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Background: Marburg virus disease (MVD) describes a viral haemorrhagic fever responsible for a number of out-
breaks across eastern and southern Africa. It is a zoonotic disease, with the Egyptian rousette (Rousettus aegyp-
tiacus) identified as a reservoir host. Infection is suspected to result from contact between this reservoir and
human populations, with occasional secondary human-to-human transmission.

Methods: Index cases of previous human outbreaks were identified and reports of infection in animals recorded.
These data were modelled within a species distribution modelling framework in order to generate a probabilistic
surface of zoonotic transmission potential of MVD across sub-Saharan Africa.

Results: Areas suitable for zoonotic transmission of MVD are predicted in 27 countries inhabited by 105 million
people. Regions are suggested for exploratory surveys to better characterise the geographical distribution of the
disease, as well as for directing efforts to communicate the risk of practices enhancing zoonotic contact.

Conclusions: These maps can inform future contingency and preparedness strategies for MVD control, especially
where secondary transmission is a risk. Coupling this risk map with patient travel histories could be used to guide
the differential diagnosis of highly transmissible pathogens, enabling more rapid response to outbreaks of
haemorrhagic fever.

Keywords: Boosted regression trees, Filovirus, Marburg virus disease, Rousettus aegyptiacus, Species distribution models,
Viral haemorrhagic fever

Introduction

In 1967, outbreaks of a previously undescribed disease in workers
of three laboratories in West Germany and Yugoslavia were
reported, characterised by high fever, haemorrhaging and organ
failure.1 A novel virus, named Marburg virus (MARV), the first
described in the Filoviridae family, was subsequently identified
as the causative pathogen.2 In 1975, the first recognised case
of the disease outside of a laboratory occurred in Rhodesia (now
Zimbabwe), with one case in 1980 due to MARV and another in
1987 due to Ravn virus (RAVV), another marburgvirus.3 Not until
1998, when a series of fatal haemorrhagic cases were identified
in the vicinity of Durba, Democratic Republic of the Congo (DRC),
was a large-scale outbreak reported. A total of 154 cases were
reported, with the source of infection traced back to bat colonies
in local gold mines.4 While a large number of cases were reported
between 1998 and 2000, it was found that multiple introductions

of the virus from the same zoonotic pool were responsible for the
continued outbreak rather than only human-to-human transmis-
sion, as more commonly reported with Ebola virus disease
(EVD).4–6 In 2004 however, a large outbreak in Uige province,
Angola, occurred where, unlike in Durba, continued cases were
driven by subsequent human-to-human transmission rather
than repeated introductions from a natural source.7 More recent
outbreaks have been smaller in comparison (Figure 1).8–12

The wider epidemiology of Marburg virus disease (MVD)
remains relatively unknown (Figure 2). While non-human pri-
mates are susceptible to the disease, there have been no reported
transmission events from primates to humans outside of a
laboratory setting. Furthermore, no significant epizootics have
been reported among non-human primates, unlike the closely
related ebolaviruses.13,14 Past outbreaks have strongly
implicated bats as the origin of initial index cases in humans.
Serological and molecular surveys conducted in caves and
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mines visited by the infected individuals, have identified the virus
in the Egyptian rousette (Rousettus aegyptiacus).17,18 Colonies of
bats have also been reported in the vicinity of the supposed
index case in other outbreaks.19,20

In order to better understand the nature of MVD risk, this study
attempts to define those areas where zoonotic transmission
of MVD may occur in order to identify people at potential risk of
zoonotic spillover. Such a methodology has previously been
employed with EVD to identify 22 western and equatorial
African nations where ebolavirus transmission may occur.21

Ecological niche modelling of MVD has previously been under-
taken and this work seeks to update these efforts by including
more recent outbreaks, records of infection in animals, improved
environmental covariate layers and recent advances in modelling
techniques.21–25 The need for such information is critical, not only
to assist in differential diagnosis of fevers across Africa, but also
to increase awareness of the potential risk of more widespread
outbreaks that could arise from a delay in the response to initial
cases.26

Materials and methods

Methodological overview

A species distribution model, specifically an ensemble boosted
regression trees (BRT) framework, was used to model the zoonotic
niche of MVD. This model optimally builds ensembles of trees
based upon binary decisions used to classify suitable environmen-
tal covariates in reference to a database of known occurrence
locations.27,28 Areas which are environmentally similar to those
with reported zoonotic transmission of MVD are predicted to be
at higher levels of risk. To perform this analysis, we obtained
four key information components: 1. a database of cases where
MVD has been transmitted from animals to humans; 2. reported
infections of MARV and RAVV in animals; 3. a collection of spatially
gridded environmental variables that are likely to be correlates of
disease presence; and 4. background (pseudo-absence) data indi-
cating locations where MVD has not been reported. The model
was restricted to the African continent since there have been no
reported natural outbreaks, in humans or animals, outside this
region.

Identifying human and animal infections
with marburgviruses

Outbreaks of MVD in humans were identified from review articles
and by sourcing original references.29 Where possible, index cases
(individuals infected by animal reservoir species) were located and
the supposed location of animal to human transfer of MARV and
RAVV was geopositioned using Google Earth. When an accurate
site location could not be determined, a geographic area (termed
a polygon) was defined covering the reported region, identified
using the source articles (e.g., a specified landmark, or an area
referenced in relation to another directly identifiable site); other-
wise a precise, site-specific latitude and longitude was recorded.
For larger settlements, the centroid of the site was recorded. In
some instances, only the first reported patient could be identified,
with little information on the initial route of infection. In these
instances we assumed that the index case occurred where the
zoonotic transmission event took place. For some outbreaks
there was sufficient evidence to suggest multiple independent
zoonotic transmission events. For these outbreaks, each individual
transmission event was separately positioned.

To obtain a comprehensive database of MARV infections in ani-
mals, a literature search was conducted in Web of Science using
the search term ’Marburg reservoir OR Marburg monkey OR
Marburg bat OR Marburg primate’. This procedure returned 1544

Figure 1. Case numbers in previous Marburg virus disease outbreaks. The size of each circle is proportional to the number of cases of the disease in a
given outbreak. Outbreaks are labelled as per Table 1.

Figure 2. The epidemiology of marburgvirus transmission in Africa. B
represents suspected bat reservoirs (including Egyptian rousettes).
Susceptible animals include non-human primates, such as the monkeys
responsible for the 1967 outbreaks (P). H represents humans. Question
marks indicate potential animals of other species. All routes have been
confirmed or are suspected to occur apart from transmission between
bats and primates, which remains unknown. Adapted from Laminger
and Prinz and Groseth et al.15,16
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unique citations. Abstracts for these citations were processed and
where they indicated that the article might contain spatial infor-
mation on Marburg infections in animals the full articles were
obtained. Once identified, the references of these articles (as
well as more general review articles discussing MVD reservoirs)
were followed up in case relevant articles were omitted from
the initial literature search. Locations of infected animals were
geopositioned using the same methodology as for human
index cases.

Covariates used in the analyses

A suite of ecologically relevant gridded environmental covariates
for Africa was compiled, each having a nominal resolution of
5 km×5 km. A number of environmental covariates thought to
potentially influence MVD distribution were selected for inclusion
in this analysis, namely range and mean values of enhanced
vegetation index (EVI) and land surface temperature (LST)
(day and night) derived from satellite data and parsed through
gap-filling algorithms, as well as elevation and potential evapo-
transpiration (PET).21,25,30,31 Many of these have been considered
in previous investigations.24 In addition, distance to the nearest
Karst formation was included as a covariate.32 Karst landscapes
typically form when soluble rocks dissolve and can create expan-
sive cave networks and as such were used in the model as a proxy
for the subterranean roosting habitat of the supposed disease
reservoir, the Egyptian rousette.33,34 Previous work mapping
the zoonotic niche of EVD utilised a bat distribution covariate
layer. While attempts were made to replicate this approach for
MVD, the lack of sufficiently detailed data available from the
Global Biodiversity Information Facility to allow for differentiation
between roosting and foraging sites meant that the niche
modelling approaches were unable to produce reliable results
and therefore these outputs could not be included in the final
analysis.

Marburg distribution modelling

An ensemble boosted regression trees model was used to define
areas environmentally suitable for zoonotic MARV transmission.
The model requires both presence and background information
to generate a prediction, the latter of which is often hard to
collect systematically and in an unbiased manner. As a result, ran-
domly generated background records are often supplied. For this
study, a background record dataset was generated by randomly
sampling 10 000 locations across Africa, biased towards more
populous areas as a proxy for reporting bias.22 This sampling
allows for comparison of factors influencing presence and likely
absence locations for MVD by the model. In total, 500 submodels
were used. Each submodel was fitted using the gbm.step subrou-
tine in the dismo package in the R statistical programming envir-
onment.28,35,36 Given the limited number of records available, we
reduced the number of cross-validation folds used to fit the model
to three, from the default of 10. All other tuning parameters of the
algorithm were held at their default values (tree complexity¼4,
learning rate¼0.005, bag fraction¼0.75, step size¼10). For each
polygon in the occurrence dataset, one point was randomly
selected from within the defined area for each submodel. This
Monte Carlo procedure enabled the model to efficiently integrate
over the environmental uncertainty associated with imprecise

geographic data. A bootstrap sample was then taken from each
of these datasets and used to train the BRT model. For each sub-
model, weightings were applied to the background dataset so
that the sum of the weighted background data equalled the
weighted sum of the occurrence records.37 This was done in
order to improve the discrimination capacity of the model. Each
submodel predicts environmental suitability on a continuous
scale from 0 to 1. An ensemble final prediction map was gener-
ated by combining the predictions from these submodels, calcu-
lating the mean prediction as well as the 5% and 95% confidence
intervals around this for each 5 km×5 km pixel.

Two models were constructed. Model 1 used only records of
human index cases and model 2 used both human index cases
and reported infection in animals. This was done in order to aug-
ment the relatively small number of index case records available
and to evaluate the influence of including animal data on
the model.

The area under the curve (AUC) statistic was used to assess
model accuracy. The statistic was calculated for each submodel
using a three-fold cross validation, and then summarised across
all the submodels to generate a mean and standard deviation
for this value. This procedure divided the dataset into three sub-
sets that had approximately equal numbers of presence records
and background data. Due to the small number of presence
records used to train each submodel, this approach represents a
very thorough test of the model’s predictive ability. In order to pre-
vent inflation of the accuracy statistics due to spatial sorting bias,
a pairwise distance sampling procedure was used.38 As a result,
these AUC statistics are lower than typical outputs, but give a
more realistic evaluation of the ability of the model to predict
for different regions.39 Uncertainty in the prediction was evalu-
ated by considering the difference between the 5% and 95% con-
fidence intervals.

The final outputs represent the environmental suitability for
zoonotic transmission of MARV for each 5 km×5 km pixel which
allows for relative comparison of risk across Africa.

Population living in areas of environmental suitability
for zoonotic transmission

Estimates of population living in areas at risk of zoonotic transmis-
sion were derived by converting the continuous surface of trans-
mission risk into a binary at-risk/not-at-risk classification for each
pixel. The threshold for this classification was based upon the min-
imum environmental suitability value at the locations of the
occurrence records. To calculate this value, the risk estimate for
each point occurrence and the mean probability of each area/
polygon occurrence were assessed. Countries were classified
into two categories of risk. Set 1 are countries where index
cases of MVD have been reported and set 2 are countries where
no index cases have been previously reported and have more
than 100 pixels (i.e., approximately 2500 km2) at risk. The number
of people living in these pixels was calculated from existing popu-
lation surfaces for Africa.40,41

Contiguous areas of risk within each country were visually iden-
tified and the latitude and longitude for the approximate mid-
point for these areas were recorded, suggesting areas of potential
interest for further prospective epidemiological investigation.

The R code used for all of the analysis is freely available via
https://github.com/SEEG-Oxford/marburg_zoonotic.
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Results

Reported infections in humans and animals

A total of 10 distinct outbreaks of MVD were identified, ranging in
size from single reported cases to community-wide outbreaks
with hundreds of reported cases (Table 1). Five countries have
confirmed or suspected instances of animal-to-human zoonotic
transmission, namely Kenya, Uganda, Zimbabwe, Angola and
the DRC (Figure 3). For the majority of these outbreaks, caves
or mines have been singled out as the likely venue for their spill-
over events. Some records were of individuals who had subse-
quently travelled elsewhere before becoming symptomatic, for
which efforts were made to identify the original site of
infection.3,9,10

All available animal infection records were from bat popula-
tions, often sampled in response to human cases, with the
exception of one reported infection in grivets (the same animals
responsible for the 1967 laboratory-based outbreak) (Table 2).
These monkeys were trapped near Kidera and Namsale in
Uganda where they were assumed to have been originally
infected.46 Where epidemiological surveys of nearby potential
animal reservoirs were undertaken during, or shortly after out-
breaks in humans, PCR identification of MARV was often per-
formed.17,18 A serological survey of Gabonese bat populations
reported positivity in Egyptian rousettes and other bats.47 This
is the only evidence of animal infection occurring outside the
recognised range of reported human populations, all other
animal infections have been reported in the vicinity of human
outbreaks (Figure 3).

Predicted environmental suitability for zoonotic
transmission of marburgviruses

Due to the relative paucity of data, two model variants were used
in order to test various assumptions about the poorly understood
MVD epidemiology. Model 1, which only included human index
case data, identified geological features (elevation and distance
to Karst formation) and vegetation indices (both EVI mean and

range) as the main predictors of suitability for zoonotic transmis-
sion (Table 3). Model 2, which included the entire dataset of MARV
infections, implied a broader spatial extent, with environmental
factors (EVI, LST and PET) playing a more important role in predic-
tion compared to elevation. The AUC values were 0.64+0.12 and
0.62+0.08 for models 1 and 2, respectively, indicating that both
the models demonstrated similar predictive skill. Note however
that as these statistics were calculated using different evaluation
datasets, they are not directly comparable. Uncertainty maps for
the predicted surfaces for MVD are presented in Supplementary
Figures 1 and 2.

Both models predict high suitability for zoonotic transmission
in the set 1 countries. In total, model 2 predicts 27 countries to
be at-potential-risk (set 1 and 2) of zoonotic transmission of
MARV with 105 million people living in at-risk areas. Model 1 pre-
dicts 19 countries at risk with 75 million individuals living in at-risk
areas. These 19 countries are consistently predicted to be at-risk
in both models 1 and 2.

Discussion
This work utilises all known outbreaks of MVD in humans
and reported infections in animals in order to understand the
nature of risk posed by this disease (Figures 4 and 5). Previous
assessments have indicated that a much broader region is at-risk
of zoonotic transmission than those countries that have reported
transmission to-date.24 Our analysis, reinforced by new outbreak
reports and environmental covariate information, is in concordance
with previous ecological modelling investigations of MVD, identify-
ing temperature and vegetation indices as key determinants of its
spatial distribution.23,24,50 In addition, we identify the potential
importance of geological features in influencing areas of potential
MARV risk. The majority of at-risk populations live in areas that have
previously reported outbreaks, mainly Uganda, Kenya and the
DRC. Amongst countries yet to see human infection (set 2), the
most notable are Ethiopia, Cameroon and Zambia, in which large
areas are predicted to be at-risk.

Table 1. Locations of natural outbreaks of Marburg virus disease in humans

Outbreak Date range Countries Location Cases/deaths Reference

1a Feb 1975 Zimbabwe Chinoyi caves 3/1 3,24
2 Jan 1980 Kenya Nzoia 2/1 20
3 Aug 1987 Kenya Kitum cave 1/1 19
4 Oct 1998–Aug 2000 DRC Durba 154/128 4,42
5 Oct 2004–Jul 2005 Angola Uige province 252/227 7,43,44,45
6 Jun 2007–Sept 2007 Uganda Kitaka gold mine 4/1 8
7a Dec 2007–Jan 2008 Uganda Python cave 1/0 9
8a Jul 2008 Uganda Python cave 1/1 10
9 Aug 2012–Oct 2012 Uganda Ibanda district 15/14 11
10 Sep 2014 Uganda Mpigi/Mawokota district 1/1 12

DRC: Democratic Republic of the Congo.
a Indicates case imported elsewhere.
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Figure 3. The locations of marburgvirus disease outbreaks in humans and reported animal infections across Africa. This figure is available in black and
white in print and in colour at Transactions online.

Table 2. Locations of reported infections with Marburg virus in animals

Site Date range Country Location Species Diagnosis Reference

1 Aug–Sep 1967 Uganda Kidera and Namasale Chlorocebus aethiops Serology 42
2 May–Oct 1999 DRC Durba Miniopterus inflatus PCR 16
3 May–Oct 1999 DRC Durba Rhinolophus eloquens PCR 16
4 May–Oct 1999 DRC Durba Rousettus aegyptiacus PCR 16
5 Jun 2003–May 2006 ROC Mbomo district Various bat species Serology 43
6 Feb 2005–Mar 2008 Gabon Haut-Ogooue district Various bat species Serology 43
7 Apr 2005 Gabon Moyen-Ogooue district Various bat species Serology 43
8 Feb 2006 Gabon Nyanga district Various bat species Serology 43
9 Aug 2007 Uganda Kitaka gold mine Rousettus aegyptiacus PCR 15
10 Aug 2007 Uganda Kitaka gold mine Hipposideros spp. PCR 15
11 Apr 2008 Uganda Kitaka gold mine Rousettus aegyptiacus PCR 15
12 Aug 2009 Uganda Python cave Rousettus aegyptiacus PCR 48
13 Nov 2009 Uganda Python cave Rousettus aegyptiacus PCR 48
14 Nov 2012 Uganda Kitaka gold mine Rousettus aegyptiacus PCR 49

DRC: Democratic Republic of the Congo; ROC: Republic of Congo.
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As with any model-based approach, an awareness of the lim-
itations of the data and the assumptions made by the model is
important. Limited datasets, particularly those where definitive
identification of zoonotic transmission sites is unlikely, will hinder
predictive capability. However, this study attempts to be as com-
prehensive as possible by including all reports of infections, as well
as considering uncertainty in geopositioning ability. Further infor-
mation can only help to improve these predictions. Similarly, the
model is only able to assess environmental suitability for MVD,
therefore in order to translate this into true outbreak risk, add-
itional information on how humans and animal reservoirs inter-
act, as well as how the disease is transmitted within these
populations is required. Bearing these caveats in mind, we hope
that these results will act as a springboard for further research
to better understand the epidemiology and characterise the risk
of this disease.

The two model iterations (‘human only’ versus ‘animal and
human data’) illustrate the need for further research into MARV
hosts and their potential for zoonotic transmission to humans.
Areas predicted at-risk in model 1 are consistently identified at-
risk in model 2 (although the absolute probability of transmission
is altered); the inclusion of animal data however, expands the
areas of potential risk to include countries across western and
central Africa not indicated as being at-risk by model 1. Figure 6
visualises the differences between these two models. As a result,
given the limited data availability, model 2 would currently be the
most sensible option when discussing the potential risk posed by
MVD. In addition, while no reported cases of MVD have been
recorded in set 2 countries, a number have seen serological evi-
dence of past exposure in humans.29 Seropositive individuals
have been reported in locations identified as at-risk in model 2
in West Africa, Cameroon, Central African Republic, Nigeria and
South Sudan.48,49,51–56

Since many MVD spillover events have only resulted in a hand-
ful of cases, the likelihood of outbreaks going unrecognised is a

possibility.57 It is therefore also possible that spatial variation in
the probability of cases being identified may have biased our mod-
els. While we strived to account for such an observation bias in our
analysis by weighting pseudo-absence records to areas where
infection might be more likely to be detected, we cannot rule
out the presence of residual bias. The true nature of zoonotic
transmission potential within these countries can only be eluci-
dated by additional surveys.

Knowledge on the animal reservoir for MVD is limited. Egyptian
rousettes have consistently been identified as PCR positive for the
virus, however animals of a number of other species have also
been seropositive.15,43,58,59 The maps presented here can be
used to target key sites for future surveys of bats to better under-
stand the true nature of risk within those areas where no previous
outbreak has been reported.

There is considerable overlap between the reported dis-
tribution of Egyptian rousettes (Figure 7) and areas of highest
risk. Evidence suggests that there are various subspecies
of Egyptian rousette across Africa.33 All but one outbreak of
MVD in humans occurred within the known range of members
of R. aegyptiacus leachi; the outbreak in Uige Province, Angola,
however occurred outside the range of bats of this subspecies,
but was within the reported range of R. aegyptiacus unicolor.
It remains unclear whether these populations differ in dis-
ease transmission cycles and the nature of the connectivity
between bats of these two potential subspecies has important
implications for potential disease transmission, either res-
tricting the likely areas of risk to eastern and southern Africa,
or including much of central and west Africa (Figure 7B).
Similarly, it is possible that bats of subspecies present in
north Africa and the Middle East could also be potential reser-
voirs for MARV. The inclusion of bat distributions in future mod-
els would allow for a better understanding of the relationship
between MVD and Egyptian rousettes, with the possibility of
identifying regions where other bats may be more likely reser-
voir hosts.

In addition, further surveys for MARV infection in bats in these
regions therefore would not only help to better understand the
ecology of these bats but also the nature of the risk posed to
human populations. As with EVD, spillover of MARV into humans
is rare and infection in bat populations also appears uncommon.
Understanding the nature of infection within these bat and other
potential reservoirs, is crucial in identifying the true nature of risk
to human populations, not just for MVD, but also a variety of other
viral pathogens.61 Table 4 identifies the main regions within each
at-risk country where such surveillance activities would be of
greatest benefit. The output maps, to allow for national survey
placement, are freely available from the following link: http://
goo.gl/0qTOfe

Our risk maps provide a baseline estimate for the extent of the
zoonotic niche of MVD, which can subsequently be enhanced
through more specific research. While an area may have the
potential for zoonotic transmission of MVD, if humans rarely
interact with these animal hosts, spillover events are unlikely
to occur. As a result, in spite of a large number of individuals liv-
ing in areas where transmission is possible, a considerably smal-
ler number will be at-risk of encountering an infected reservoir
and subsequently being infected. Surveys and ethnographic
assessments can help better understand the true nature of risk
within these regions, particularly important if a quantitative

Table 3. Summary statistics for model outputs

Statistic Model 1:
human data

Model 2: human and
animal data

AUC (+ standard
deviation)

0.64+0.12 0.62+0.08

1st predictor Elevation: 49.1% Mean EVI: 49.1%
2nd predictor Mean EVI: 30.1% Night-time mean

LST: 19.5%
3rd predictor EVI range: 7.8% Elevation: 10.9%
4th predictor Distance to

Karst: 4.9%
Mean PET: 7.5%

5th predictor Night-time mean
LST: 3.1%

Day-time mean
LST: 5.0%

Relative contributions for each of the top five predictors are reported
as a percentage.
AUC: area under the curve; EVI: enhanced vegetation index; LST:
land surface temperature; PET: potential evapotranspiration.
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Figure 4. Predicted geographical distribution of the zoonotic niche for marburgviruses using model 1 – human index cases only. Panel A shows the total
populations living in areas of risk of zoonotic transmission for each at-risk country. The grey rectangle highlights countries in which index cases of disease
have been reported (set 1); the remainder are countries in which risk of zoonotic transmission is predicted, but in which index cases of Marburg virus
disease have not been reported and have more than 100 at-risk pixels (set 2). These countries are ranked by population-at-risk within each set. The
population-at-risk figure in 100 000 s is given above each bar. Panel B shows the predicted distribution of zoonotic marburgviruses. The scale reflects
the relative probability that zoonotic transmission of marburgviruses could occur at these locations; areas closer to 1 (red) are more likely to harbour
zoonotic transmission than those closer to 0 (blue). Countries with borders outlined are those which are predicted to contain at-risk areas for zoonotic
transmission based on a thresholding approach (see Methods). The area under the curve statistic, calculated under a stringent cross-validation
procedure is 0.64+0.12. Solid lines represent set 1 whilst dashed lines delimit set 2. Areas covered by major lakes have been masked white.
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Figure 5. Predicted geographical distribution of the zoonotic niche for marburgviruses using model 2–both human index cases and infections in animals.
Panel A shows the total populations living in areas of risk of zoonotic transmission for each at-risk country. The grey rectangle highlights countries in
which index cases of Marburg virus disease have been reported (set 1); the remainder are countries in which risk of zoonotic transmission is predicted, but
in which index cases of Marburg have not been reported and have more than 100 at-risk pixels (set 2). These countries are ranked by population-at-risk
within each set. The population-at-risk figure in 100 000 s is given above each bar. Panel B shows the predicted distribution of zoonotic marburgviruses.
The scale reflects the relative probability that zoonotic transmission of marburgviruses could occur at these locations; areas closer to 1 (red) are more
likely to harbour zoonotic transmission than those closer to 0 (blue). Countries with borders outlined are those which are predicted to contain at-risk
areas for zoonotic transmission based on a thresholding approach (see Methods). The area under the curve statistic, calculated under a stringent
cross-validation procedure, is 0.62+0.08. Solid lines represent set 1 whilst dashed lines delimit set 2. Areas covered by major lakes have been
masked white.

Transactions of the Royal Society of Tropical Medicine and Hygiene

373

D
ow

nloaded from
 https://academ

ic.oup.com
/trstm

h/article/109/6/366/2461644 by guest on 25 April 2024



assessment of outbreak likelihood is wanted. While environmen-
tal triggers have been linked to outbreaks of MVD, equally
important in determining outbreak potential is an understanding
of the dynamics of the virus within reservoir populations, which
has also been shown to be highly variable.44,58,62 In attempting
to predict outbreaks it is therefore crucial to understand the
interplay between environmental factors, human pressures
and reservoir host dynamics.63

The differences in areas predicted to be at-risk of infection by
models 1 and 2 may in fact reflect the manner in which humans
interact with bats. Since the majority of human outbreaks have
arisen from contact in caves or other underground systems
(rather than in the forest foraging sites of the bats, where animal
infections have been reported), the risk map derived from model 1
could be a spatial representation of this transmission risk, as
opposed to reflecting the broader distribution of infection in ani-
mal populations. Further infection surveys and ethnographic
research can help to elucidate and map the risk of animal-human
transmission within the at-risk region we have identified. Such an
analysis would be particularly important in order to produce an
absolute, rather than relative estimate of the likelihood of an out-
break in humans.

Nevertheless, while the true nature of risk to humans is likely
to be a function of a variety of different factors, it is still

important to gauge how and where potential spillover events
could occur. The west African outbreak of EVD has shown
that it is critical to understand the potential for such outbreaks
in geographically distinct areas, and the subsequent need for
other causes to be included in the differential diagnosis to
facilitate rapid detection. This is all the more important where
the potential causes of disease have varying potential for noso-
comial transmission, as is the case with viral haemorrhagic
fevers. Failure to rapidly and accurately diagnose these dis-
eases can lead to uncontrolled chains of secondary transmis-
sion in certain scenarios.64 Maps such as ours can therefore
be used to shape clinical recommendations for diagnosing
haemorrhagic fever cases presenting in hospital. MVD has
seen a number of significant geographic translocation of
cases, with individuals becoming symptomatic far from the ori-
ginal infection site.9,10 The most recent outbreak of EVD in west
Africa has demonstrated the role that both local and global
connectivity can play in causing disease importation, and as
connectivity continues to increase, the likelihood of widespread
secondary cases occurring will also increase, particularly if
infection reaches densely populated areas.65–67 Accounting
for a range of possible aetiological agents can therefore reduce
the risk of further secondary transmission amongst humans in
these settings.3,26

Figure 6. Difference between model predictions with animal data omitted. The difference between outputs for model 2 and model 1 are presented.
Pixels in purple represent those regions predicted at higher risk in model 2; regions in green indicate areas where model 1 predicts higher risk. Yellow pixels
represent areas with consistent probabilities. Pixels predicted not to be at-risk are in grey.
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Figure 7. Expert opinion maps for the range of Egyptian rousettes. Panel A is derived from the IUCN and Kwiecinski et al.33,60 Blue regions are those where
both depict Egyptian rousette populations. Red areas are those only indicated in the IUCN dataset. Orange sections are where bats of the subspecies
R. aegyptiacus unicolor are thought to be present; green shows the distribution of bats of the subspecies R. aegyptiacus leachi. Panel B shows the
predicted values from model 2, masked by the bat layer.
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Supplementary data are available at Transactions Online (http://
trstmh.oxfordjournals.org).
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Table 4. Identification of potential survey sites in at-risk countries

Country Region Latitude Longitude

Angola Northern Angola 27.83 16.07
Moxico 212.28 23.29

Burundi Western Burundi 23.94 29.44
Cameroon Central and Southern

Cameroon
4.73 12.76

CAR South CAR 5.95 18.91
Côte d’Ivoire Dix-Huit Montagnes 7.62 27.89

Bondoukou 7.96 23.03
DRC Eastern Congo Basin 2.04 27.72

Katanga 210.70 26.23
Kasai 26.42 21.95
Western DRC 27.03 18.30

Equatorial
Guinea

Kie-Ntem and Wele-Nzas
Provinces

1.55 10.83

Ethiopia Western Oromia 8.29 35.77
Bale Mountains and Harenna

Forest
6.07 39.14

Gabon Northern Gabon 1.07 12.36
Southern Gabon 21.83 11.92

Ghana Ashanti Uplands and Kwahu
Plateau

6.99 21.61

Akwapim-Togo Range 8.01 0.51
Guinea Moyenne Guinea 10.71 212.47

Guinea Highlands 8.23 29.09
Kenya Lake Victoria 20.70 34.99

Mount Kenya 20.43 37.49
Liberia Guinea Highlands–Wologizi

and Wonegizi Ranges
8.15 29.87

Guinea Highlands–
Nimba Range

7.41 28.59

Madagascar Tsaratanana and Marojejy
Nature Reserves

214.21 49.38

Ambohijanahay Reserve 218.38 45.45
Malawi Lake Malawi 211.89 33.90
Mozambique Maeda Plateau 211.44 39.63

Mount Mabu 216.30 36.54
Inyanga Mountains 219.64 33.29

Nigeria Ekiti 7.76 5.09
Gashaka Gumti

National Park
7.36 11.57

ROC Niari and Lekoumou 22.92 13.19
Sangha 1.56 14.53
Likouala 3.17 16.92

Rwanda Eastern Rwanda 22.14 30.37
Sierra Leone Loma Mountains 8.99 210.98
South Africa Woodbush Forest Reserve

and Motlatse Canyon
223.94 30.12

South Sudan Imatong Mountains 3.95 32.64
Yambio 4.57 28.29

Tanzania Tanga 25.94 37.57
Mahale Mountain

National Park
26.49 30.30

Continued

Table 4. Continued

Country Region Latitude Longitude

Kigoma 24.49 30.64
Morogoro 29.58 35.60

Togo Akwapim-Togo Range 7.59 0.79
Uganda Great Lakes Region 0.18 31.01
Zambia Northwestern Zambia 212.80 24.76

Northern Zambia 29.49 29.23
Muchinga Escarpment 211.89 31.84

Zimbabwe Chinoyi 217.36 30.13

Sites are identified by country. The latitude and longitude represent
the centroid of the proposed survey area.
CAR: Central African Republic; DRC: Democratic Republic of Congo;
ROC: Republic of Congo.

D. M. Pigott et al.

376

D
ow

nloaded from
 https://academ

ic.oup.com
/trstm

h/article/109/6/366/2461644 by guest on 25 April 2024

http://trstmh.oxfordjournals.org/lookup/suppl/doi:10.1093/trstmh/trv024/-/DC1
http://trstmh.oxfordjournals.org/lookup/suppl/doi:10.1093/trstmh/trv024/-/DC1


References
1 Slenczka WG. The Marburg virus outbreak of 1967 and subsequent

episodes. Curr Top Microbiol Immunol 1999;235:49–75.

2 Siegert R, Shu H-L, Slenczka W et al. On the eitology of an unknown
infection originating in monkeys [in German]. Dtsch med Wochenschr
1967;92:2341–3.

3 Conrad JL, Isaacson M, Smith EB et al. Epidemiologic investigation of
Marburg virus disease, Southern Africa, 1975. Am J Trop Med Hyg
1978;27:1210–5.

4 Bausch DG, Nichol ST, Muyembe-Tamfum JJ et al. Marburg
hemorrhagic fever associated with multiple genetic lineages of virus.
N Engl J Med 2006;355:909–19.

5 Mylne A, Brady OJ, Huang Z et al. A comprehensive database of the
geographic spread of past human Ebola outbreaks. Sci Data
2014;1:e140042.

6 Gire SK, Goba A, Andersen KG et al. Genomic surveillance elucidates
Ebola virus origin and transmission during the 2014 outbreak.
Science 2014;345:1369–72.

7 Towner JS, Khristova ML, Sealy TK et al. Marburgvirus genomics and
association with a large hemorrhagic fever outbreak in Angola.
J Virol 2006;80:6497–516.

8 Adjemian J, Farnon EC, Tschioko F et al. Outbreak of Marburg
hemorrhagic fever among miners in Kamwenge and Ibanda
districts, Uganda, 2007. J Infect Dis 2011;204:S796–9.

9 Fujita N, Miller A, Miller G et al. Imported case of Marburg hemorrhagic
fever - Colorado, 2008. MMWR Morb Mortal Wkly Rep 2009;58:
1377–81.

10 Timen A, Koopmans MPG, Vossen AC et al. Response to imported case
of Marburg hemorrhagic fever, the Netherlands. Emerg Infect Dis
2009;15:1171–5.

11 Mbonye A, Wamala J, Winyi-Kaboyo et al. Repeated outbreaks of viral
hemorrhagic fevers in Uganda. Afr Health Sci 2012;12:579–83.

12 WHO. Marburg virus disease - Uganda. Geneva: World Health
Organization; 2014. http://www.who.int/csr/don/10-october-2014-
marburg/en/ [accessed 15 December 2014].

13 Bermejo M, Rodriguez-Teijeiro JD, Illera G et al. Ebola outbreak killed
5000 gorillas. Science 2006;314:1564.

14 Formenty P, Boesch C, Wyers M et al. Ebola virus outbreak among wild
chimpanzees living in a rain forest of Côte d’Ivoire. J Infect Dis
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