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Abstract 

Viral mutations within patients nurture the adaptive potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during 
chronic infections, which are a potential source of variants of concern. However, there is no integrated framework for the evolutionary 
analysis of intra-patient SARS-CoV-2 serial samples. Herein, we describe Viral Intra-Patient Evolution Reporting and Analysis (VIPERA), 
a new software that integrates the evaluation of the intra-patient ancestry of SARS-CoV-2 sequences with the analysis of evolutionary 
trajectories of serial sequences from the same viral infection. We have validated it using positive and negative control datasets and 
have successfully applied it to a new case, which revealed population dynamics and evidence of adaptive evolution. VIPERA is available 
under a free software license at https://github.com/PathoGenOmics-Lab/VIPERA.
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Background
During the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) pandemic, more than seven million deaths have 
been reported by the World Health Organization (WHO) due to 
Coronavirus disease 2019 (COVID-19) (World Health Organization 
2024). The pandemic has been driven by SARS-CoV-2 variants of 
concern (VOC), which are variants with an increased pathogenic-
ity (Centers for Disease Control and Prevention 2020). These VOCs 
have appeared several times in the COVID-19 pandemic, and it has 
been observed that the clades containing the VOCs are preceded 
by a stem branch that shows, on average, a four-fold increase in 
the substitution rate (Tay et al. 2022), which was usually around 
10–3 substitutions per site and year in 2020 (Duchene et al. 2020;
van Dorp et al. 2020).

Different hypotheses—such as undetected acute infections
(E. Wilkinson et al. 2021) or secondary hosts—have been proposed 
to explain the increase in the substitution rate and thus, the 
appearance of VOCs. Nowadays, several pieces of evidence support 
the hypothesis that VOCs originated in chronic infections. First, 

the immune system of immunocompromised patients can fail to 
clear acute SARS-CoV-2 infections leading to long-term infections 
(Clark et al. 2021). The high number of viral mutations from long-
term infections, most of them in the spike protein-coding region 
(Harari et al. 2022), would suggest an increased evolutionary rate, 
as observed in branches that give rise to VOC clades (Msomi et al. 
2021). Second, defining mutations of several VOCs have been 
detected in sequences from chronic infections (S. A. J. Wilkinson 
et al. 2022). Following these findings, there has been an effort not 
only to study SARS-CoV-2 chronic infections, trying to enhance 
the surveillance of VOCs, but also to better understand the mech-
anisms behind their emergence (Harari et al. 2022; Nussenblatt 
et al. 2022; Chaguza et al. 2023; Gonzalez-Reiche et al. 2023). 
While there are pipelines that integrate reproducible workflows to 
analyze genomic diversity between patients (Hadfield et al. 2018; 
Bukur et al. 2023), there is a lack of easily deployable, accessible, 
and integrated workflows for analyzing and reporting the evo-
lutionary trajectories of SARS-CoV-2 chronic infections. Current 
pipelines for processing serially sampled sequencing data that 
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consider the particularities of intra-host samples are restricted 
to certain analyses, such as detecting mixed viral populations,
or identifying chronic infections but using only consensus 
sequences (Valieris et al. 2022; Gonzalez-Reiche et al. 2023; Goya 
et al. 2023; Harari et al. 2024; Pipek et al. 2024). For this reason, car-
rying out this type of studies through public databases is a difficult 
task especially without further clinical information.

Here, we present Viral Intra-Patient Evolution Reporting and 
Analysis (VIPERA), a user-friendly workflow to easily identify and 
study within-host evolution in SARS-CoV-2 serially sampled infec-
tions. First, it provides an aggregate of population genomics and 
phylogenetic analyses that allows researchers to determine if a 
collection of SARS-CoV-2 samples originates from a single virus 
serially sampled infection. Furthermore, VIPERA provides insights 
into intra-host evolutionary dynamics, tracking variant trajec-
tories and selective pressure over time. The generated report 
serves as a valuable guide for prioritizing and refining subsequent 
analyses using the newly generated data for tailored in-depth 
intra-host studies. Overall, this streamlined approach provides 
a comprehensive overview of evolutionary trends in intra-host
evolution.

Results
A comprehensive report of a serially sampled 
SARS-CoV-2 infection
VIPERA offers an integrated framework for detecting and study-
ing serially sampled SARS-CoV-2 infections. The necessary data 
inputs are the read mappings (in BAM format) and the consen-
sus genomes (in FASTA format) for each sequence of the target 
dataset, as well as the associated sample metadata. The main 
output from VIPERA is a report file in HTML format summarizing 
all the analyses in three main sections: ‘1. Summary of the target 
dataset’, ‘2. Evidence for single, serially-sampled infection’, and ‘3. 
Evolutionary trajectory of the serially-sampled SARS-CoV-2 infec-
tion’. In addition, the intermediate files which are instrumental in 
the creation of the final report—such as the lineage demixing sum-
mary, the maximum-likelihood phylogeny of the target dataset 
within its spatiotemporal context, the pairwise weighted-distance 
matrix for the target dataset, or the variant calling results with 
the dataset ancestor as reference—are also made available to the 
user (see Supplementary Table 1 for a full list). This offers a great 
degree of flexibility and control over the data, allowing for further 
in-depth analysis if required. The three sections of the report are 
described hereafter.

Summary of the target samples dataset
First, the report displays a summary of the target sample dataset 
that includes the date and location of sampling. This summary 
also reports the lineage assignment and a time-sorted index of 
each sample that is used to identify the samples in the down-
stream analyses.

Evidence for single, serially sampled infection
The first aim of VIPERA is to streamline the process of confirm-
ing that samples originate from a single, serially sampled infec-
tion collected from the same patient at different time points—
as opposed to multiple successive infections, co-infections, or 
instances of sample contamination. For this, the following anal-
yses are conducted.

Lineage admixture A lineage composition profile of each sam-
ple based on read mappings is reported to detect if different 
viral lineages are present in the sample (e.g. in co-infections or 
contaminations).

Phylogenetic reconstruction A maximum-likelihood tree
including target and context samples is displayed in the VIPERA 
output. Although onward transmission from a chronic host could 
result in samples that their monophyly is not evident due to sam-
pling bias, a group of SARS-CoV-2 sequences originating from a 
serially sampled infection tend to be monophyletic. The phylogeny 
enables users to assess whether the target samples are mono-
phyletic based on ultrafast bootstrap (UFBoot) and Shimodaira–
Hasegawa-like approximate likelihood ratio test (SH-aLRT) sup-
port values.

Nucleotide diversity comparison The nucleotide diversity (π) 
for the target samples is compared with the distribution of 
π obtained for random subgroups extracted from a patient-
independent context dataset. If the target dataset has a signif-
icantly lower π than the distribution of π-values for sequences 
from different patients, then we can assume that they come 
from the same viral infection. The report includes the estimated 
significance of π being lower in the target samples.

Evolutionary trajectory of the serially sampled SARS-CoV-2 
infection
The next step is to characterize within-host evolution. To this 
end, VIPERA reports a set of analyses focused on describing the 
intra-host evolutionary trajectory of the target samples. This 
serves as a comprehensive overview of temporal trends for guiding 
researchers towards informed research decisions.

Number of polymorphic sites To investigate the within-host 
viral diversity, we use the number of polymorphic sites as a mea-
sure of diversity. The default lower threshold for minor allele 
frequency is 0.05. The report displays the number of polymorphic 
sites of each sample and the correlation of this parameter with 
time, which allows for the observation of fluctuations in diversity 
throughout the course of the infection.

Description of within-host nucleotide variants The report 
includes a summary of within-host nucleotide variants with 
respect to its predicted ancestral sequence. The summary includes 
a genome-wide depiction of the proportion of sites in which 
we find a polymorphism. This allows for the identification of 
mutation hotspots. The summary also depicts each individual 
mutation throughout the genome for each sample. Mutations are 
represented according to their classification in single-nucleotide 
variants (SNVs) or insertions and deletions (indels) and colored 
depending on whether they are synonymous or non-synonymous 
SNVs, in-frame or frameshift indels, or intergenic nucleotide 
changes. Due to the relevance of the spike protein for SARS-CoV-2 
adaptation, a zoom-in of the summary is also generated for the S 
gene.

Temporal signal of the intra-host mutations The temporal 
signal of the target samples is also assessed. First, a neighbor-
joining tree of the target samples is constructed using weighted 
pairwise distances based on allele frequencies. Then, root-to-tip 
distances measured on this tree are correlated with time. The
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estimated evolutionary rate is reported as the number of changes 
per year. We also evaluate the correlation of allele frequencies at 
each polymorphic site with time, calculating the Pearson’s corre-
lation coefficients and the adjusted significance of the linear fit. 
Then, allele frequencies with a significant, positive correlation—
which are assumed to be affected by selective pressures or 
hitchhiking—are displayed on a time series of allele frequencies 
along the viral genome. All sites with more than one alternative 
allele are also displayed.

Correlation between alternative alleles To evaluate if there are 
interactions between mutations, the report includes an interactive 
heatmap of pairwise allele frequency correlation coefficients, 
which includes the relationships between alleles. The interactive 
heatmap enables the user to easily obtain correlation values and 
restrict the region for visualization.

Non-synonymous and synonymous substitution rates over 
time The report includes a time series of the synonymous muta-
tions per synonymous site (dS) and non-synonymous mutations 
per non-synonymous site (dN) of each sample with respect to the 
ancestor sequence, as well as their ratio ω (dN/dS).

Validating the detection of serially sampled 
infections
To validate the evidence of serially sampled infection, we tested 
the pipeline with two control sets of samples. The positive con-
trol dataset includes thirty sequences from a chronic infection 

collected in Yale between 8 February 2021 and 7 March 2022 
(Chaguza et al. 2023). All the sequences from the positive control 
were designated as the B.1.517 lineage. Its context dataset (n = 170) 
was automatically fetched from the Global Initiative on Sharing 
All Influenza Data (GISAID), searching for samples assigned to the 
same lineage, and collected in the same location, from 1 February 
2021 to 12 March 2022.

The negative control dataset combines fifteen sequences from 
two different patients. The Patient A dataset, which includes 
twelve samples, represented a serially sampled infection. Subse-
quently, it was selected as the target dataset for our novel case 
study, elaborated in the ensuing ‘Results’ section. The Patient A 
dataset was combined with three samples from a different patient 
(Patient B) to compose an artificial but robust negative control, 
which finally contained an unbalanced number of sequences (4:1 
ratio) from two potentially serially sampled infections, as opposed 
to a single infection from a single patient. All samples were col-
lected in Barcelona between 24 March 2020 and 16 November 2020, 
and designated as lineage B.1 (see ‘Methods’ section). Its context 
dataset (n = 84) was also automatically fetched from GISAID by 
searching for the same lineage, and collected in the same location, 
from 11 March 2020 to 28 November 2020.

Lineage composition analysis to confirm homogeneity within 
patient
After estimating the lineage admixture of each sample, two 
different landscapes appeared in the positive and negative

Figure 1. Lineage admixture of the control datasets, calculated with Freyja. Columns depict the estimated relative lineage abundance in each sample 
in (A) the positive control (PC) dataset and in (B) the negative control (NC) dataset. Samples in the x-axis are ordered chronologically, from more 
ancient to newer.
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Figure 2. Maximum-likelihood phylogenies of the control datasets and their context samples with 1000 support replicates. (A) Positive control dataset. 
(B) Negative control dataset.

control datasets. All thirty samples from the positive control had a 
100 per cent estimated abundance of the B.1.517 lineage (Fig. 1A). 
Conversely, for the negative control, five samples were mostly 
B.1 or B.1.399, while in the remaining ten samples, B.1 and B.1 
sublineages had an estimated abundance of up to 88 per cent 
(Fig. 1B). The similarity between lineage B.1 and its sublineages 
(one or two SNPs) was not high enough to conclude that the vari-
ety of sublineages was a consequence of different evolutionary 
origins.

Phylogenetic reconstruction to assess monophyly
A maximum-likelihood tree was constructed with both the tar-
get and the context datasets for the two validation cases. In 
the positive control, all thirty samples fell into a robust clade 
together with the other eight sequences from the context dataset 
(UFboot: 97 per cent; SH-aLRT: 87 per cent; Fig. 2A). Those eight 
samples were later confirmed to have been sampled from the 
same patient (personal communication with Dr Anne Hahn and 
Dr Nathan Grubaugh). This highlights the capacity of VIPERA for 
effectively identifying sequences related to the dataset of interest 
without any prior knowledge. Thus, considering the eight addi-
tional sequences as part of our study dataset, and not part of the 
context, we can conclude that the positive control sequences were
monophyletic.

As for the negative control, all fifteen sequences were para-
phyletic and fell into a clade with weak support (UFBoot: 7.0 per 
cent; SH-aLRT: 0.00 per cent) together with another unrelated 
sixty-one context sequences. However, sequences were divided 
into two strongly supported monophyletic clades that corre-
spond with the two groups of samples coming from two dif-
ferent patients that we had artificially mixed. One clade con-
tained the three sequences from the patient B of the negative 
control (UFBoot: 96 per cent; SH-aLRT: 92 per cent) and the 
other clade contained the twelve sequences from patient A of 

the negative control (UFBoot: 97 per cent; SH-aLRT: 87 per cent;
Fig. 2B).

Nucleotide diversity to confirm the lower diversity of virus 
samples with a common origin
For each validation dataset, we calculated the nucleotide diversity 
of the target samples and compared it with the nucleotide diver-
sity of 1,000 subsets of samples of the same size as the target 
dataset, extracted from each corresponding context dataset. The 
nucleotide diversity of the positive control (π = 1.85 ⋅ 10−4) was sig-
nificantly lower than that of its corresponding context dataset 
(average = 5.30 ⋅ 10−4, SD = 2.87 ⋅ 10−5; t-test t = 376.27, P < 0.001; 
Fig. 3A) assuming a normal distribution of the context π-values 
(Shapiro–Wilk test W = 0.997, P = 0.076). Conversely, the negative 
control dataset did not show a significantly lower nucleotide 
diversity (π = 1.03 ⋅ 10−4) compared to its context dataset π dis-
tribution (average = 1.34 ⋅ 10−4, SD = 3.55 ⋅ 10−5; empirical P = 0.137; 
Fig. 3B) without assuming normality (Shapiro–Wilk test W = 0.98, 
P < 0.001).

Furthermore, we repeated the analysis of the positive con-
trol, this time including in the target dataset the eight addi-
tional samples that were extracted from the same patient, as we 
later discovered. Nucleotide diversity was lower compared with 
the original analysis (π = 1.3 ⋅ 10−4) and with the nucleotide diver-
sity distribution of its corresponding context (average = 5.20 ⋅ 10−4, 
SD = 2.45 ⋅ 10−5; t-test t = 514.19, P < 0.001).

Using VIPERA to analyze a novel case
We applied the pipeline to study the within-host evolution in a 
set of twelve SARS-CoV-2 samples collected from the same host 
(Patient A) and designated to lineage B.1. The patient was an 82-
year-old woman diagnosed with diffuse large B-cell lymphoma 
(DLBCL) in palliative treatment, who tested positive in SARS-CoV-
2 after contact tracing (day zero) a year after DLBCL diagnosis. The 
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Figure 3. Analysis of the nucleotide diversity (π) of each control dataset. The dashed lines describe a normal distribution with the same mean and 
standard deviation as the distribution of π-values. The solid vertical lines indicate the π-value for the target samples. (A) Analysis of the positive 
control against 1,000 replicates (n = 15 each) of its context dataset. (B) Analysis of the negative control against 1,000 replicates (n = 30 each) of its 
context dataset.

patient tested positive again on day thirty-five. She was included 
in a clinical trial with remdesivir, starting on day forty-five and 
finalizing on day fifty-five with good tolerance and remission of 
respiratory symptoms. After three more positive tests on days 
fifty-five, seventy, and ninety, two doses of hyperimmune plasma 
were administered on days 128 and 129. The patient tested pos-
itive again on days 132, 136, 148, 227, 233, and 237. A general 
clinical worsening occurred afterwards and the patient passed 
away sometime after day 281. Further details about the medi-
cal history of the patient are available in Supplementary Table 2. 
Genome sequencing was performed on the fourteen samples col-
lected on each day of positive SARS-CoV-2 testing, but only twelve 
passed the quality requirements and were analyzed here. These 
samples were also incorporated in the negative control dataset, 
as previously described.

The context dataset for the case study was automatically 
constructed searching for B.1 sequences collected in Barcelona 
between 24 March 2020 and 16 November 2020, in the GISAID 
database, and included eighty-five sequences. Additionally, 
another custom context dataset was also constructed with 110 
samples manually selected from the SEQCOVID Consortium. 
These were collected in Barcelona from independent patients 
between 11 March 2020 and 28 November 2020 and classi-
fied as B.1. The results obtained using both context datasets 
were consistent, so we report those with the automatically 
constructed context dataset because it is the default VIPERA
option.

Evidence for single, serially sampled infection
First, we investigated the most probable lineage admixture for 
all twelve samples. We observed two pairs of samples with an 
estimated lineage abundance of nearly 100 per cent for lineages 
B.1 and B.1.399, respectively. The remaining samples were fur-
ther classified as B.1 sublineages with their estimated abundances 
ranging from 0.07 per cent to 88 per cent (Fig. 4A). The small num-
ber of mutations between B.1 and B.1 sublineages (one or two 
SNPs) might reflect variations during the evolution of the virus 
over time rather than the mixture of different viruses. Second, 
the maximum-likelihood phylogeny revealed that the case study 
dataset formed a monophyletic cluster. The clade that contained 
all the target samples was supported by UFBoot score of 97 per 

cent and an SH-aLRT score of 92 per cent (Fig. 5A and B). Third, the 
nucleotide diversity (π = 4.11 ⋅ 10−5) was significantly lower than 
that of its corresponding context dataset (average = 1.44 ⋅ 10−4, 
SD = 4.04 ⋅ 10−5; empirical P < 0.001; Fig. 4B) without assuming a 
normal distribution of the context π values (Shapiro–Wilk test 
W = 0.967, P < 0.001). This finding supports the hypothesis of 
these sequences coming from a serially sampled single-virus
infection.

All the evidence that included lineage assignment, monophyly, 
and nucleotide diversity indicated a proximal common origin. 
Therefore, we proceeded to examine intra-host evolution, which 
is described in the third section of the report.

Evolutionary trajectory of the serially sampled SARS-CoV-2 
infection
Nucleotide variants associated with within-host evolution. 
Genomic variation was not evenly distributed along the SARS-
CoV-2 genome. The non-structural protein (NSP) 3 coding region 
in ORF1ab, the S gene and the N gene, reached peaks of 1 percent 
of polymorphic sites (Fig. 6). We found ten indels, six of which 
led to frameshifts: two in the ORF1ab, two in the ORF7b, one in 
the ORF3a and N gene. Additionally, ninety-nine different SNPs 
were found, sixty-seven of which were non-synonymous (see the 
automatically generated variant calling results in Supplementary 
Table 3).

We evaluated the correlation of allele frequencies with time 
for all detected variants. Eight out of 109 showed a significant 
correlation with time, being positive for all of them (Pearson’s 
coefficients ranging from 0.873 to 0.957; Fig. 7A and B). Addition-
ally, we found two positions with more than one alternative allele 
(Fig. 7B). Interestingly, all variants that showed a significant corre-
lation with time, showed a change in allele frequencies after the 
administration of hyperimmune plasma (samples labeled CS_5 
and CS_6; Fig. 7B). Therefore, we evaluated all changes in viral 
allele frequencies associated with the administration of ther-
apeutic agents that were reported in the medical history. We 
based this analysis on the aforementioned variant calling out-
put (Supplementary Table 2), which demonstrates the usefulness 
of the VIPERA output to perform further downstream analyses. 
We found thirty-nine genetic variants that changed in frequency 
before and after the administration of hyperimmune plasma. 
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Figure 4. Lineage admixture and nucleotide diversity (π) analysis of the twelve case study samples. (A) Estimated relative lineage abundance in each of 
the twelve target samples from the case study, calculated with Freyja. Samples in the x-axis are ordered chronologically, from more ancient to newer. 
(B) Nucleotide diversity (π) distribution for 1,000 samples (n = 12) of context sequences for the case study. The orange dashed curve depicts a normal 
distribution with the same mean and standard deviation as the π-value distribution. The red vertical line indicates the π of the case study dataset.

Figure 5. Phylogenetic analysis of the case study dataset. (A) Maximum-likelihood phylogeny with 1,000 supporting replicates for both target samples 
and samples composing the case study context dataset. (B) Zoom of the clade containing all target samples in (A).

Twenty-three of them were found in ORF1ab, ten in gene S, two 
in gene N, two in ORF3a, one in ORF8, and one in an intergenic 
region (Supplementary Fig. 1A). We also evaluated viral varia-
tion before and after the remdesivir clinical trial (samples labeled 
CS_2 and CS_3). We found twenty-seven genetic variants that 
changed frequency, including seventeen in ORF1ab, two in gene 
S, two in gene N, one in each ORF3a, ORF7, and ORF8, and three 
intergenic (Supplementary Fig. 1B). Among these alleles, eleven 
changed frequency after both treatments, with eight of them 
having opposite trajectories (ORF1ab:T1322I and ORF1ab:T1322K 
in NSP3, ORF1ab:A1923V in NSP3, ORF1ab:K3886N in NSP7, 
ORF1ab:I4429I in NSP12, ORF1ab:P5371S in NSP13, S:G35G, and 
N:S194L), and three having the same trajectory (ORF1ab:T1638I in 
NSP3, ORF1ab:D4166N in NSP9, and S:I770V).

Finally, we evaluated the correlation in time-dependent tra-
jectories between different alleles. We found pairwise cor-
relation coefficients above 0.85 between the trajectories of 
ORF1ab:A260V (NSP2), ORF1ab:S1188L (NSP3), ORF1ab:T1322K 
(NSP3), ORF1ab:K1795Q (NSP3), A28272G, ORF1ab:H1213Y (NSP13), 
N:P383L, and ORF3a:Q213K (Figs 7 and 8). In addition, these vari-
ants correlated with ORF8:I121L and ORF1ab:P970S (NSP13) as well 
(Fig. 8B).

Evolutionary dynamics. Using the number of polymorphic sites 
as an estimate of genetic diversity, we observed that diversity 
was positively correlated with time in days since the first sam-
ple and, time since the initial sampling significantly predicted the 
number of polymorphic sites (R2 = 0.70, F(1, 10) = 22.69, P < 0.001). 
The estimated substitution rate was 32.02 substitutions per year, 
95 per cent CI [26.62, 37.41]. This was not significantly higher than 
the estimate for the positive control (24.94 substitutions per year, 
95 per cent CI [19.59, 30.28]; F(1, 38) = 1.72, P = 0.194).

We calculated the number of non-synonymous substitutions 
per non-synonymous site (dN) and the number of synonymous 
substitutions per synonymous site (dS) for each sample. The ini-
tial phases of the infection showed very low diversity, but both 
dN and dS increased over time, reaching values of 0.0007 and 
0.0001, respectively. The dN/dS ratio (ω) ranged between 1.11 and 
5.98, with an average value of 2.36 (Fig. 9A). Interestingly, ω was 
higher than in another immunocompromised patient (Chaguza 
et al. 2023), where dN/dS was generally below one (Fig. 9B). More-
over, we observed distinct ω trajectories after the administration of 
each therapeutic agent. In the case study, two distinct treatments 
were used. During the remdesivir clinical trial, ω-value decreased 
with a fold change of 0.53. However, during hyperimmune plasma 
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Figure 6. Summary of the intra-host accumulation of nucleotide variants (NV), using the dataset ancestor as reference. (A) Nucleotide variants per site 
along the SARS-CoV-2 genome. Relative abundance of NVs is calculated with a sliding window of width 1,000 nucleotides and a step of fifty. Labels 
indicate the coding regions of the non-structural proteins (NSP) within ORF1ab. (B) Genome variation along the genome for each sample. The y-axis 
displays samples in chronological order, with the earliest collection date at the bottom and the latest at the top.

administration ω increased with a fold change of 2.40 due to an 
increase in dN and a slight decrease in dS. The patient from the 
positive control started a palliative radiation treatment on day 278 
and immediately after that day, ω drastically increased due to a 
decrease in dS rather than an increase in dN.

Discussion
Chronic infections are becoming an important issue in SARS-
CoV-2 evolutionary studies due to the relationship between the 
prolonged within-host viral evolution and the emergence of VOCs 
(Markov et al. 2023). However, the study of serially sampled SARS-
CoV-2 samples lacks integrated workflows that facilitate the anal-
yses. To close this gap, we have developed VIPERA, a tool that 
automatizes the analysis of serially sampled SARS-CoV-2 infec-
tions, serving as a valuable baseline for researchers who want 
to assess the intra-host evolutionary trajectories of SARS-CoV-2 
samples. The generated report provides a summary of evolution-
ary parameters, allowing researchers to make evidence-driven 

decisions about their research direction using the processed data 
and prioritize areas for further investigation.

A key strength of VIPERA is the combined use of phyloge-
netic and population genomics approaches to analyze SARS-CoV-2 
samples and provide information to ascertain whether there is a 
serially sampled infection or not. To do so, mapped reads are used 
in different ways to consider the entire intra-host viral popula-
tion. First, the lineage assignment of the samples is calculated 
using allele frequencies. This analysis enables the user to detect 
co-infections or viral lineage replacement events, which can go 
unnoticed in a consensus genome analysis. Second, VIPERA also 
reports a maximum-likelihood phylogeny including the target and 
the context dataset. The tree allows the user to assess whether 
the target samples are monophyletic, which is a good indicator for 
serially sampled infections. Third, because nucleotide diversity is 
expected to be reduced for SARS-CoV-2 sequences from the same 
infection compared to independent samples, we use this metric 
to evaluate serially sampled infections. Comparison of within and 
between-host diversity has been previously used for viral outbreak 
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8 Virus Evolution

Figure 7. Analysis of the frequency of polymorphisms with time in the case study. (A) Pearson’s correlation coefficients and adjusted P-values for all 
110 detected nucleotide variants. Dashed line indicates adjusted P = 0.05. Labeled dots represent nucleotide variants correlated with time (adjusted 
P < 0.05). B) Time series of relative allele frequencies. The shown positions include nucleotide variants with a significant correlation with time and sites 
with more than two possible states. Each subplot depicts the progression of the allele frequencies in time for a given genome position. The vertical 
stripes in orange indicate the span of the remdesivir clinical trial. The vertical stripes in purple indicate the days of administration of hyperimmune 
plasma.

analysis to detect transmission chains (Caro-Pérez et al. 2017), and 
it has proven to be a strong indicator of serially sampled infection 
in this work. Even when the context dataset includes some sam-
ples from the same patient as the target sequences, we found that 
nucleotide diversity still contains enough signal to differentiate 
intra-patient variation. This could be partly due to the robustness 
of the context dataset. Although VIPERA cannot assess in a sys-
tematic manner whether all samples in the context dataset are 
independent, we found identical results when we compared a cus-
tomized context dataset with truly independent sequences and 
the automatic one. Thus, these results support the robustness of 
our approach to select a context dataset automatically.

Once assessed if all sequences derive from the same infection, 
VIPERA’s results can be used to study the evolutionary process. 
Phylodynamic processes of inter-host and intra-host evolutionary 
dynamics can produce distinctive phylogenetic patterns (Grenfell 
et al. 2004). In our work, monitoring the evolution of the virus 

during 8 months allowed for the observation of both intra and 
between-host phylodynamic patterns within the same phylogeny. 
We achieved this by including a well-designed context dataset, as 
described earlier. We observed a balanced topology in the phy-
logeny at an inter-host population level, but a heavily unbalanced 
one for within-patient samples, reflecting the different intra-host 
versus inter-host processes. VIPERA also reports dN/dS estimates 
through time which can potentially reveal selective or population 
dynamics. In our case study, dN/dS increased over time because 
dN increased more than dS during the course of the infection. This 
result contrasts sharply with the study of another immunocom-
promised patient that we used as a positive control for VIPERA 
(Chaguza et al. 2023) in which the dN/dS ratio was much lower. 
In new viral populations, elevated genome-wide dN/dS ratios 
might reflect a smaller effective population size (Ne) (Lin et al. 
2019). Therefore, the lower dN/dS seen in the positive control 
might indicate that the lack of immune pressure could result 
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Figure 8. Heatmap of the association between polymorphism trajectories in the case study. (A) Hierarchically clustered heatmap of the pairwise 
Pearson’s correlation coefficients between the time series of allele frequencies in the case study. The cluster containing the previously found 
mutations is squared in black. (B) Subset of the correlation heatmap, restricted to the cluster marked in (A).

Figure 9. Non-synonymous (dN), synonymous (dS) substitution rates, and ω (dN/dS) for this study samples (A) and the positive control dataset (B). 
Each point corresponds to a different sample calculated with respect to the ancestor and sorted in chronological order. Vertical lines in the x-axis 
indicate the administered treatments and their duration: Remdesivir (RDV), hyperimmune plasma (HP), and palliative radiation (PR).

in a higher viral Ne and more efficient selection pressure. This 
could be linked to the patient receiving chimeric antigen receptor 
T (CAR-T) cell therapy for relapsed DLBCL post-stem-cell trans-
plantation. CAR-T therapy can trigger a substantial, long-term 
depletion of antibody-producing B cells and increased susceptibil-
ity to infections (as reviewed in Cappell and Kochenderfer 2023), 
which could significantly modulate the long-term immune pres-
sure over SARS-CoV-2. Throughout the most of the infection in 
the positive control (Chaguza et al. 2023), dN/dS remained below 
one, with the exception of day 315, when dS experienced a sig-
nificant drop. This decrease in substitution rate happened just 37 
days after the patient started palliative radiation therapy and was 
admitted in a hospital several times after that. As the treatment 
and the immune status of the patient might pose a significant 
pressure on the virus, the diminished evolutionary potential of the 
virus at that time could also be influenced by this pressure. In any 

case, by incorporating patient medical histories, our tool empow-
ers researchers to detect evolutionary trajectory alterations that 
may be associated with or respond to clinical events.

VIPERA also reports a description of the intra-host nucleotide 
variants and their relationship with other variables such as col-
lection date or other intra-host nucleotide variants. In our case 
study, we detected several mutations that are concerning because 
of their relationship with immune system evasion, such as 
ORF1ab:T1638I (NSP3), ORF1ab:S1188L (NSP3), and ORF3a:Q213K 
(de Silva et al. 2021; Zekri et al. 2021). We also found muta-
tions previously found in within-host evolution analyses such as 
N:P383L, ORF1ab:H1213Y (NSP13), and S:V143D + ΔY144 (Chiara 
et al. 2021; Sahin et al. 2021; Halfmann et al. 2023). This dele-
tion is within a recurrent deletion region (RDR) of the spike pro-
tein that has appeared recurrently in long-term infections and 
has been fixed independently in different variants of concern 
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(McCarthy et al. 2021). Thanks to the availability of a medical his-
tory of the case study, we were also able to compare the allele 
frequencies before and after the administration of therapeutic 
agents. After treatment with hyperimmune plasma, we detected 
the emergence of recurrent mutations such as ORF1ab:K1795Q 
(NSP3), which was commonly found in variant Gamma, and 
S:E484Q, which later appeared on variant Delta-related lineages 
associated with a loss of sensitivity to neutralization (Ferreira 
et al. 2021; Verghese et al. 2021; Brandolini et al. 2022). We also 
detected the emergence of ORF1ab:A2529V (NSP3), a marker of the 
Delta lineage AY.4, and S:T95I, which was later commonly found 
in Omicron lineage BA.1. Both mutations have also been identi-
fied in another immunocompromised patient (Zannoli et al. 2023). 
ORF1ab:H5614Y (NSP13) and S:L141F, which have been predicted 
to interfere with antiviral drug binding (Ameen et al. 2021; Ghor-
bani et al. 2022), also emerged after the plasma administration. 
ORF1ab:D1323G (NSP3) and ORF1ab:T4065I (NSP8) emerged after 
the clinical trial with remdesivir. They have also been detected 
in immunocompromised patients (Weigang et al. 2021; Spinicci 
et al. 2022). ORF1ab:A4841V (NSP12, the RNA-dependent RNA-
polymerase) also emerged after the clinical trial and has been 
observed as a marker of the basal lineage B.1.13 (Thorne et al. 
2022). We also noticed the emergence of S:I770V after both treat-
ments, becoming nearly fixed by the end of the study. This 
mutation was later found in the Omicron lineage CP.4 (see cov-
lineages/pango-designation v1.16 on GitHub). Overall, the phylo-
genetic patterns of our case study, the appearance of recurrent 
mutations indicative of adaptation, along with the dN/dS dynam-
ics, might be interpreted as positive selection acting on a few sites 
despite the immune pressure limiting the viral Ne within a chronic 
host.

In summary, VIPERA facilitates the analysis of SARS-CoV-
2 chronic infections by providing evidence for serially sampled 
infection, describing the viral within-host evolution, and setting 
up an environment equipped with the files needed for further 
customized within-host viral evolution analyses. The generated 
environment includes consensus alignments, phylogenies, sam-
ple compositional data, and results concerning variant calling 
and allele frequency progression. This wealth of data empow-
ers researchers to perform further comparative analysis mea-
suring genetic diversity, population structure, detecting genetic 
markers associated with resistance or virulence, among others. 
For instance, we demonstrate that the availability of a medical 
history associated with the serial sample opens up the possibil-
ity of a deeper understanding of the effect of treatments and 
immune status in viral evolution. For these reasons, we foresee 
VIPERA as an enhancer for SARS-CoV-2 serially sampled infection 
studies, contributing to surveillance of VOCs and to understand 
the mechanisms behind their emergence. Although VIPERA is 
designed for reporting on SARS-CoV-2 sequence data, the frame-
work could be extended to other viruses in further iterations of the
software.

Conclusions
VIPERA is a new bioinformatic tool for studying and analyz-
ing serially sampled SARS-CoV-2 infections. VIPERA provides an 
aggregate of analysis for detecting whether there is a serially sam-
pled infection or not, including novel approaches such as genetic 
diversity and genetic distance at the population levels. It also 
provides a description of the within-host evolution observed in 
the target samples. Having undergone rigorous validation through 
two stringent control cases, our tool has proven its efficacy in a 

real-world case study. Being on the cusp of a new era in under-
standing the intra-host evolution of SARS-CoV-2, VIPERA paves the 
way for a more efficient analysis of serially sampled SARS-CoV-2
infections.

Methods
Pipeline implementation
To facilitate the study of SARS-CoV-2 within-host evolution using 
data from single-virus serially sampled infections, we have imple-
mented VIPERA, a user-friendly, customizable, and reproducible 
workflow using Snakemake (Mölder et al. 2021), R v4.1.3 (R Core 
Team 2021) and Python v3.10 (Van Rossum and Drake 2009) in 
addition to other software listed in Supplementary Table 4. VIPERA 
enables the automated analysis of an arbitrary number of samples 
collected from a single patient at different time points after infec-
tion. VIPERA takes as input sorted BAM files, consensus sequences 
in FASTA format and also a metadata file with collection dates, 
locations and GISAID IDs. The execution configuration parame-
ters are fully documented in the code repository and explicitly 
exposed in YAML files that can be easily interpreted and modi-
fied by the user. While our tool is suited for the computational 
capabilities of an average laptop, we leveraged Snakemake profiles 
to ensure seamless deployment in a high-performance comput-
ing (HPC) environment. In our cluster, we achieve a consistent 
run time of less than 15 min, using one Intel(R) Xeon(R) Gold 
6230 CPU @ 2.10 GHz and less than 1 GB of RAM. The run time 
decreases by up to a factor of five on sixteen cores, using around 
six GB of RAM. The main output of VIPERA is a report file in 
HTML format that includes different analytical results and data 
visualization for detecting single-virus sustained infections and 
studying within-host evolution.

Dataset retrieval and preprocessing
Three sets of SARS-CoV-2 samples were used in order to test and 
use VIPERA: a positive control, a negative control, and a novel
case.

For the positive control, we used thirty SARS-CoV-2 samples 
collected in Connecticut between 1 June 2021 and 7 March 2022 
described as a chronic infection (Chaguza et al. 2023). FASTQ 
files were fetched from the SRA using fastq-dump, implemented in 
the SRA toolkit v3.0.0 (Leinonen, Sugawara, and Shumway 2011). 
Reads were mapped against the Wuhan-Hu-1 reference genome 
(NCBI RefSeq accession no. NC_045512.2) (Wu et al. 2020) using 
BWA-MEM v0.7.17 (Li 2013). ARTIC v4.1 primer schemes (ARTIC-
network 2023) were trimmed from the generated BAM files using 
iVar v1.4.2 (Grubaugh et al. 2019). Using samtools v1.17 (Danecek 
et al. 2021) and iVar v1.4.2 (Grubaugh et al. 2019), trimmed BAM 
files were sorted and indexed to obtain the consensus sequence 
with a minimum frequency threshold of 0.6 and a minimum depth 
of twenty reads.

The negative control and the novel case datasets were selected 
from samples for which we had access to read mappings in 
BAM format, consensus sequences, and metadata via the Seq-
COVID Consortium. Viral samples were collected in the Hospital 
Clínic de Barcelona and sequenced in the Institute of Biomedicine 
of Valencia using the ARTIC v3 primer scheme (ARTICnetwork 
2023). Libraries were prepared using the Nextera Flex DNA Library 
Preparation Kit and sequenced on the Illumina MiSeq platform. 
Reads were processed through the SeqCOVID pipeline for SARS-
CoV-2 bioinformatic analysis (SeqCOVID Consortium 2021). The 
case study comprised twelve samples collected from the same 
patient (Patient A) in Barcelona, Spain between 24 March 2020 
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and 16 November 2020, and previously designated as lineage B.1
(see Supplementary Table 5). The medical history of the case study 
was obtained from the Hospital Clínic de Barcelona after approval 
by the ethical committee. For the negative control, the previous 
twelve samples were mixed with three samples from a different 
patient (Patient B), also collected in Barcelona, Spain between 1 
April 2020 and 28 August 2020, and previously designated as B.1 
(see also Supplementary Table 5).

Characterizing serially sampled infections from a 
single virus
Longitudinal analysis of viral lineage assignment and 
admixture
The descriptive analysis of the target dataset of intra-patient sam-
ples includes the assignment of a Pango lineage according to 
sample consensus sequences, as well as the evaluation of possi-
ble lineage admixture within each sample. A lineage is assigned 
to the genome sequences of each sample using Pangolin v4.3 
(O’Toole et al. 2021) in accurate (UShER) mode. A demixing step is 
performed using Freyja v1.4.2 (Andersen Laboratory 2023), which 
utilizes read mappings to estimate the lineage admixture of each 
sample based on lineage-defining mutational barcodes by solving 
a convex optimization problem.

Construction of a context dataset
The analyses require a collection of independent samples—ideally, 
samples that originate from different hosts and separate infection 
events. This set of samples is referred to as the ‘context dataset’ 
in our study. Automated construction of the context dataset is 
enabled by default, contingent upon the provision of user cre-
dentials for the GISAID SARS-CoV-2 database (Khare et al. 2021), 
using GISAIDR v0.9.9 (Wirth and Duchene 2022). This facilitates 
the retrieval of a dataset comprising samples that fulfill the spa-
tial, temporal, and phylogenetic criteria, including a sampling 
location that corresponds to that of the target samples, a collec-
tion date that falls within a time window encompassing 95 per 
cent of the date distribution of the target samples (with 2.5 per 
cent trimmed at each end to account for extreme values) plus and 
minus 2 weeks, and a lineage assignment that is shared by at least 
one of the target samples.

During the process, a series of tweakable checkpoints are estab-
lished in the configuration file to ensure a robust downstream 
analysis. First, samples whose GISAID accession number matches 
any of the target samples are removed. Second, we enforce a min-
imum number of context samples to provide a sufficient number 
of random subsample replicates for the diversity assessment. The 
workflow determines the minimum number of context samples 
by applying the formula for calculating the number of C(n, k) pos-
sible combinations of n items extracted k at a time (n ≥ k ≥ 0), 
and solving n to obtain C(n, k) context samples with k samples 
in each subset. Here, k equals the number of samples in the tar-
get dataset. The uniroot function of the stats R library is employed 
for this calculation. If any of these checkpoints fails, the context 
dataset cannot be automatically built. Alternatively, a manually 
constructed context dataset may be provided.

For all the analyses shown in this article, an automatically 
constructed context dataset has been used. Additionally, a man-
ually constructed context dataset was also used for the case 
study to compare the results with the ones obtained using an 
automatically constructed context dataset.

Nucleotide diversity comparison
Nucleotide diversity (π) of the target dataset is compared with 
that of the context dataset, composed of independent samples.
By default, a nucleotide diversity distribution for the context 
dataset is calculated for 1,000 random sample subsets of size 
equal to the number of target samples extracted without replace-
ment. The number of replicates can be easily modified by the user. 
Then, the obtained distribution is compared with the nucleotide 
diversity obtained for the target dataset; empirically, if the π distri-
bution is not normal, or via parametric tests, if it is. Calculations 
are performed in R and nucleotide diversities are calculated with 
pegas v1.2 (Paradis 2010).

Assessing phylogenetic relationships
Consensus sequences of the target and context datasets are 
aligned to the Wuhan-Hu-1 reference genome (NCBI RefSeq acces-
sion number: NC_045512.2) (Wu et al. 2020) using Nextalign v2.13 
(Hadfield et al. 2018). Positions classified as problematic (Weilguny 
2023) are masked in the alignments. Then, a maximum-likelihood 
phylogeny is constructed using IQTREE v2.2.2.3 (Minh et al. 2020). 
By default, inference is performed under a general time-reversible 
(GTR) substitution model with empirical base frequencies, a het-
erogeneity model with a proportion of invariable sites and a 
discrete Gamma distribution with four rate categories, ultrafast 
bootstrap (UFBoot) (Minh, Nguyen, and von Haeseler 2013; Hoang 
et al. 2018) with 1,000 replicates, and the Shimodaira–Hasegawa-
like approximate likelihood ratio test (SH-aLRT) (Guindon et al. 
2010) with 1,000 replicates. This inference enables the study of 
the taxonomic grouping of the target dataset within the relevant 
epidemic context.

Describing within-host variability
Variant calling and nucleotide variant description
Variants are called using samtools v1.17 (Danecek et al. 2021) and 
iVar v1.4.2 (Grubaugh et al. 2019) using a reconstructed ancestral 
genome as reference to restrict the analysis to sequence variation 
related to the within-host evolution. Variants are re-annotated 
using snpEff  v5.1d (Cingolani et al. 2012). To reconstruct the ances-
tral sequence, the target samples are aligned to the Wuhan-Hu-1 
reference genome (NCBI RefSeq accession no. NC_045512.2) (Wu 
et al. 2020) using Nextalign v2.13 (Hadfield et al. 2018). Then, 
the ancestral genome is obtained with IQTREE v2.2.2.3 (Minh 
et al. 2020). By default, maximum-likelihood trees are inferred 
under a GTR substitution model with empirical base frequen-
cies and a heterogeneity model with a proportion of invariable 
sites and a discrete Gamma distribution with four rate categories. 
The quality criteria for variant calling were a minimum base 
quality of twenty, a minimum depth of thirty and a minimum 
frequency cutoff of 5 percent. Nucleotide variants supported by 
less than twenty reads or less than two reads in one strand were
filtered out.

The distribution for the polymorphisms found along the SARS-
CoV-2 genome is calculated using a sliding window (default width: 
1,000 nucleotides; step: fifty nucleotides). The number of muta-
tions per site for each window is represented on its right side. 
Positions are annotated using the Python library gb2seq v0.0.20 
(Charité Institute of Virology 2023).

To select the most interesting polymorphisms to plot, we per-
form a linear regression of the allele frequencies of each polymor-
phism on the time (in days) elapsed since the first within-patient 
sample collection. Correlation is measured with the Pearson’s 
correlation coefficient, and the P-value of the linear regression 
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is adjusted for multiple testing using the Benjamini–Hochberg 
method (Benjamini and Hochberg 1995). This analysis is per-
formed using the stats R library. Then, polymorphisms that have 
a significant correlation with time progression are selected for 
further characterization. Additionally, sites with more than one 
alternative allele are also selected to monitor potential associa-
tions or interactions between the alternative alleles.

Moreover, we calculate pairwise correlations between allele 
frequencies for all pairs of polymorphisms Mutations are hierar-
chically clustered based on correlation values. Pairwise correla-
tions are measured with the Pearson’s correlation coefficient using 
the stats R library. Display of the hierarchical clustering and corre-
lation values is carried out through the heatmaply R library (Galili 
et al. 2018) with hclust (from the stats R library) as the clustering 
function.

Temporal signal
To take the within-host variability in the viral population into 
account, we propose a pairwise distance metric between sam-
ples that integrate the differences in allele frequencies across the 
whole genome. Relying solely on consensus changes under the 
assumption of low relative entropy (Guang et al. 2016) results 
in the loss of valuable information about the diversity within 
the sampled population, which can aid in phylogenetic analyses 
(Guang et al. 2022; Torres Ortiz et al. 2023). By incorporating allele 
frequencies into our metric, we gain access to a more compre-
hensive representation of the evolutionary processes, including 
drift, mutation, and selection, shaping the data. We define the 
difference between two vectors of J allele frequencies, based on 
the FST measure (Wright 1949), such that the distance between 
two samples (M and N) is the sum for all I polymorphic sites of 
the differences between allele frequencies at each position (see 
Equation 1). Then, with this distance matrix, a neighbor-joining 
tree is constructed in R using ape v5.7 (Paradis, Schliep, and 
Schwartz 2019). Patristic distances to the root are calculated with 
adephylo v1.1–13 (Jombart, Balloux, and Dray 2010). 

d(M,N) =
I

∑
i=1

∑J
j=1 (Mij − Nij)

2

4 − ∑J
j=1 (Mij + Nij)

2
(1)

Finally, the within-host evolutionary rate is estimated by linear 
regression of the patristic distances to the root in each phylogeny 
on the days passed since the first within-patient sample collection, 
using the lm implementation in the stats R library. We performed 
an analysis of covariance (ANCOVA) to assess the differences 
between substitution rates of different datasets using the same 
R library.

Investigating traces of selection
To track selection footprints, the rates of substitutions per synony-
mous site (dS) and substitutions per non-synonymous site (dN) are 
calculated for each sample. Synonymous and non-synonymous 
sites are calculated with respect to the reconstructed ancestral 
sequence. Then, dN and dS are calculated considering allele fre-
quencies. Calculations are performed in Python using the Nei–
Gojobori method (Nei and Gojobori 1986) with support of gb2seq
v0.0.20 (Charité Institute of Virology 2023) for codon annotation.

Data availability
VIPERA is a cross-platform Snakemake (≥7.19) workflow written 
in Python and R, released as free software under the GNU GPLv3 

license. The source code and the report of our case study are avail-
able in GitHub (https://github.com/PathoGenOmics-Lab/VIPERA, 
release v1.2.0). The latest version of VIPERA is also available in 
the ‘standardized usage’ area of the Snakemake workflow catalog 
(https://snakemake.github.io/snakemake-workflow-catalog).

Sequencing data from the positive control is available through 
its source publication by Chaguza et al. (Chaguza et al. 2023). 
Raw sequencing data from the negative control and the novel case 
study are available at the ENA. Accession numbers are provided in 
Supplementary Table 5. Read mappings and consensus genomes 
can be accessed via DOI: 10.20350/digitalCSIC/15648.

Supplementary data
Supplementary data is available at VEVOLU Journal online.
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