, elasticity is a sufficient
descriptor of wood behavior, allowing us to use a simpler
mathematical formulation than in the above-mentioned mod-
els. We provided an explicit analytic solution, adapted from
the work of Archer (1987), that allowed implementation of ef-
ficient calculations and consideration of the role of each pa-
rameter. A comprehensive explanation of the phenomena in-
volved at the cell level was provided, and simplified models
were derived and validated.
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Appendix

Kinematic compatibility inside a cylinder

To ensure the continuity of the structure along direction T, any
radial displacement uR(r) is associated to a tangential strain
εT(r), as demonstrated in Figure A1. Tangential strain can be
computed as:

( )
ε

θ θ
θT

Rr u d r d

r d
=

+ –

This implies that:

ε T
Rr

u r

r
( )

( )=

Static equilibrium condition inside a cylinder

The static equilibrium is ensured if the resultant of stresses act-
ing at the boundaries of any elementary volume is null. As
demonstrated in Figure A2, the resultant of the tangential com-
ponent is ensured by symmetry, and that of the radial compo-
nent is expressed as:
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Figure A1. Relationship between tangential strain and radial displace-
ment inside a cylinder.

Figure A2. Static equilibrium of an elementary volume of the cylin-
der.
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Table A1. List of symbols.

Symbol Description

R, T, L Radial, tangential and longitudinal directions
r, t, l Radial, tangential and longitudinal positions
(uR, uT, uL ) Displacement vector
(εR, εT, εL ) Strain vector
(σR, σT, σL ) Stress vector (elastic stress)
(βR, βT, βL ) Induced stress vector (inelastic stress)
CXY,i Stiffness term X, Y = (R, T, L)2 of the ith layer
ri External radius of the ith layer
γ i Anisotropy coefficient of the ith layer (γ i TT i RR iC C= , , )
Kβ,i, KL,i Constants depending on stiffness and induced stress of the ith layer
A i, B i Integrations constants of the ith layer
uo, un Conditions in radial displacement at the internal and external radial bound
σo, σn Conditions in radial stress at the internal and external radial bound
N Longitudinal condition of axial load
ai , bi , ci , di Coefficients of the expression of radial displacement
ei , f i , gi , hi Coefficients of the expression of radial stress
ji , ki , li , mi Coefficients of the expression of longitudinal stress
P Change in hydrostatic pressure
π Change in osmotic potential
d Basic density of the plant material
do Basic density of the cell wall material
ρ Radius ratio of the cell ( ρ = ro/rn )
k Transverse stress transmission factor
kR, kT, kL Anisotropic stress transmission factors (in the macroscopic reference system)
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