(1) | Calculate envelope e of the seismic data u, of which the total recorded time is T. |
(2) | Set up the window length Laccording to continuity of the source S and the SNR of seismic data, calculate the window-averaged envelope|${e_L}$|. |
(3) | Calculate the local minima point coordinates of the window-averaged envelope |${P_k}(k = 2,3.....m - 2,m - 1)$|. |${P_1}$|is the starting point and |${P_m}$| is the end point of the seismic data. |
(4) | Set threshold|$\varepsilon {\rm{ = }}\lambda \sum\limits_{it = {P_1}}^{{P_m}} {{e_L}(it)} $|, where|$\lambda $| is the threshold control parameter and|$0 < \lambda < 1$|, if|$\sum\limits_{it = {P_k}}^{{P_{k + 1}}} {{e_L}(it)} < \varepsilon $|, remove|${P_{k + 1}}$|from|$\{ {{P_1}} ,P{}_2......{P_{m - 1}}, {{P_m}} \}$|. |
(5) | Define|${u^k}(it) = u(it),e_L^k(it) = {e_L}(it)(it = {P_k},{P_k} + 1,{P_k} + 2,...{P_{k + 1}} - 1)$|. Define the maxima point coordinates of the absolute value of |$e_L^k$| as Pmaxk. |
(6) | Initialize the apparent reflection sequence|$\tilde{\gamma }(it)(it = 1,2,3...T)$|. Define the phase shift between the event |${u^k}$| and the source wavelet S as|$PhaseS$|. $$\begin{eqnarray*}
\tilde{\gamma }({P_{{{\max }_k}}}) =
\{ \begin{array}{@{}l@{}}
{e_L}({P_{{{\max }_k}}})forPhaseS \lt \pi \\
- {e_L}({P_{{{\max }_k}}})forPhaseS \gt \pi
\end{array}
\end{eqnarray*}$$ |
(7) | The reconstructed seismic data |$\tilde{u} = \tilde{\gamma } * \tilde{S}$|, where |$\tilde{S}$|is full-band source. |
(1) | Calculate envelope e of the seismic data u, of which the total recorded time is T. |
(2) | Set up the window length Laccording to continuity of the source S and the SNR of seismic data, calculate the window-averaged envelope|${e_L}$|. |
(3) | Calculate the local minima point coordinates of the window-averaged envelope |${P_k}(k = 2,3.....m - 2,m - 1)$|. |${P_1}$|is the starting point and |${P_m}$| is the end point of the seismic data. |
(4) | Set threshold|$\varepsilon {\rm{ = }}\lambda \sum\limits_{it = {P_1}}^{{P_m}} {{e_L}(it)} $|, where|$\lambda $| is the threshold control parameter and|$0 < \lambda < 1$|, if|$\sum\limits_{it = {P_k}}^{{P_{k + 1}}} {{e_L}(it)} < \varepsilon $|, remove|${P_{k + 1}}$|from|$\{ {{P_1}} ,P{}_2......{P_{m - 1}}, {{P_m}} \}$|. |
(5) | Define|${u^k}(it) = u(it),e_L^k(it) = {e_L}(it)(it = {P_k},{P_k} + 1,{P_k} + 2,...{P_{k + 1}} - 1)$|. Define the maxima point coordinates of the absolute value of |$e_L^k$| as Pmaxk. |
(6) | Initialize the apparent reflection sequence|$\tilde{\gamma }(it)(it = 1,2,3...T)$|. Define the phase shift between the event |${u^k}$| and the source wavelet S as|$PhaseS$|. $$\begin{eqnarray*}
\tilde{\gamma }({P_{{{\max }_k}}}) =
\{ \begin{array}{@{}l@{}}
{e_L}({P_{{{\max }_k}}})forPhaseS \lt \pi \\
- {e_L}({P_{{{\max }_k}}})forPhaseS \gt \pi
\end{array}
\end{eqnarray*}$$ |
(7) | The reconstructed seismic data |$\tilde{u} = \tilde{\gamma } * \tilde{S}$|, where |$\tilde{S}$|is full-band source. |
(1) | Calculate envelope e of the seismic data u, of which the total recorded time is T. |
(2) | Set up the window length Laccording to continuity of the source S and the SNR of seismic data, calculate the window-averaged envelope|${e_L}$|. |
(3) | Calculate the local minima point coordinates of the window-averaged envelope |${P_k}(k = 2,3.....m - 2,m - 1)$|. |${P_1}$|is the starting point and |${P_m}$| is the end point of the seismic data. |
(4) | Set threshold|$\varepsilon {\rm{ = }}\lambda \sum\limits_{it = {P_1}}^{{P_m}} {{e_L}(it)} $|, where|$\lambda $| is the threshold control parameter and|$0 < \lambda < 1$|, if|$\sum\limits_{it = {P_k}}^{{P_{k + 1}}} {{e_L}(it)} < \varepsilon $|, remove|${P_{k + 1}}$|from|$\{ {{P_1}} ,P{}_2......{P_{m - 1}}, {{P_m}} \}$|. |
(5) | Define|${u^k}(it) = u(it),e_L^k(it) = {e_L}(it)(it = {P_k},{P_k} + 1,{P_k} + 2,...{P_{k + 1}} - 1)$|. Define the maxima point coordinates of the absolute value of |$e_L^k$| as Pmaxk. |
(6) | Initialize the apparent reflection sequence|$\tilde{\gamma }(it)(it = 1,2,3...T)$|. Define the phase shift between the event |${u^k}$| and the source wavelet S as|$PhaseS$|. $$\begin{eqnarray*}
\tilde{\gamma }({P_{{{\max }_k}}}) =
\{ \begin{array}{@{}l@{}}
{e_L}({P_{{{\max }_k}}})forPhaseS \lt \pi \\
- {e_L}({P_{{{\max }_k}}})forPhaseS \gt \pi
\end{array}
\end{eqnarray*}$$ |
(7) | The reconstructed seismic data |$\tilde{u} = \tilde{\gamma } * \tilde{S}$|, where |$\tilde{S}$|is full-band source. |
(1) | Calculate envelope e of the seismic data u, of which the total recorded time is T. |
(2) | Set up the window length Laccording to continuity of the source S and the SNR of seismic data, calculate the window-averaged envelope|${e_L}$|. |
(3) | Calculate the local minima point coordinates of the window-averaged envelope |${P_k}(k = 2,3.....m - 2,m - 1)$|. |${P_1}$|is the starting point and |${P_m}$| is the end point of the seismic data. |
(4) | Set threshold|$\varepsilon {\rm{ = }}\lambda \sum\limits_{it = {P_1}}^{{P_m}} {{e_L}(it)} $|, where|$\lambda $| is the threshold control parameter and|$0 < \lambda < 1$|, if|$\sum\limits_{it = {P_k}}^{{P_{k + 1}}} {{e_L}(it)} < \varepsilon $|, remove|${P_{k + 1}}$|from|$\{ {{P_1}} ,P{}_2......{P_{m - 1}}, {{P_m}} \}$|. |
(5) | Define|${u^k}(it) = u(it),e_L^k(it) = {e_L}(it)(it = {P_k},{P_k} + 1,{P_k} + 2,...{P_{k + 1}} - 1)$|. Define the maxima point coordinates of the absolute value of |$e_L^k$| as Pmaxk. |
(6) | Initialize the apparent reflection sequence|$\tilde{\gamma }(it)(it = 1,2,3...T)$|. Define the phase shift between the event |${u^k}$| and the source wavelet S as|$PhaseS$|. $$\begin{eqnarray*}
\tilde{\gamma }({P_{{{\max }_k}}}) =
\{ \begin{array}{@{}l@{}}
{e_L}({P_{{{\max }_k}}})forPhaseS \lt \pi \\
- {e_L}({P_{{{\max }_k}}})forPhaseS \gt \pi
\end{array}
\end{eqnarray*}$$ |
(7) | The reconstructed seismic data |$\tilde{u} = \tilde{\gamma } * \tilde{S}$|, where |$\tilde{S}$|is full-band source. |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.