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Abstract

Since its isolation in 1966 in Kenya, rice yellow mottle virus (RYMV) has been reported throughout Africa resulting in one of the
economically most important tropical plant emerging diseases. A thorough understanding of RYMV evolution and dispersal is
critical to manage viral spread in tropical areas that heavily rely on agriculture for subsistence. Phylogenetic analyses have
suggested a relatively recent expansion, perhaps driven by the intensification of agricultural practices, but this has not yet been
examined in a coherent statistical framework. To gain insight into the historical spread of RYMV within Africa rice cultivations,
we analyse a dataset of 300 coat protein gene sequences, sampled from East to West Africa over a 46-year period, using
Bayesian evolutionary inference. Spatiotemporal reconstructions date the origin of RMYV back to 1852 (1791–1903) and confirm
Tanzania as the most likely geographic origin. Following a single long-distance transmission event from East to West Africa,
separate viral populations have been maintained for about a century. To identify the factors that shaped the RYMV distribution,
we apply a generalised linear model (GLM) extension of discrete phylogenetic diffusion and provide strong support for distances
measured on a rice connectivity landscape as the major determinant of RYMV spread. Phylogeographic estimates in continuous
space further complement this by demonstrating more pronounced expansion dynamics in West Africa that are consistent
with agricultural intensification and extensification. Taken together, our principled phylogeographic inference approach shows
for the first time that host ecology dynamics have shaped the historical spread of a plant virus.

Key words: plant virus; RYMV; phylogeography; Bayesian inference; viral evolution; disease ecology.

1. Introduction

Although phylodynamics have become a burgeoning area of
research focused on many human and animal viruses, compar-
atively fewer analyses have targeted the interaction between
evolutionary and ecological dynamics in plant viruses. On the
one hand, this may be explained by a biased interest in viruses

that directly impact human health or that may emerge as
zoonotic pathogens. On the other hand, it is unclear to what ex-
tent phylodynamic concepts apply to plant viruses because
their evolutionary and ecological dynamics may not necessarily
occur on the same time scale. Lower rates of plant virus evolu-
tion have been inferred based on co-divergence assumptions,
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but also from sequence analysis of old samples (Rodrı́guez-
Cerezo et al., 1991; Fraile et al., 1997; Gibbs et al., 2010). In recent
years however, evidence has accumulated for a rapid evolution-
ary rate in specific plant viruses, as first demonstrated for rice
yellow mottle virus (RYMV) (Fargette et al., 2008b) and zucchini
yellow mosaic virus (Simmons, Holmes, and Stephenson, 2008).
Nucleotide substitution rates falling within the range of animal
RNA virus rates have also been reported for particular
Geminiviridae (Duffy and Holmes, 2008, 2009; Monjane et al.,
2011) and Luteoviridae (Pag�an and Holmes, 2010).

In addition to clarifying the tempo and time scale of plant vi-
rus evolution, molecular sequence analyses may also probe spa-
tial population structure and shed light on the transmission
dynamics that gave rise to the current spatial distribution of plant
viral lineages. It is therefore not surprising that the field of plant
virus epidemiology has started to adopt recent statistical infer-
ence methodology that integrates temporal and spatial dynamics
in a phylogenetic context (Lemey et al., 2009, 2010; Drummond
et al., 2012). As an example of this, the ongoing global spread of to-
mato yellow leaf curl virus (TYLCV) has attracted significant in-
terest as a potential threat to tomato production in all temperate
parts of the world. Motivated by the need to unravel the ecologi-
cal and economic risks associated with such viral invasions
(Lefeuvre et al., 2010) applied Bayesian phylogeographic methods
to reconstruct the spatiotemporal history of TYLCV spread and
diversification. This revealed that, while the virus likely origi-
nated in the Middle East during the first half of the 20th century,
this area remained epidemiologically relatively isolated. Instead,
many global movements of TYLCV appear to have been seeded
from the Mediterranean basin. As another example of a tropical
plant virus that poses a threat to African food security, maize
streak virus (MSV) has caused severe epidemics throughout the
maize growing regions of Africa. Recent insights gained from
Bayesian spatiotemporal reconstructions point at southern Africa
as the most probable location from which MSV emerged at the
beginning of the 20th century, and subsequently spread transcon-
tinentally at an average rate of 32.5 km/year (Monjane et al., 2011).
As the etiological agent of the most damaging plant virus disease
in the world, cassava mosaic-like virus (CMV) has caused devas-
tating crop losses across sub-Saharan Africa. This epidemic was
estimated to have originated in the late 1930s in mainland Africa
with subsequent introductions to the southwest Indian ocean is-
lands between 1988 and 2009 (De Bruyn et al., 2012).

Among the fast evolving plant viruses, RYMV is also of partic-
ular interest because it circulates in most rice growing countries
on the African continent (Bakker et al., 1974; Abubakar et al., 2003),
impacting the lives of millions of impoverished Africans that rely
on rice agriculture for subsistence (Abo, Sy, and Alegbejo, 1998).
Symptoms of RYMV infection range from discolouration, stunting
and ultimately sterilisation of the plant, resulting in devastating
epidemics with yield losses that vary from 10 to 100% depending
on how early the infection sets in, the type of rice cultivation and
the rice cultivars used (Allarangaye et al., 2006). RYMV is a mem-
ber of the Sobemovirus genus with a genome composed of a sin-
gle-stranded positive RNA molecule encompassing about 4450
nucleotides, organised into five open reading frames (ORFs) that
overlap (except for ORF1) (Ling et al., 2013; Sõmera, Sarmiento,
and Truve, 2015). The virus is transmitted by chrysomelid beetles
(Bakker et al., 1974), by mammals (Sarra and Peters, 2003), and by
contact during cultural practices (Traoré et al., 2006), but no evi-
dence of seed transmission has been found (Konate et al., 2001).
The known natural host range of RYMV is limited to the two spe-
cies of cultivated rice Oryza sativa L. and Oryza glaberrima Steud,
and a few related wild grasses (Bakker et al., 1974).

Although the history of rice agriculture in Africa dates back
many centuries, RYMV was only first reported in 1966 in Kenya
(Bakker et al., 1974). With nucleotide substitution rates ranging
from 4� 10�4 to 1.2� 10–3 nucleotides/site/year, evolutionary
studies have characterised the virus as a measurable evolving
population with a most recent common ancestor (MRCA) dating
back to around 1811 (Fargette et al., 2008a; Pinel-Galzi et al., 2009).
In addition to rapid evolutionary rates, specific RYMV gene se-
quences also show evidence for recombination between particu-
lar ORFs, but not within individual ORFs (Pinel-Galzi et al., 2009).
Early spatial genetic analyses have suggested a fairly regular pat-
tern of spread with a correlation between genetic and geographic
distances and no evidence of long-range dispersal. Based on com-
parisons of genetic diversity, these analyses have also implicated
East Africa as the area of early diversification (Abubakar et al.,
2003). Specifically, more recent surveys confirm a large concen-
tration of RYMV diversity in eastern Tanzania (Pinel-Galzi et al.,
2009), a region that is isolated by the Indian Ocean to the east and
by the Eastern Arc Mountains to the west. A relatively long his-
tory of co-existence of RYMV strains in conditions that support
habitat fragmentation indeed point at this region as a putative or-
igin for the virus (Fargette et al., 2004).

RYMV diversity shows a pronounced and characteristic geo-
graphic structure, and has been classified into S1–S6 strains
based on serological typing and phylogenetics. Five serological
profiles have been identified: three in West and Central Africa
(Ser1, Ser2, and Ser3) and two in East Africa (Ser4 and Ser5).
Apart from Ser5, which is divided into the S5 and S6 strains,
these serotypes also correspond to the S1–S6 strain types (Pinel
et al., 2000; Traore et al., 2005). The spatial structure of the epi-
demic, with different strains circulating in different countries,
suggests a relatively recent expansion perhaps driven by the in-
tensification of agricultural practices (Konaté and Fargette,
2001; Abubakar et al., 2003). Evolutionary and ecological hypoth-
eses about the origin and spread of RYMV have however not
been examined in a coherent statistical framework. Recent ex-
tensions of Bayesian phylogenetic diffusion models for discrete
traits now offer the opportunity to formally evaluate predictors
of spatial spread. In particular, the recently developed GLM ap-
proach parameterises rates of diffusion as a function of poten-
tial predictors (Lemey et al., 2014). This approach has for
example identified human and animal transportation measures
as the drivers of spatial spread for different influenza viruses
(Lemey et al., 2014; Nelson et al., 2015), and it may also be useful
for identifying the factors responsible for plant virus spread.

Here, we demonstrate the value of Bayesian phylodynamic
inference methodologies in plant molecular epidemiology by fo-
cusing on the patterns of RYMV spread across Africa and recon-
structing its phylogeographic history. We test spatiotemporal
hypotheses about the origins of RYMV using state-of-the-art
Bayesian statistical inference, quantify the dynamics of spatial
spread in both East and West Africa, and formally assess the re-
lationship between RYMV spread and the history of rice cultiva-
tion in Africa.

2. Methodology
2.1 Dataset compilation

We have assembled a RYMV sequence dataset by retrieving all
publicly available ORF4 CP gene sequences from GenBank (on 4
September 2012) and combining these with additional samples
made available by collaborators, which have now been pub-
lished in recent studies (Hubert et al., 2013; Longué et al., 2013).
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The sequences were aligned using MAFFT version 6.864 b
(Katoh and Toh, 2008) and manually edited in Se-Al (tree.bio.ed.
ac.uk/software/seal). The final dataset consists of 300 sequences
that were sampled between 1966 and 2012 in 20 countries across
East and West Africa (Supplementary Fig. S1) and covers all coun-
tries in which RYMV has been reported. Although we used coun-
tries as locations in the discrete analyses, more specific location
coordinates for all the 300 isolates were available and these were
used in the continuous phylogeographic reconstructions.

To evaluate the impact of sampling bias on the root location
estimate, we applied two different subsampling procedures to
the sequence data. Specifically, we subsampled Tanzanian sam-
ples down to the next highest sampled country (Côte d’Ivoire)
by: (1) randomly selecting 51 Tanzanian isolates and (2) select-
ing the same number of sequences that best represent the
Tanzanian RYMV diversity using the Phylogenetic Diversity
Analyzer tool (www.cibiv.at/software/pda) Minh, Klaere, and
von Haeseler (2006, 2009). Both down-sampling procedures re-
sulted in datasets of 266 sequences.

To contextualise particular continuous phylogeographic es-
timates, we also assembled two datasets for MSV and East
African CMV (EACMV), both imposing an enormous burden to
crops worldwide and in Africa specifically. For MSV, we resorted
to the 333 full-genome recombinant-free dataset of Monjane
et al. (2011). For EACMV, we obtained a dataset comprising
65 full-genomes from De Bruyn et al. (2012) by focusing on non-
recombinant sequences originating from mainland Africa by
and excluding outliers in a linear regression analysis of root-
to-tip divergence (see ‘Temporal signal’ section below).

2.2 Temporal signal

In order to visually examine the degree of temporal signal—or
signal for divergence accumulation over the sampling time
interval—in the RYMV CP sequence data, we employed an ex-
ploratory linear regression approach. We first followed a stan-
dard approach of estimating a maximum likelihood (ML) tree
under a non-clock (unconstrained) generalised time-reversible
(GTR) substitution model with discrete C-distributed rate varia-
tion among sites using PhyML (Guindon et al., 2010) and plotted
the root-to-tip divergences as a function of sampling time
according to a rooting that maximises the Pearson product-
moment correlation coefficient using Path-O-Gen (tree.bio.ed.
ac.uk/software/pathogen). For comparison, we only plot the
root-to-tip divergences for the same subset of taxa that is used
in the procedure discussed below.

We also explored an alternative approach that attempts to
avoid rate heterogeneity imposed on the deep branches connect-
ing different RYMV clusters, and only considers the overall diver-
gence accumulation within these specific clusters. To identify
rooted clusters, we used the maximum clade credibility (MCC)
tree from the Bayesian analyses (see below) and re-estimated
branch lengths under a non-clock GTRþC substitution model us-
ing PAUP* v4.0b10. We then selected distinct phylogenetic clus-
ters that contain taxa with a minimum sampling time interval of
15 years and that were associated with a posterior probability
support >0.75 (Supplementary Fig. S2). For each of these clusters,
we obtained cluster-specific MRCA-to-tip divergences as a func-
tion of sampling time based on the branch lengths estimated un-
der the non-clock model. To explicitly model a cluster effect in
the MRCA-to-tip divergence data dij for taxon i assigned to cluster
j, we fit the following regression model:

dij ¼ bj þ dxij þ �ij; (1)

where bj is the intercept for cluster j, d is the phylogenetically
unadjusted rate of substitution, xij is the sampling time and
�ij an independent 0-mean error term. To visually plot a single
regression line through the MRCA-to-tip divergence data with d

as slope, we subtract the estimated cluster effect from the diver-
gence measurements and plot the resulting values, dij � E½bj�, as
a function of sampling time. We acknowledge that linear regres-
sion techniques are not appropriate estimators of divergence
through time as sequences do not represent independent data,
but we merely employ these approaches to tentatively examine
temporal signal in our data.

In addition to the visual exploration, we also conducted a
date-randomisation test to evaluate to what extent Bayesian
evolutionary rate estimates (using the Bayesian Evolutionary
Analysis Sampling Trees (BEAST) package, see below) from the
time-stamped data deviate significantly from estimates based
on randomised tip dates, for which no particular relationship
between sampling time and root-to-tip divergence is expected
(Firth et al., 2010). For this purpose, we here propose a novel im-
plementation of this test that avoids having to analyse multiple
date-randomised datasets. Because of the computationally ex-
pensive nature of Bayesian phylogenetic analyses, the number
of these randomisations is generally limited (e.g. 20) in the stan-
dard test procedure (Duchêne et al., 2015). Our BEAST imple-
mentation makes use of novel transition kernels that effectively
randomise dates during the Markov chain Monte Carlo (MCMC)
sampling procedure. Therefore, we do not have to rely on a
number of specific randomisations, but conveniently, we aver-
age over all possible randomisations in a single analysis. We fol-
low Duchêne et al. (2015) and use as our criterion for a
significant temporal signal that the 95% credible interval (CI) for
the rate estimate obtained from correct sampling times should
not overlap with the CI for the estimate obtained while random-
ising sampling times.

2.3 Bayesian evolutionary inference

We reconstructed time-calibrated phylogenetic and phylogeo-
graphic histories using a Bayesian statistical framework imple-
mented in the software package BEAST v1.8 (Drummond et al.,
2012). BEAST uses MCMC integration to average over tree space,
so that each tree is weighted proportional to its posterior proba-
bility. All analyses were performed using the Broad-platform
Evolutionary Analysis General Likelihood Evaluator (BEAGLE) li-
brary to enhance computation speed (Suchard and Rambaut,
2009; Ayres et al., 2012).

2.4 Sequence evolution

To model the nucleotide substitution process, we partitioned
the codon positions into firstþsecond and third positions
(Shapiro, Rambaut, and Drummond, 2006) and applied a sepa-
rate Hasegawa–Kishino–Yano 85 (HKY85) substitution model
(Hasegawa, Kishino, and Yano, 1985) to the two partitions, each
with a discretised C distribution (HKY þ C) to model rate hetero-
geneity across sites. To accommodate among-lineage rate varia-
tion we applied an uncorrelated relaxed molecular clock that
models branch rate variation according to a lognormal distribu-
tion (Drummond et al., 2006). To investigate the sensitivity of
the time to MRCA (TMRCA) estimates with respect to the coales-
cent prior, we tested all currently available flexible, non-
parametric demographic priors: the skyride (Minin et al., 2008)
(using uniform smoothing over all inter-coalescent intervals),
skyline (Drummond et al., 2005), and skygrid (Gill et al., 2013)
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(using a cut-off to 200 years with 100 grid points) model.
Whereas it is generally recommended to employ ‘time-aware’
smoothing for the skyride model, which weighs the smoothing
such that the effective population size changes between small,
consecutive inter-coalescent intervals are penalised more than
changes between intervals of larger size (Minin et al., 2008), this
appeared problematic for our dataset without strong temporal
signal and resulted in MRCA estimates that were close to the
oldest sample. We ran three independent runs for 100 million
generations, sampling every 10 000th and discarded 10% as the
chain burn-in. Stationarity and mixing (e.g. based on effective
sample sizes � 200 for the continuous parameters) were exam-
ined using Tracer version 1.6 (tree.bio.ed.ac.uk/software/tracer),
and MCC trees were summarised using TreeAnnotator.

2.6 Discrete phylogeography

We modelled discrete location transitioning of RYMV between
the 20 African countries throughout the phylogenetic history
using both a reversible and non-reversible continuous-time
Markov chain (CTMC) process (Lemey et al., 2009; Edwards et al.,
2011) and performed the analysis with and without a Bayesian
stochastic search variable selection (BSSVS) procedure to iden-
tify a sparse migration graph, which includes a restricted num-
ber of non-zero rates in the CTMC matrix. These analyses were
performed both on the full dataset and the two subsampled
datasets. We evaluated model fit using (log) marginal likelihood
estimates obtained through path sampling (Lartillot and
Philippe, 2006) and stepping-stone sampling (Xie et al., 2011)
procedures as implemented in BEAST (Baele et al., 2012, 2013;
Baele and Lemey, 2013). We ran various computational settings
to assess convergence of the (log) marginal likelihood estimates.
The number of location transitions (‘Markov jumps’) and the
time spent in each location state (‘Markov rewards’) were esti-
mated using stochastic mapping techniques (Minin and
Suchard, 2008a,b).

In order to quantify the spatial structure, we measured the
phylogenetic association in the location trait data by applying
the association index (AI) to our posterior set of trees (Wang
et al., 2001; Lemey et al., 2009). This metric quantifies the degree
to which the same traits tend to cluster together relative to the
expectation for randomised trait assignments. AI values close
to 0 reflect strong phylogeny-location correlation whereas AI
values close to 1 reflect the absence of phylogenetic structure
for the trait (Wang et al., 2001; Lemey et al., 2009).

For both the discrete as well as the continuous phylogeo-
graphic analysis (cfr. below), we use TreeAnnotator (Drummond
et al., 2012) to summarise the location estimates on a MCC tree
and visualise the tree with annotations using FigTree (tree.bio.
ed.ac.uk/software/figtree). We converted the location-annotated
trees to keyhole markup language format using the Spatial
Phylogenetic Reconstruction of Evolutionary Dynamics software
package (Bielejec et al., 2011) and visualise the spatial projec-
tions using Cartographica (www.macgis.com). We also used
GenGIS (Parks et al., 2013) to visualise the MCC tree as a tangle-
gram in a map adapted from Natural Earth (www.naturalearth
data.com).

In order to test the contribution of various predictors to the
patterns of RYMV spread, we adopted a recent GLM extension of
discrete phylogeographic diffusion (Lemey et al., 2014). This ap-
proach models diffusion rates as a log linear function of a num-
ber of explanatory variables, and performs Bayesian model
averaging to identify the combination of variables that is predic-
tive of spatial spread while simultaneously reconstructing the

phylogeographic history. The support and effect size for each
predictor is estimated using inclusion probabilities and GLM co-
efficients, respectively (Lemey et al., 2014). We considered the
following predictors in our GLM-diffusion model: (1) great-circle
distances between the centroids of each pair of countries; (2)
intensities of rice cultivation by country (area of cultivated
rice divided by the total country area (hectares per year)) at
two different time points (1960 and 1990, obtained from
faostat3.fao.org); (3) spatially disaggregated rice production
statistics (area harvested in hectares) around the year 2000,
obtained using the Spatial Production Allocation Model
(HarvestedChoice, 2011) (Supplementary Fig. S3; since this is ex-
pressed in hectares of harvested rice for a 5-arc minute grid cell,
we consider this as a measure of host connectivity); (4) precipi-
tation by country in millimetres per year (www.climatemps.
com); and (5) sample sizes (number of sequences included per
country).

Because we model predictors of diffusion rates between
pairs of locations, we include both an ‘origin’ and ‘destination’
predictor for location-specific measures such as intensity of rice
cultivation, precipitation and sample size. In order to derive
pairwise predictor values from the spatially mapped rice pro-
duction statistics, we employ circuit theory to measure dis-
tances on a heterogeneous landscape, with rice area harvested
as the heterogeneity factor. Specifically, we use Circuitscape
version 3.5 (Shah and McRae, 2008) to compute the distances
among pairs of locations in the rice production landscape based
on a map of about 320 000 cells that encompasses all 20 sam-
pling regions from East to West Africa. Cells with lower area of
rice harvested provide higher resistance than cells with higher
rice production. The landscape therefore represents a resistance
surface that models small distances between nearby locations
that are separated by high rice production and large distances
between distant locations that are separated by low rice produc-
tion. We estimated distances between all pairs of sampling re-
gions and chose to connect cells to their eight neighbouring
cells, not only to connect cells to their four cardinal neighbours
but also to connect diagonally adjacent cells (Shah and McRae,
2008). All predictors were log transformed and standardised
prior to their inclusion in the GLM analyses. We follow Lemey
et al. (2014) and specify prior inclusion probabilities that put 50%
prior probability on no predictor being included, and a normal
prior with a mean of 0 and a standard deviation of 2 on the coef-
ficients in log space. Bayes factor (BF) support for predictors was
calculated based on the ratio of posterior to prior odds for pre-
dictor inclusion.

2.6 Continuous phylogeography

To study the geographic spread of RYMV in continuous space
and quantify its tempo of dispersal, we used a phylogenetic
Brownian diffusion approach that models the change in coordi-
nates (latitude and longitude) along each branch in the evolu-
tionary history as a bivariate normal random deviate (Lemey
et al., 2010). As an alternative to homogeneous Brownian mo-
tion, we adopt a relaxed random walk (RRW) extension that
models branch-specific variation in dispersal rates similar to
uncorrelated relaxed clock approaches (Drummond et al., 2006;
Lemey et al., 2010). Specifically, we independently draw branch-
specific scalers of the RRW precision from a log-normal
distribution to relax the assumption of a constant precision
(¼1/variance) among branches (Lemey et al., 2010). The original
implementation of multivariate diffusion models in BEAST
(Lemey et al., 2010) resorted to data augmentation of the
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unobserved locations of ancestral nodes in the phylogeny to
compute multivariate trait likelihoods. Here, we employ a more
recent dynamic-programming approach that integrates over all
possible realisations of the unobserved traits (Pybus et al., 2012),
and provides a more tractable, efficient, and stable inference for
large datasets with considerable diffusion rate heterogeneity.

Bayesian estimates under continuous diffusion models yield
a posterior distribution of phylogenetic trees, each having an-
cestral nodes annotated with location estimates. To quantify
the spatial epidemic dynamics, we summarise several statistics
from the posterior estimates of the continuous phylogenetic dif-
fusion process, as previously introduced by Pybus et al .(2012).
Specifically, we provide mean posterior estimates and 95%
highest posterior density (HPD) intervals for: (1) dispersal rate
(km/year), summarised as the total great-circle distance trav-
eled across the phylogenetic branches divided by the total time
elapsed on the branches; (2) wavefront rate (km/year), summar-
ised as the largest great-circle distance traveled from the root
location estimate divided by the time since the MRCA; and (3)
diffusion coefficient (km2/year), which reflects the diffusivity or
the area that an infected host explores per time unit. Here, we
use a ‘weighted average’ alternative of the diffusion coefficient
(D̂) introduced by Pybus et al. (2012) because this has recently
been shown to provide estimates with considerably lower vari-
ances (Trovão et al., 2015). This statistic is defined as follows
(Trovão et al., 2015):

D̂ ¼

Xn

k¼1
g2

kXn

i¼k
4tk

; (2)

where gk and tk represent the great-circle distance and time, re-
spectively, along branch k ¼ 1; . . . 2N� 2 of the random
phylogeny.

3. Results
3.1 Evolutionary rate and divergence time estimation

As a standard check prior to fitting dated-tip molecular clock
models, we first explored to what extent our dataset contained
visually-detectable signal for sequence divergence throughout
the sampling time interval. Despite the fact that previous evolu-
tionary rate estimates for RYMV are fairly consistent (Fargette
et al., 2008a), our standard linear regression exploration of root-
to-tip distances as a function of sampling time did not reveal
clear evidence for temporal signal in the complete dataset
(Fig. 1A).

We therefore hypothesised that clusters of more closely re-
lated variants may still contain temporal information, but ex-
tensive rate heterogeneity along the deeper branches
connecting these clusters may confound visual detection of
such signal. Indeed, particular clusters in the rooted tree with
branch lengths estimated using an unconstrained (non-clock)
model (Fig. 1A and Supplementary Fig. S2), have tips that are
systematically more divergent from the root than other clusters.
To examine the impact of this on root-to-tip divergence as a
function of sampling time, we perform a similar analysis based
on MRCA-to-tip divergences as a function of sampling time for
specific clusters and level-out differences in cluster heights
prior to plotting all the divergence data (cfr. ‘Methods’ section
and Supplementary Fig. S2). This effectively ignores the
rate heterogeneity on the deeper branching and removes the
cluster effects on the root-tip-regression (Fig. 1B), resulting in a
somewhat more discernible divergence accumulation through
time. Together with an improved fit (adjusted R2 increase from
0 to 0.12), this suggests that the rate variation among the deeper
branches can indeed affect the temporal signal estimate for the
complete dataset.

Figure 1. Root-to-tip divergence as a function of sampling time for ML tree clusters (A) and for MCC tree clusters after removing the deep branch effects (B). Colour-

coding identifies the 5 different clusters included.
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The presence of temporal signal remains however question-
able, which urged us to complement this exploration with a
date-randomisation test implemented in BEAST (cfr. ‘Methods’
section). Although the rate was estimated to be 1:01� 10�3

(95%HPD : 7:51� 10�4 � 1:32� 10�3) nucleotide substitutions per
year per site by BEAST using the correct sampling dates, averag-
ing over all possible date randomisations resulted in a far lower
estimate of 2:48� 10�5 (1:12� 10�5 � 3:76� 10�5). Given that the
95% HPDs do not overlap for these estimates, we follow
Duchêne et al. (2015) in considering this as evidence for signifi-
cant temporal signal in the time-stamped data. We estimated
these rates using a relaxed molecular clock model (Drummond
et al., 2006), which is better supported by the data than a strict

clock model (see Supplementary Table S1). This is perhaps not
surprising given the lack of a clear divergence accumulation
over the sampling time interval in the exploratory linear regres-
sion analyses (Fig. 1A), and the substantial variation of the rate
about its mean (coefficient of variation¼ 0.75; Table 1).

Because the absence of strong temporal signal may lead to a
more pronounced impact of tree priors on divergence time esti-
mates, we estimated TMRCAs using three different flexible non-
parametric approaches (Table 1). Whereas the rate and TMRCA
estimates under the skyline (Drummond et al., 2005) and skyride
(Minin et al., 2008) models are very similar, the skygrid model re-
sults in a somewhat higher rate and younger TMRCA estimate
(Table 1), but HPDs remain widely overlapping for estimates un-
der the different models. We note that the estimates under the
skyride model were sensitive to the way population sizes esti-
mates are smoothed across the evolutionary time scale (cfr.
‘Methods’ section), which is likely due to the lack of strong tem-
poral signal. As previously shown through simulations (Gill et al.,
2013), the skygrid model performs the best for divergent time es-
timates and the substitution rate under this model is also more
consistent with previous studies (Fargette et al., 2008a). We there-
fore use this coalescent tree prior in all further analyses.

3.2 Discrete geography

By mapping the tip locations of a cladogram representation of
the MCC tree in geographic space (Fig. 2), we highlight a clear
separation of East and West African RYMV diversity. The modal

Table 1. Impact of coalescent model on the TMRCA estimate

Date for the
MRCAa (year)

Evolutionary rate (l)
(substitutions/site/year)

Coefficient of
variation for l

Skyline 1818
[1727–1889]

9.71� 10�4

[7.18� 10�4–1.25� 10�3]
0.76

[0.58–0.96]
Skyride 1818

[1736–1891]
9.39� 10�4

[7.01� 10�4–1.21� 10�3]
0.75

[0.58–0.95]
Skygrid 1852

[1791–1903]
1.01� 10�3

[7.51� 10�4–1.32� 10�3]
0.78

[0.59–0.99]

Values in between brackets represent 95% HPD intervals.
aMRCA, most recent common ancestor.

Figure 2. Tanglegram representation of the RYMV history by mapping the tip locations of the MCC cladogram to the geographic location of sampling. Branches are col-

oured according to the modal location state estimates obtained by a discrete phylogeographic reconstruction under a reversible CTMC model with BSSVS.
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location state estimates obtained by discrete phylogeographic
reconstruction (represented by branch colours in the tangle-
gram and in the equivalent time-measured tree in Fig. 3), also
reveal a strongly spatially structured viral population. We quan-
tified this through the degree of phylogenetic clustering by loca-
tion as summarised using the AI (Wang et al., 2001), and found a
low AI of 0.109 (0.08–0.14) indicating that the degree of spatial
structuring is not so far from absolute (AI¼ 0).

To infer the discrete ancestral location states, we applied
both reversible and non-reversible discrete diffusion models
with and without a BSSVS procedure (Lemey et al., 2009;
Edwards et al., 2011) and compared model fit for the four combi-
nations using (log) marginal likelihood estimation (Baele et al.,
2012, 2013; Baele and Lemey, 2013). Although we report the re-
sults for the best fitting model (reversible with BSSVS, see
Supplementary Table S2), we note that the ancestral reconstruc-
tions are robust with respect to diffusion model specification.
For example, all four model combinations find support for
Tanzania as the geographical origin of RYMV (Fig. 3B), and this
remained the best supported root location when the Tanzanian
strains were downsampled to the same number as for Côte
d’Ivoire (see Supplementary Table S3). The support for Tanzania
emerges from a relatively high RYMV diversity in this country,
encompassing most of the diversity in the East Africa clade

(lineage S4, S5, and S6 in Fig. 3A), and hence a strong support for
this location state at ancestral nodes up to the root node. West
Africa (lineage S1–S3) was seeded relatively early in the RYMV
history as its MRCA dates back to 1887 (1840–1919) and was esti-
mated to have originated from Côte d’Ivoire.

Using BSSVS (Lemey et al., 2009), we quantify the support for
different diffusion pathways under the form of BF support for
non-zero rates. Not surprising, we find support for a separate
East and West African diffusion network (Fig. 4). We comple-
ment the support for the rates by estimating the number of
transitions that occurred between the states involved using
Markov jump counting (Minin and Suchard, 2008a) (Fig. 4). In
East Africa, we find support for diffusion out of Tanzania to
Kenya, Uganda, and Rwanda, and from the latter country also to
Burundi and the Democratic Republic of Congo (DRC). The west-
ern diffusion network involves more countries and is character-
ised by a high degree of seeding from Côte d’Ivoire with
diffusion pathways that extend eventually to Central Africa (the
Central African Republic). Taken together, the diffusion path-
ways in East and West Africa we display in Figure 4 account for
84% of the location state transitions recovered in the RYMV evo-
lutionary history.

To investigate what process of RYMV spread has led to the
spatial genetic patterns we describe here, we apply a recent

Figure 3. Time-calibrated MCC tree inferred for 300 CP sequences of RYMV. Branches are coloured according to the most probable location state, indicated in the col-

oured legend (A). Posterior probability densities of the root location state for discrete reversible model with BSSVS; 66.87% of the posterior mass for the root location

supports Tanzania as the origin location of RYMV epidemics (B). Early separation of the East-West epidemics in RYMV history, with 87 and 43% of posterior mass for

the West (green) and East (violet) lineage clades, respectively.
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GLM extension of the discrete phylogeographic diffusion model
that allows to test different potential predictors of viral dis-
persal (Faria et al., 2013; Lemey et al., 2014). We consider geo-
graphic distances, distances measured on a resistance
landscape of harvested rice area (cfr. ‘Methods’ section and
Supplementary Fig. S3), location-specific rice intensities at two
different time points and precipitation as potential explanatory
variables of the patterns of spread (Fig. 5). To examine whether
the predictor support is robust to sample size heterogeneity we
also include sample sizes as an explanatory variable. The GLM
procedure, which attempts to identify the linear combination of
predictors of spatial diffusion while reconstructing the phylo-
geographic history, finds maximal support for distances mea-
sured on a landscape of harvested rice area as a predictor of
RYMV dispersal (Fig. 5). This predictor has a negative log effect
size implying an inverse relationship with transition rates. That
is, a high distance in the resistance landscape, as reflected by a
large geographic distance and/or low harvested rice area be-
tween these locations, correlates with less intense viral dis-
persal. The importance of harvested rice intensity is also
reinforced by a relative modest additional support for origin rice
intensity in 1990 (BF ¼14.2), which is accompanied by a positive
log effect size, suggesting higher viral dispersal out of locations
with higher rice intensity. In addition to a host connectivity
component, the distances in the harvested rice area landscape
also incorporate geography. The fact that both are important is
demonstrated by a GLM analysis that excludes the landscape

distance predictor, which results in clear support for distance as
well as origin rice intensity in 1990 (Supplementary Table S4).
No other predictor yielded noticeable support in our analyses,
and remarkably, also sample sizes did not help to explain viral
diffusion intensities (Fig. 5). By repeating the analysis separately
on the East and West african clade, we demonstrate that the
signal for predictor support can be entirely attributed to the
more pronounced and dynamic West African spread. Whereas
highly similar predictor support and effect sizes are obtained
for West Africa, none of the predictors yield noticeable support
in East Africa (Supplementary Fig. S4).

3.3 Continuous phylogeography

In order to quantify the dynamics of RYMV spread in continu-
ous space, we also applied multivariate phylogenetic diffusion
models to the CP sequences and their geographic coordinates
(Lemey et al., 2010). Because of the clear separation between the
spread of East and West African RYMV lineages (Figs. 2 and 4),
we perform separate analyses on the data for both regions. We
tested a model of strict Brownian diffusion against several ver-
sions of RRW models using marginal likelihood estimation
(Baele et al., 2012, 2013), and found that a lognormal-RRW pro-
vided the best fit to the dispersal dynamics (Supplementary
Table S5).

The spatiotemporal patterns of spread under this model are
summarised in Figure 6. In agreement with the discrete

Figure 4. BF test support for discrete diffusion rates. Rates supported by a BF > 4 are indicated. The line colour represents the relative strength by which the rates are

supported: green lines and red lines suggest relatively weak and strong support, respectively. The thickness of the arrows indicates increasing number of Markov

jumps between locations.
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phylogeographic results, the eastern root location is estimated
in Tanzania, and from the early 1930s, the virus spreads in the
direction of Kenya and Uganda. The viral expansion continues
within these countries and finally, by 2012, the spread of RYMV
also includes Burundi, Rwanda and the DRC (Ndikumana et al.,
2011; Hubert et al., 2013). In West Africa, the credible contour for
the origin location overlaps mostly with Côte d’Ivoire, Mali and
Senegal from where the virus spreads to the south, west and
east. By 1932, the eastward expansion includes Nigeria and con-
tinues towards Chad. Extensive diffusion dynamics further de-
velop within and between Côte d’Ivoire and Mali, and also
western locations including Sierra Leone and Guinea appear to
be seeded from these countries, respectively. Recent years mark
the arrival in the most eastern location (Central African
Republic) (Longué et al., 2013).

Based on quantitative summaries of the eastern and western
dynamics (listed in Table 2), both datasets are characterised by
similar dispersal rates and diffusion coefficients with overlap-
ping HPDs. In terms of wavefront dynamics; however, we ob-
serve a slower invasion rate in the East as compared with its
western counterpart. In line with different invasion rates on
similar time-scales, our phylogeographic reconstruction esti-
mated East and West wavefront distances of �1025 (95% HPD:
743–1,239) km and 2,869 (2,370–3,356) km, respectively. By plot-
ting how these wavefront distances evolved over time (Fig. 7),
we show that from the mid-1800s viral expansion begins in
both geographical regions, but whereas it levels off at around
1960 in the east, RYMV continued to expand its spread in West
Africa. Similar continuous diffusion statistics for the East and
West Africa dynamics (Table 2) indicate that these account for a
considerable degree of heterogeneity in the spatial spread dy-
namics. For instance, the dispersal rate and diffusivity are simi-
lar in both East and West Africa whereas the wavefront rate is
three times lower in East than in West Africa, possibly because
of the numerous barriers to spread in East Africa, whereas the
Niger-Bénoué river axis in West Africa may have been an effi-
cient means of viral propagation. We note that RYMV, MSV, and
EACMV are characterised by dispersal statistics that are gener-
ally within the same order of magnitude, although some statis-
tics suggest more pronounced dynamics for the latter two. This

might be explained by transmission through leafhoppers for
MSV and whiteflies for EACMV, but also human-mediated dis-
persal through infected cuttings.

4 Discussion and conclusion

As the main viral disease of rice, RYMV has been reported in all
major rice producing countries in sub-Saharan Africa. Yielding
losses up to 100%, it represents one of the tropical plant emer-
gent diseases with the highest socio-economical impact
(Fargette et al., 2006). Evolutionary studies have only relatively
recently characterised RYMV as a rapidly evolving plant virus
based on heterochronous sequence data. In this study, we ex-
pand on the work of Fargette et al. (2008a,b) and Abubakar et al.
(2003) by reconstructing the RYMV phylogeographic history in
both discrete (Lemey et al., 2009) and continuous (Lemey et al.,
2010) space using Bayesian inference, and specifically test and
quantify a range of potential predictors of spatial spread (Lemey
et al., 2014).

Although our RYMV evolutionary rate estimate is consistent
with previous studies (Fargette et al., 2008a), it remains difficult
to clearly detect accumulation of sequence divergence over the
sampling time interval in the currently available data. We note
that such temporal signal depends on both the evolutionary
process and how we are able to sample from this process.
A high overall tempo of evolution and a constant pattern of sub-
stitution accumulation will both increase the probability of
measurable evolution over a particular time interval. A large
temporal spread in sampling dates and more homogenous sam-
pling throughout this interval will further contribute to the tem-
poral signal (Seo et al., 2002). An average RYMV substitution rate
of about 0.001 substitutions per site per year and a sampling
time interval of 44 years—even if sampling is more dense
towards the present as is generally the case—may provide a rel-
atively good opportunity to detect temporal signal in the CP
gene. Substitution rate variability, however, appears to be a ma-
jor confounding factor for RYMV, in particular because this may
have acted on a relatively long evolutionary time scale of about
160 years. This is apparent through the consistently higher or
lower tip divergences from particular clusters in the RYMV

Figure 5. Predictors of RYMV dispersal across Africa. For each potential predictor, the BF support and the conditional effect size obtained using the GLM diffusion ap-

proach implemented in BEAST are shown (posterior mean and 95% Bayesian CI). Note that the credibility intervals for the cES of the predictors with BF > 14 exclude

zero, which can be considered as additional evidence for its importance.
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phylogeny (Fig. 1). Several factors may be responsible for rate
heterogeneity in the phylogenetic history, including variation in
mutation rate and replication rate as well as variation in selec-
tive pressure and host population sizes, but it remains difficult
to disentangle these factors for RYMV. In general, intrinsic dif-
ferences in mutation rate and replication dynamics are more
likely to act between more distantly related viruses, such as dif-
ferent viral families. For more closely related viruses, host fac-
tors have been shown to impact viral evolutionary rates
(Streicker et al., 2012; Worobey, Han, and Rambaut, 2014).
This together with the dynamics that impact the fixation of sub-
stitutions, represent interesting subjects for further RYMV
research.

Even if exploratory linear regression plots do not suggest
clear temporal signal, tip calibration may still prove useful if
rate variation among branches is satisfactorily accommodated
(Firth et al., 2010). Relaxed molecular clocks may indeed per-
form reasonably well in modelling rate along the relatively
long branches that separate distinct RYMV clusters. However,
a test is needed to assure that tip calibrations will lead to

Figure 6. Reconstruction of the continuous spatiotemporal dispersal of RYMV in West and East Africa, shown from 1852 to 2012 at intervals that capture the major dis-

persal events. Black lines show a spatial projection of the representative phylogeny. Coloured clouds represent statistical uncertainty in the estimated locations of

RYMV internal nodes (95% HPD intervals).

Table 2. Dispersal and ecological parameters

Dispersal rate
(km/year)

Diffusivity
(km2/year)

Wavefront rate
(km/year)

West 13.08
[10.25–16.03]

1559.25
[1186.13–1976.88]

23.13
[14.33–31.85]

East 16.16
[11.55–21.19]

1595.53
[1106.99–2151.71]

7.51
[3.80–12.32]

MSV 33.17
[28.70–7.82]

11665.18
[9133.97–14979.72]

74.79
[45.25–109.36]

EACMV 13.30
[8.07–0.65]

3748.74
[2196.90–5890.32]

32.45
[15.67–56.12]

Values in between brackets represent 95% HPD intervals.

Figure 7. Mean wavefront distances for the West (blue) and East (pink) epi-

demics. Mean values indicated by darker lines and 95% HPD intervals indicated

by coloured shadows.
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meaningful estimates. For this purpose, a date-randomisation
procedure has been proposed that tests whether the real rate
estimate deviates from rates obtained in the absence of tem-
poral structure in the tip-calibrations (Ramsden et al., 2008).
Here, we provide a convenient BEAST implementation of this
test that does not require multiple independent random-
isations, but averages over all plausible randomisations during
the rate estimation process. Based on a relatively stringent
test criterion (Duchêne et al., 2015), we still find a significant
association between substitutions and time in our RYMV se-
quence data.

Although significant, the relative weakness of the temporal
signal explains the sensitivity to the coalescent prior we ob-
served in our analyses. Our TMRCA estimate using the skygrid
model was somewhat more recent than that obtained under the
skyline and skyride model, but more importantly, different set-
tings in the skyride model strongly impacted the evolutionary
time-scale. This provides a general warning that weak temporal
signal may not simply be reflected in uncertainty of date and/or
rate estimation in a Bayesian coalescent framework, but coales-
cent priors may also affect mean TMRCA estimates. In our
study, we highlight the skygrid TMRCA estimate of 1852 [1791–
1903] because this model has been shown to outperform the
other flexible coalescent priors for divergence time estimation
(Gill et al., 2013). We acknowledge that there is a limit to TMRCA
estimation for rapidly evolving viruses in general because satu-
ration and strong purifying selection can lead to an underesti-
mation of old viral origins (Wertheim and Kosakovsky Pond,
2011). However, a TMRCA of about 160 years may be well below
the time-scale on which saturation becomes truly important
(Bielejec et al., 2014).

Our study represents a natural extension of earlier descrip-
tions of RYMV spatial genetics (e.g. Abubakar et al., 2003). Using
statistical reconstructions of discrete phylogeographic diffu-
sion, we confirm a clear east-west separation, a strong spatial
structure in general, and a likely origin in Tanzania. In this re-
gion, and maybe in the Eastern Arc Mountains biodiversity hot-
spot in particular, RYMV may have emerged in cultivated rice
from an ancestor infecting wild graminaceous (e.g. perennial
wild rice species such as O. longistaminata) before spreading to
other parts of Africa. However, currently identified RYMV iso-
lates in perennial wild hosts appear to be spill-over events from
cultivated rice (Traore et al., 2005), and no related viruses have
been identified remote from rice crop areas. In line with an esti-
mated origin in Tanzania, recent analyses of complete genome
data have shown that the West and Central African RYMV di-
versity is nested as a monophyletic clade within the Tanzania
diversity (Ochola et al., 2015). Although we did not consider this
in our analysis, we note that a Tanzanian origin also appears to
be supported by three coding insertion-deletion polymorphisms
at two positions of the CP gene (amino acid position 18 and 60).
The three forms are distributed over different clades, but they are
only found together in Eastern Tanzania. In the remaining parts
of East Africa and in West Africa, only one of the three forms has
been identified, with S5 strain (Eastern Arc Mountain in Eastern
Tanzania) with both K19 and R60, S6 strain (Eastern Arc Mountain
in Eastern Tanzania) with R60 and a deletion of codon K19, and
strains S1, S2, S3, Sa, Sg (West Africa), and S4 (Eastern Arc
Mountain in Eastern Tanzania) have K19 and a deletion of codon
R60. Following its emergence in East Africa, we can only speculate
on how the virus was introduced relatively early in West Africa.
The long-distance movement event appears to be unique to the
natural history of RYMV and could have occurred through human
trading practices (Carpenter, 1978).

Phylogeographic analyses allow the description of the spa-
tiotemporal patterns of viral spread, which in turn may lead to
the formulation of hypotheses about the underlying processes
that shape the dynamics of spread. Agricultural intensification
and extensification are considered to strongly facilitate the es-
tablishment and epidemic spread of emerging viruses (Thresh,
1982; Elena, 2011), and this has also been invoked as a potential
driver of RYMV expansion by molecular epidemiology (Konaté
and Fargette, 2001; Abubakar et al., 2003). Specifically, the in-
creasing adoption of new production modes such as water-fed
rice farming, annual double cropping and high-yielding Asian
varieties highly susceptible to RYMV are likely to have contrib-
uted to its spread (Fargette et al., 2006; Konaté and Fargette,
2001). By identifying the well supported rates of diffusion, we
delineated the major RYMV pathways of spread, but until very
recently it has remained challenging to formally test the drivers
of spatial spread. We address this here using a GLM extension
of the discrete phylogeographic model (Faria et al., 2013; Lemey
et al., 2014), which aims at determining which subset of explan-
atory variables helps to explain the relative intensities of viral
dispersal among pairs of locations. Agricultural intensification
leads to higher rice densities and harvest, which we incorpo-
rated as a predictor in our analyses. To this purpose, we used
circuit theory to build a resistance landscape with the harvested
area of rice in 2000 as resistance factor. This strongly predicted
the patterns of RYMV spread, and both the geographic and host
ecology component of the distances measured on the resistance
landscape appeared to be important. The inclusion of origin rice
intensity in 1990 as an additional predictor points at a degree of
asymmetry in spread facilitated by rice connectivity, with stron-
ger effect on the dispersal out of areas with high rice intensity,
which seems in line with spread facilitated by agricultural
extensification. The fact that a more recent measure of rice in-
tensity (1990 vs. 1960) provides better explanatory power may
be related to the higher branch density in the recent evolution-
ary history covering more dispersal events around that time. To
our knowledge, our study is the first to formally demonstrate
the role of host ecology in plant virus spread using genetic data.
It is interesting to note that a historical approach based on a
historical map of rice distribution Portères (1950, 1957, 1962)
(Pinel-Galzi et al., 2015), and our statistical approach using a spa-
tiotemporal reconstruction incorporating present day rice sta-
tistics, converged towards the same conclusion that harvested
rice intensity or connectivity is the main determinant of RYMV
emergence and spread.

Earlier RYMV phylogeographic analyses have established an
isolation-by-distance pattern for RYMV (Abubakar et al., 2003),
and spread as a function of geographic distance was also evident
from our phylogeographic test approach. This motivated the
complementary application of phylogeographic reconstruction
in continuous space (Lemey et al., 2010) allowing us to quantify
the tempo and mode of spread using several spatial summary
statistics (Pybus et al., 2012). Given the clear distinction of East
and West African RYMV lineages, we compared separate esti-
mates from both regions. Considerable differences exist in terms
of climate, ecology and host range between these regions, with
East Africa growing only the Asiatic rice O. sativa whereas both
the African rice O. glaberrima, which is genetically quite different
from O. sativa, and the Asiatic rice are cultivated in West Africa.
Despite such differences, we found that the overall rate of RYMV
spread and diffusivity was highly similar. These measures do
however not take into account the directionality of spread, and
when the directionality is considered to be the distance from the
estimated origin in both regions (the wavefront distance), we
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find higher wavefront velocities in the West. So, it seems that
rice densities, which are more pronounced in the West, do not
necessarily increase the overall rate of spread, but they facilitate
more extensive expansion dynamics. By summarising these ex-
pansion dynamics over time (Fig. 7), we revealed that agricul-
tural intensification and extensification had a more prominent
impact in the West, which is in accordance with the fact that
our GLM-diffusion estimates were essentially informed by the
data from West Africa. The major expansion dynamics in the
west are characterised by spread from Côte d’Ivoire or Mali in an
eastern direction, towards countries that have relatively lower
rice production like Niger, Chad, or Central African Republic, in
line with the asymmetry suggested by the origin rice intensity
predictor in the GLM analysis. In Mali, various lineages have
been identified in the Inner Niger Delta, suggesting that this spe-
cific area may have been the West African centre of diversifica-
tion (Traore et al., 2005; Fargette et al., 2006). The propagation
towards Central Africa is likely to have followed the more acces-
sible routes of transmission, in particular along the Niger-
Bénoué rivers. In East Africa, the comparatively sparser and less
intense rice production, along with physical (mountains) and
ecological (tropical forests) boundaries have restricted viral ex-
pansion. The continuous phylogeographic reconstruction shows
only recent spread out of its likely area of origin. However, fur-
ther spread may continue in the future and molecular surveil-
lance will be needed to track these dynamics.

Several aspects of our phylogeographic analyses may be fur-
ther improved or fine-tuned in the future. Longer genome re-
gions offer more phylogenetic resolution and are likely to
increase the temporal signal, but they may also require taking
into account recombination (Pinel-Galzi et al., 2009). Sampling
biases represent an important challenge for ancestral recon-
structions, and we acknowledge that such biases may also bur-
den the sample we analysed, even though the GLM analysis did
not associate sampling numbers with diffusion intensities.
Structured coalescent approaches are expected to be less sensi-
tive to sampling biases and represent interesting alternatives
for discrete phylogeographic reconstructions (De Maio et al.,
2015). Furthermore, it may prove interesting to expand on the
predictors of RYMV dispersal if systematic data would be avail-
able, including for example, on vector demographics, rice culti-
var resistance to RYMV, mode of watering and other
agricultural practices. Despite these areas of potential improve-
ment, our current analysis takes an important step towards hy-
pothesis testing in plant virus epidemiology and ecology. Over
the last decade, RYMV has become the main threat to rice cultiva-
tion in Africa and Madagascar (Konaté and Fargette, 2001). The
finding that host ecology has shaped RYMV spread suggests pre-
dictable patterns of spread that may help to inform predictive
models for RYMV control and public health policies. More gener-
ally, our results reinforce the concept that host population ecol-
ogy is crucial for the onward transmission and epidemic potential
of any emerging virus (Woolhouse and Gowtage-Sequeria, 2005).

Supplementary data

Supplementary data are available at Virus Evolution online.
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