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Three sets of linear models were developed to predict several forest attributes, using stand-level and single-tree remote sensing (STRS) light detection and ranging
(LiDAR) metrics as predictor variables. The first used only area-level metrics (ALM) associated with first-return height distribution, percentage of cover, and
canopy transparency. The second alternative included metrics of first-return LiDAR intensity. The third alternative used area-level variables derived from STRS
LiDAR metrics. The ALM model for Lorey’s height did not change with inclusion of intensity and yielded the best results in terms of both model fit (adjusted
R2 � 0.93) and cross-validated relative root mean squared error (RRMSE � 8.1%). The ALM model for density (stems per hectare) had the poorest precision
initially (RRMSE � 39.3%), but it improved dramatically (RRMSE � 27.2%) when intensity metrics were included. The resulting RRMSE values of the ALM
models excluding intensity for basal area, quadratic mean diameter, cubic stem volume, and average crown width were 20.7, 19.9, 30.7, and 17.1%,
respectively. The STRS model for Lorey’s height showed a 3% improvement in RRMSE over the ALM models. The STRS basal area and density models significantly
underperformed compared with the ALM models, with RRMSE values of 31.6 and 47.2%, respectively. The performance of STRS models for crown width, volume,
and quadratic mean diameter was comparable to that of the ALM models.
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The use of light detection and ranging (LiDAR) technology to
estimate forest attributes has advanced dramatically in re-
cent years. Specifically, the use of small-footprint LiDAR

metrics as explanatory variables has become prominent, as technol-
ogy for the acquisition, processing, and extraction of LiDAR metrics
has improved (Means et al. 2000, Næsset et al. 2004, Gobakken and
Næsset 2004, Falkowski et al. 2006, Lim et al. 2008). Current
LiDAR research is important not only for direct estimation of se-
lected forest attributes but also for determining the strength of cor-
relations between LiDAR metrics and forest variables for use in
forest inventory and assessment. This is particularly relevant for
regions such as western Oregon, where acquisition of small-foot-
print LiDAR data is becoming much more common and less expen-
sive for both the state and federal forest ownerships.

There are two primary approaches for estimating or predicting
forest variables using LiDAR metrics. The first approach relates
LiDAR metrics to ground-measured variables for individual trees
through single-tree remote sensing (STRS). A considerable amount
of work has been done to develop methods to detect and delineate
individual trees on a landscape using only geographic information
systems (GIS) visualization, ranging from work done by Avery
(1958) to that done by Korpela (2004). Typically, the two individ-

ual tree variables assessed directly from aerial LiDAR are total tree
height and crown width (or crown area). The acquisition of these
variables from raw LiDAR data requires the use of an algorithm to
detect individual trees on a LiDAR canopy height model (CHM)
either by identifying gradient changes in canopy height or by using
variable window technology (Popescu et al. 2003a, Chen et al.
2006). Other tree-level variables, such as dbh and volume, are esti-
mated from the LiDAR-derived individual tree height and crown
width. Theoretically, inference for forest variables, such as volume
and standing biomass, can be made at the stand level or even the
regional level using STRS for LiDAR. However, this approach can
oftentimes be difficult to implement on either a small scale or a large
scale because of errors of omission and inclusion of individual trees.
This form of error is generally caused by one of three factors: (1)
LiDAR pixel size (precision of LiDAR surface), (2) forest structure
(density and percentage of dominant/codominant trees), and (3)
type of tree segmentation algorithm used (Popescu et al. 2003a,
2003b, Chen et al. 2006, Popescu 2007, Anderson 2009)

The second approach to the estimation and prediction of forest
attributes using LiDAR metrics does not attempt to identify indi-
vidual trees as is done with STRS, but uses area-level metrics from
the LiDAR point cloud and area-level estimates from ground data.
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From height profiling to volume estimation, this type of LiDAR-
based inference has advanced dramatically over the last 15 years
(Næsset 1997a, 1997b, Magnussen and Boudewyn 1998, Means et
al. 1999, 2000, Næsset and Bjerknes 2001, Breidenbach et al.
2008). Næsset (1997b) and Magnussen and Boudewyn (1998)
found correlation between forest attributes and LiDAR-based met-
rics. Traditionally, forest LiDAR studies have used only metrics
associated with canopy elevations of individual returns based on
spatial coordinates. However, LiDAR intensity has been found to be
highly correlated with changes in forest cover, specifically with re-
gard to species or species-group classification in forests (Luzum et al.
2004, Donoghue et al. 2007, Korpela 2008, Morsdorf et al. 2008).
The incorporation of LiDAR intensity metrics in this study stems
from two factors: (1) there has been some past difficulty correlating
LiDAR height and cover metrics with basal area (BA) and density;
and (2) the models created in this analysis incorporated a mixture of
conifers and hardwoods, although conifers are dominant.

Development of regression models for estimating basal area and
tree density using both LiDAR metrics and Landsat imagery was
recently assessed by Hudak et al. (2006). The primary focus in that
study was to assess differences in model fit and precision between a
variety of different model-selection methods, such as subset and
stepwise regression using height, cover, and intensity LiDAR met-
rics. This study differs in that the primary focus is on assessing the
model fit and precision for six different forest attributes with and
without the use of LiDAR intensity metrics, as well as comparing
these with models created through STRS.

The objectives of this study are to (1) develop empirical models
to relate forest attributes of interest and LiDAR metrics, (2) examine
the contribution of LiDAR intensity metrics in estimating selected
forest attributes, and (3) compare the resulting precision of the
area-based models with precision of area-level estimates through use
of STRS. The attributes of interest for this study are total stem
volume (m3 ha�1), Lorey’s mean stand height (m), quadratic mean
diameter (QDBH) (cm), BA (m2 ha�1), density (live stems ha�1),
and average crown width (CW) (m) for all live trees.

Methods
Study Area

The study was conducted in McDonald-Dunn Research Forest,
located just north-northwest of the town of Corvallis in western
Oregon. The forest covers approximately 4,553 ha, with an eleva-
tion range of approximately 60–500 m above sea level. The main
tree species are conifers, including Douglas fir (Pseudotsuga men-
ziesii) and grand fir (Abies grandis) as apex species and a small per-
centage of western hemlock (Tsuga heterophylla) and western redce-
dar (Thuja plicata). The primary deciduous species is bigleaf maple
(Acer macrophyllum). Although the species composition does not
vary significantly throughout the forest, individual stands vary
widely by age, density, and management history.

Field Data
Using stand-level inventory data collected in 2008, 29 square

plots measuring 30 � 30 m (900 m2) were stratified by 16 subcat-
egories representing the combination of four age ranges (20–40,
40–60, 60–80, and 80� years) and four Curtis relative density
ranges (0.01–0.2, 0.2–0.5, 0.5–0.8, 0.8–1.1). This made it possi-
ble to capture the range of diversity in forest structure. Relative
density is defined as the product of the square root of QDBH and

BA (Curtis 1970). The location of each plot was predetermined
using ARCMAP, and all four corners of each plot were located in the
field using waypoints in a differential global positioning systems
(GPS). A criterion laser was used to verify the positions of the plot
corners, using the southeast corner as a reference. To georeference
exact plot position, the GPS receiver was mounted on a leveled stand
at the location of the southeast corner to collect a minimum of 1,000
positions, with a logging interval of 1 second. Each plot was stem
mapped using reference points that were also georeferenced with the
GPS and a criterion laser. A summary of per-plot information for
relevant attributes can be seen in Table 1.

For every living tree within the plots that had a dbh of greater
than 11.4 cm, dbh, species, height, height to crown base, and crown
width were measured. Crown widths were determined by measuring
two crown radii, one to the tip of the outmost branch on the longest
side of the crown and another 90° (perpendicular) from the first. For
excessively leaning bigleaf maple and Pacific madrone (Arbutus men-
ziesii), CW was estimated using an equation from Hann (1997).
Tree-level volume estimates were calculated using the US Forest
Service National Volume Estimator Library (US Forest Service
2000). Lorey’s mean stand height (Lorey’s height) for each plot was
calculated as plot-level means of basal area weighted tree heights
(Husch et al. 2003).

LiDAR Data
Area-Based LiDAR Metrics

The LiDAR data were collected in May of 2008 using a Leica
ALS50 II laser system. The sensor scan angle was �14° from nadir
(the point on the ground directly below the aircraft), with a pulse
rate designed to yield an average number of pulses of �8 points
per square meter over terrestrial surfaces. Classification of ground
and vegetation points was performed by TerraScan version 7.012,
as well as spatial interpolation of ground classified points to create
the digital terrain model. The data were collected using opposing
parallel flight lines with a �50% overlap, producing average
ground-point and first-return densities of 1.12 and 10.0 points per
meter, respectively. All area-based LiDAR metrics used in this study
were extracted from the raw point data using LiDAR FUSION
(McGaughey 2008). A summary of the LiDAR metrics with corre-
sponding descriptions can be seen in Table 2.

All LiDAR metrics were extracted using only first returns above a
height of 3 m off the ground, with the exception of the cover metrics
and canopy transparency, which used a variety of predetermined
height thresholds, because a high number of first returns from the
ground and low-lying vegetation may introduce confounding noise
in the LiDAR metrics (Kraus and Pfeifer 1998, Næsset and Bjerknes
2001, Strunk 2008). Aside from raw reflectance values, there are
other factors that can affect LiDAR intensity, such as humidity,

Table 1. Summary of selected forest attributes in McDonald-Dunn
Forest (n � 29).

Minimum Maximum Mean
Standard
deviation

Density (trees/ha) 44.4 866.6 469.3 285.5
QDBH (cm) 23.2 83.1 49.9 15.1
BA (m2/ha) 13.9 286.1 78.1 52.6
CW (m) 7.3 20.6 13.5 3.4
Lorey’s height (m) 20.3 59.7 37.1 8.8
Volume (m3/ha) 193.8 2422.1 1006.6 583.0

QDBH, quadratic mean diameter; BA, basal area; CW, crown width.
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weather patterns, ground-elevation changes, and scanning angle. In
many LiDAR data sets, including the one for this study, the inten-
sity values for each return have already undergone a form of normal-
ization to adjust for some of these factors. The raw LiDAR intensi-
ties extracted in a particular scan were passed through a proprietary
algorithm by the LiDAR vendor, accounting for several variables,
such as localized trends in intensity values, scanning angle, and
target distance. Through this process, many weak-intensity readings
were adjusted to correspond with the distribution of intensity values
in the surrounding area on the basis of the aforementioned variables,
outputting a final product consisting of intensity values per return
that were calibrated to an 8-bit value with a range of 0–255. Al-
though this technique helps to filter out much of the backscatter
noise, there are additional normalizations focusing on target dis-
tance and scan angle that have been studied (Luzum et al. 2004,
Donoghue et al. 2007). Unfortunately, there was not sufficient in-
formation available for this LiDAR data set to perform this type of
normalization.

STRS LiDAR Metrics
Over the past several years, a few different types of algorithm

have been developed to identify individual tree tops and crowns in
LiDAR. For this study, individual tree crown identification was
performed using a watershed segmentation algorithm for each plot.
This was done by creating an inverse of the CHM and applying
morphological watershed segmentation, resulting in segmentation
of the CHM into polygons associated with individual tree crowns
(Hyyppa et al. 2001, Anderson 2009). A tree height was defined as
the highest return value located within the crown polygon. This is
the most widely used method of detecting individual trees in conifer
forests, as conifers typically have very distinguishable crowns, unlike
many deciduous species (Persson et al. 2002, Popescu et al. 2003a,
Anderson 2009). To classify as many tree crowns as possible, inten-
sity values were assessed for each plot to aid in differentiating be-
tween conifers and hardwoods. This was made possible by the fact
that the LiDAR data acquisition was leaf-off, causing deciduous
crowns to typically have lower signal reflectance and therefore lower
intensity. Because of the high density of some of the plots, many of
the intermediate and suppressed trees were not detected by the
algorithm. In most cases, these trees were completely overtopped by
surrounding dominant and codominant trees. Of all ground-mea-
sured trees, about 60% were discretely detected in LiDAR. This
coincides well with past studies in that trees assessed through STRS
from LiDAR are typically indicative of dominant and codominant
tree characteristics for a given stand, except in the case of low stand
density (Popescu et al. 2003a, Anderson 2009). There was omission
of only about 15% for dominant and codominant trees, most of
which was caused by high canopy density in many of the plots.

Individual tree variables extracted from the STRS of the LiDAR
coverage were tree height and crown area (CA).

Statistical Analysis
Estimating Tree-Level Attributes from STRS

Prior to developing area-level models for forest attributes using
tree-level variables from STRS, it was necessary to assess the corre-
lation between LiDAR-derived values of single-tree height and CW,
and ground measured values of height, CW, and dbh. dbh is a
variable that cannot be directly obtained from LiDAR STRS, but it
has been shown to be highly correlated with LiDAR tree height and
CW for conifers (Popescu et al. 2003a, Popescu 2007). It was nec-
essary to quantify the relationship between both LiDAR and
ground-based tree height and CW because of tendencies in LiDAR
tree height to have a slight negative bias and the fact that LiDAR
CW is based on detected CA. Linear regression was applied to the
700 trees detected by the segmentation algorithm for height, CW,
and dbh using LiDAR-derived height and CW as explanatory vari-
ables. No transformation was necessary for height, but log transfor-
mation was applied to both CW and dbh to correct for non-nor-
mality and heteroscedasticity. All three models were validated using
leave-one-out cross-validation for root mean squared error (RMSE).
The resulting tree-level estimates were used to calculate plot-level
minimum, maximum, mean, and SD of tree height, CW, and dbh.
QDBH and BA were also calculated on the basis of single-tree dbh
of dominant and codominant trees detected through STRS per plot.
All of the aforementioned STRS variables were used as explanatory
variables in area-level models for all six forest attributes of interest.

Area-Level Metrics and STRS Models
Before the process of linear model selection began, the ground

attributes were assessed for several transformations. This was done
using residual plots, Shapiro-Wilk tests, and quantile-quantile plots
to test for normality of the data. It was determined that natural log
transformation was the most beneficial for all of the forest attribute
response variables. This coincided well with similar past studies, as
this transformation is often used on forest variables to correct for
both non-normality and heteroscedasticity (Næsset 1997a, 1997b,
Næsset and Bjerknes 2001, Woods et al. 2008). Because the re-
sponse variables were log transformed for the analysis, the predicted
values were bias-corrected using a correction factor of 0.5 times the
mean squared error before back transformation (Baskerville 1972,
Woods et al. 2008).

For all three sets of models, the actual model selection was per-
formed using a subset regression technique that identifies the inde-
pendent variables that create the best fitting linear regression models
according to Bayesian information criteria (BIC) using an exhaus-
tive search. This was performed using the regsubsets( ) tool available

Table 2. Summary of light detection and ranging (LiDAR) metrics computed from LiDAR FUSION.

Metric Description

Height Distribution of all first return heights �3 m
Percentile height (e.g., 5th, 10th, 20th, . . . , 95th) Height distribution by deciles of first returns � 3
Intensity Distribution of all first return intensities �3 m
Percentile intensity Intensity distribution by deciles of first returns �3 m
Canopy cover (Cover_3, Cover_6, . . . , Cover_24) Percentage (0–100%) of first returns equal to or greater than a specified height (3, 6, . . . , 24 m)

above the ground
Canopy transparencies Percentage (0–100%) of first returns above a specified height after the removal of returns below

a lower specified height
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in the leaps( ) package for R (R Development Core Team 2008,
Lumley 2008). For each response variable, the program was set up to
output the best 10 models for one to seven variables allowed per
model using the BIC. The resulting output contained the informa-
tion for a total of 70 models.

Several factors needed to be accounted for in determining the
final models, including heteroscedasticity and multicollinearity. To
expedite this process, an algorithm was created to automatically rank
the complete list of models output by regsubsets( ) on the basis of
BIC. At the same time, this algorithm calculated the variance infla-
tion factors (VIF) for the predictors in each model, performed both
a Breusch-Pagan test and a modified Levene’s test for heteroscedas-
ticity, and calculated both nontransformed RMSE and adjusted R2

for each model. Any model that had a VIF score greater than 9.5 was
automatically dropped from the final list. Validation for each se-
lected model was performed using leave-one-out cross-validation for
nontransformed RMSE, as was done by Næsset and Bjerknes
(2001), Guillemette et al. (2008), Wulder et al. (2008), and Woods
et al. (2008). RMSE and relative root mean squared error (RRMSE)
were calculated for each model in original scale as

RMSE � ��i�1
n �Yi � Ŷi�

2

n
,

where Yi is the observed value for plot i, Ŷi is the predicted value for
plot i, n is the sample size, and RRMSE is RMSE divided by the
mean of the observed values.

Results and Discussion
Tree-Level Models

The linear regression models created to estimate tree-level at-
tributes from LiDAR all included height and CW as significant
variables. The cross-validated RMSE and RRMSE values for height,
CW, and dbh were 1.87 (5.5%), 2.97 (20.6%), and 11.67 (24%),

respectively. The RRMSE for CW was slightly higher than expected
based on results from past studies, such as those of Popescu et al.
(2003a). This was most likely caused by the high density of some of
the sampled stands, leading to underestimation of CA for some
dominant and codominant trees. Figure 1 shows LiDAR field-mea-
sured values versus LiDAR predicted values for height, CW,
and dbh.

Area-Level Models
The final area-level metrics (ALM) models excluding LiDAR

intensity used at least one variable from each of the other types of
LiDAR metric, including return heights, cover, and canopy trans-
parency. Each of the ALM models that included intensity metrics
recognized at least one intensity metric as a significant variable, with
the exception of Lorey’s height, which was not altered by the inclu-
sion of intensity metrics. The final STRS models used at least one
variable from each type of area-level variable created by the single-
tree analysis. With the exception of some intercept values, all of the
metrics included in the final models were significant at least at the
0.05 level. Within the set excluding intensity, the original model for
BA yielded an RRMSE of 55%, which is uncharacteristically high
even for this particular attribute, which can have RRMSE values in
a range of 25–30% (Drake et al. 2002, Holmgren 2003, Woods et
al. 2008). Residual plots and Cook’s distance suggested that one of
the plot values was a significantly high outlier for BA. Closer exam-
ination of this plot provided evidence that many of its characteristics
were not consistent with other plots with similar density range and
age category. A combination of extremely dense dominant and
codominant canopy, zero mortality, and a complete lack of both
intermediate stems and hardwoods contributed to a severely inflated
BA estimate for the plot. Because of the statistical and logistic im-
plications of this, the plot was dropped from the analysis of BA.
Significant predictor information and performance statistics for

Figure 1. A, Observed versus predicted height. B, Observed versus predicted crown width (CW). C, Observed versus predicted dbh.
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ALM models excluding intensity, ALM models including intensity,
and STRS models are given in Tables 3, 4, and 5, respectively.

Lorey’s Height
The ALM model for Lorey’s height, which remained unchanged

with the inclusion of intensity metrics, ranked highest in the models
for both ALM sets, with an adjusted R2 value of 0.93. In addition,
this model performed the best in terms of precision of prediction,
with an RRMSE value of 8.1%. This result is within the range
indicated by several other studies using either maximum height or
mean height, including Næsset and Bjerknes (2001), Holmgren and
Jonsson (2004), and Woods et al. (2008). Not surprisingly, the
model for Lorey’s height also ranked highest for the STRS models,
with an increase of 1% for adjusted R2 and a decrease of almost 4%
for RRMSE. This is indicative of the high correlation between Lo-
rey’s height and mean and maximum heights of dominant and
codominant stems, as is perceived by LiDAR.

Stocking (BA and Density)
Although the adjusted R2 value of the ALM predictive model for

BA increased from 0.82 to 0.90 with the inclusion of intensity
metrics, the RRMSE actually increased from 20.7 to 22.6%. Both of
these RRMSE values are reasonable with regard to this study and the
aforementioned previous studies, which demonstrates how the im-
provement in model fit introduced by intensity metrics did not
really improve the precision of prediction for BA. Although there is
insufficient evidence to make an assertion, this result may imply that
the slight transition between conifers and hardwoods observed in
the plots does not have a significant impact on the prediction of BA.
The STRS model for BA was inferior to both ALM models with
regard to both adjusted R2 (80.1) and RRMSE (31.6%).

The ALM predictive model for density experienced a similar
increase in adjusted R2 to the model for BA. However, the decrease
in RRMSE from 39.3 to 27.2% observed when intensity metrics
were included was extremely significant for this attribute. Given that

Table 3. Regression coefficients for area-level metrics models excluding intensity, with performance statistics in original scale.

Coefficient ln(BA), ln (m2 ha�1) ln(Lorey’s), ln (m) ln(Vol), ln (m3 ha�1) ln(Density), ln (stems ha�1) ln(QDBH), ln (cm) ln(CW), ln (m)

Intercept 1.28 (0.27) 2.56 (0.055) 7.19 (1.89) �7.24 (2.92) 6.22 (1.19) 1 (1.62)
HtMin 1.51 (0.73) �0.827 (0.393) �0.706 (0.335)
HtMax 0.032 (0.005)
HtMedian 0.018 (0.006)
HtKurtosis 0.017 (0.005)
HtInterqDist 0.051 (0.011)
Htp05 0.019 (0.008)
Htp10 �0.035 (0.012)
Htp25 0.024 (0.001)
Cover_3 0.025 (0.003) 0.026 (0.003)
Cover_15 0.073 (0.007) �0.017 (0.004) �0.023 (0.003)
Cover_21 �0.039 (0.006) 0.014 (0.004) 0.019 (0.002)
Trans3_12 �0.035 (0.014)
Trans6_12 �0.04 (0.019) �0.048 (0.021) 0.077 (0.027)
R2(adj), % 82.3 93 82.6 87.7 74.7 73
RMSEcross 14.7 2.99 309.7 184.5 9.95 2.3
RRMSEcross 20.8 8.1 30.7 39.3 19.9 17.1

Standard errors of coefficients are given in parentheses.
BA, basal area; Vol, volume; QDBH, quadratic mean diameter; CW, crown width; Ht, height; Min, minimum; Max, maximum; Trans, canopy transparency; RMSEcross, cross-validated root mean
squared error; RRMSEcross, cross-validated relative root mean squared error.

Table 4. Regression coefficients for area-level metrics models including intensity, with performance statistics in original scale.

Coefficient ln(BA), ln (m2 ha�1) ln(Lorey’s), ln (m) ln(Vol), ln (m3 ha�1) ln(Density), ln (stems ha�1) ln(QDBH), ln (cm) ln(CW), ln (m)

Intercept �0.53 (0.422) 2.56 (0.055) 3.72 (1.61) �1.31 (1.03) 8.07 (1.12) 5.22 (0.397)
HtMin �0.875 (0.336)
HtMax �0.013 (0.005) 0.012 (0.004)
HtKurt 0.017 (0.005)
Htp25 0.024 (0.001)
Htp75 0.031 (0.005) 0.036 (0.005)
Cover_3 �0.007 (0.002) �0.01 (0.002)
Cover_9 0.036 (0.003)
Cover_15 0.023 (0.002)
Cover_18 0.025 (0.002)
Cover_21 0.009 (0.001)
Cover_24 0.008 (0.002)
Trans3_9 0.049 (0.021)
Trans6_12 �0.069 (0.024)
Intp75 0.035 (0.004) 0.042 (0.005) 0.036 (0.006)
IntMedian �0.034 (0.004) �0.042 (0.005) �0.035 (0.005)
IntMax 0.015 (0.005) �0.008 (0.002) �0.01 (0.002)
R2(adj), % 89.7 93 90.4 91.9 82.1 79.9
RMSEcross 15.9 2.99 349.7 127.8 8.17 1.89
RRMSEcross 22.6 8.1 34.7 27.2 16.4 14

Standard errors of coefficients are given in parentheses.
BA, basal area; Vol, volume; QDBH, quadratic mean diameter; CW, crown width; Ht, height; Min, minimum; Max, maximum; Trans, canopy transparency; Int, intensity; RMSEcross,

cross-validated root mean squared error; RRMSEcross, cross-validated relative root mean squared error.
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the 39.3% RRMSE value is consistent with similar past studies, such
as those of Holmgren (2003) and Woods et al. (2008), it is unlikely
that this difference is caused by a better classification of species
composition brought on by the intensity metrics. It was more likely
caused by the ability of the intensity metrics to describe overall
canopy density, which can be highly correlated with the number of
tree crowns (and hence tree stems) present in the area of interest. As
with BA, the STRS predictive model was greatly inferior to both of
the ALM models. This indicates that the profile of dominant and
codominant tree composition provided by STRS in LiDAR was not
able to provide sufficient information for predicting density with a
high degree of precision. If the area-level analysis was based solely on
dominant and codominant trees, it is very likely that the STRS
model would outperform the ALM models because of a high corre-
lation between the number of STRS-detected trees and the number
of dominant and codominant trees per plot.

Volume
Similar to BA, the ALM predictive model for cubic stem volume

increased by 7% in adjusted R2 but saw an increase in RRMSE from
30.7 to 34.7% when intensity metrics were introduced. This implies
that although the model fit for volume improved with the inclusion
of intensity metrics, the original model is better in terms of preci-
sion. The performance of the STRS predictive model for volume
was almost a midpoint between the performances of the ALM vol-
ume models. The R2 value for the STRS volume model was lower
than that for the ALM model including intensity and higher than
that for the ALM model excluding intensity and visa versa for
RRMSE. It could be said that as a whole, the STRS volume model
performed just as well as the ALM volume models.

QDBH
The RRMSE values of 19.1 and 16.4% for the models excluding

intensity and including intensity, respectively, for QDBH were
both encouraging. The decrease in RRMSE when the intensity met-
rics were included was less than 3%, implying that inclusion of
intensity metrics does not significantly improve precision of predic-
tion for QDBH. These results combined, with the results from the
BA model, provide evidence that area-level LiDAR metrics can be
used effectively to predict forest attributes beyond the realm of sim-
ple height profiling. As with volume, the performance of the STRS

model for QDBH was comparable to that of the ALM models, with
an R2 value of 73% and RRMSE of 17.2%.

Crown Width
Crown width (CW) is an attribute that has traditionally been

reserved for single-tree LiDAR analyses, as it represents one of the
few variables that can be delineated for individual tree crowns using
aerial LiDAR. Assessment of this attribute stemmed from a desire to
assess the predictability of an important factor in the derivation of
other forest attributes, such as crown competition factors. The re-
sults of both ALM models for CW in terms of RRMSE were ex-
tremely encouraging, with values of 17.1 and 14%, respectively.
This indicates that the precision of prediction for CW, at least in the
context of this study, was just as good as the precision observed for
QDBH. The STRS model showed only a slight improvement in
precision, with an RRMSE of 13.1%.

Conclusion
The effective use of LiDAR for describing and predicting forest

attributes has seen dramatic advancement over the last decade, for
both single-tree and area-based inference. The analyses that have
been described in this study are only a small part of the overall
potential for forest attribute prediction using area-based LiDAR
metrics. This study has provided valuable insights regarding the
strength of correlation between selected forest attributes and LiDAR
metrics.

Including LiDAR intensity metrics generally improved model
fit for the forest attributes of interest. In the case of density, this
coincided with a dramatic improvement in the precision of pre-
diction for the model. However, it was also discovered that for
many of the forest attributes, the use of intensity metrics either
only slightly improved precision or slightly decreased the preci-
sion. This implies that for some forest attributes, such as BA and
volume, the inclusion of intensity metrics is not required to
improve precision.

Model fit and precision were generally not higher for the STRS
models except in the case of Lorey’s height. In the case of BA and
density, the STRS models did not perform as well as the ALM
models. However, it was observed that both model fit and precision
were comparable between the STRS models and ALM models for
volume, QDBH, and CW. This, combined with the result from the

Table 5. Regression coefficients for single-tree remote sensing models with performance statistics in original scale.

Coefficient ln(BA), ln (m2 ha�1) ln(Lorey’s), ln (m) ln(Vol), ln (m3 ha�1) ln(Density), ln (stems ha�1) ln(QDBH), ln (cm) ln(CW), ln (m)

Intercept 4.14 (0.297) 2.4 (0.053) 5.85 (0.159) 7.69 (0.239) 2.38 (0.173) 2.23 (0.139)
Density �0.0007 (0.0002)
Max Ht 0.009 (0.002) 0.022 (0.003)
Mean Ht �0.021 (0.009) 0.022 (0.002)
StdHt 0.046 (0.014) 0.054 (0.012)
MinCW �0.117 (0.017) 0.055 (0.009)
StdCW �0.03 (0.029) 0.021 (0.0004) �0.144 (0.027)
Min dbh �0.006 (0.004) 0.009 (0.002)
Max dbh
Mean dbh �0.031 (0.004) 0.004 (0.001)
Std dbh �0.025 (0.005)
BA 0.21 (0.024) 0.244 (0.019) 0.257 (0.025)
R2(adj), % 80.1 96.4 86.4 87.7 73 78.6
RMSEcross 22.93 2.06 313.27 221.52 8.56 1.77
RRMSEcross 31.6 4.3 30.1 47.2 17.2 13.1

Standard errors of the coefficients are given in parentheses.
BA, basal area; Vol, volume; QDBH, quadratic mean diameter; CW, crown width; Ht, height; Min, minimum; Max, maximum; RMSEcross, cross-validated root mean squared error; RRMSEcross,
cross-validated relative root mean squared error.
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Lorey’s height model, supports the assertion that attributes that are
highly correlated with vertical canopy structure can be estimated
with fairly high precision using both area-level and tree-level LiDAR
metrics. This study has shown that precise predictions of stand-level
forest attributes, such as BA, volume, density, QDBH, Lorey’s
height, and CW, can be made across a wide range of forest compo-
sitions found in western Oregon.
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